Did you know about the Sprint Pro Gas Leak Detector?

Are you still using a stand-alone gas leak detector, or thinking of buying one? If you have a Sprint Pro 2 or higher, then there’s no need, because these Sprint Pros all have gas leak detection capabilities built in. In this post we’ll be looking at that capability in detail.

How to detect leaks with a Sprint Pro 

Before you begin, you’ll need to have a gas escape probe (GEP) handy – if you have a Sprint Pro 3 or higher, this will have been supplied with the machine, but if you have a Sprint Pro 2 you’ll need to buy it separately.  

Having plugged in your GEP, go into the test menu and scroll down to select gas escape detection. Your sensor must reach the correct temperature before you can go any further; the machine will do this automatically and progress is shown on the menu (the machine will let you know when the probe is ready). The Sprint Pro will then ask you to verify that you’re in clean air, at which point you zero the machine.  

Then, place the probe in the area you wish to inspect, and keep it in place for at least a few seconds before moving it on to the next area to be checked. The Sprint Pro will make a sound like a Geiger counter (a series of clicks) and show a full colour bar graph display of gas levels as you approach a gas leak the sound will increase in pitch and the bar graph will indicate higher levels. Once you have located the leak, you can stop the test by pressing ESC. 

Once you have finished looking for leaks, it’s best practice to use leak detection fluid to check all disturbed, suspected and inspected pipework, joints, fittings, test points and flanges in line with your local regulations. 

Incidentally, the GEP is a precision instrument and can be damaged by impact. If your GEP is dropped, struck or otherwise damaged, it’s a good idea to check that it still works by plugging it into the Sprint Pro to make sure it’s recognised. If the Sprint Pro finds a fault in the GEP, it will let you know by means of a visual warning on the display. If this happens, or the GEP is visibly damaged, it must be repaired or replaced. 

You can find more information about using the Sprint Pro to detect gas leaks on page 22 of the Sprint Pro manual (click here for a PDF version).  

An Introduction to the Oil and Gas Industry 

The oil and gas industry is one of the biggest industries in the world, making a significant contribution to the global economy. This vast sector is often separated into three main sectors: upstream, midstream and downstream. Each sector comes with their own unique gas hazards. 

Upstream

The upstream sector of the oil and gas industry, sometimes referred to as exploration and production (or E&P), is concerned with locating sites for oil and gas extraction the subsequent drilling, recovery and production of crude oil and natural gas. Oil and gas production is an incredibly capital-intensive industry, requiring the use of expensive machinery equipment as well as highly skilled workers. The upstream sector is wide-ranging, encompassing both onshore and offshore drilling operations. 

The major gas hazard encountered in upstream oil and gas is hydrogen sulphide (H2S), a colourless gas known by its distinct rotten egg like smell. H2S is a highly toxic, flammable gas which can have harmful effects on our health, leading to loss of consciousness and even death at high levels. 

Crowcon’s solution for hydrogen sulphide detection comes in the form of the XgardIQ, an intelligent gas detector which increases safety by minimising the time operators must spend in hazardous areas. XgardIQ is available with high-temperature H2S sensor, specifically designed for the harsh environments of the Middle East. 

Midstream

The midstream sector of the oil and gas industry encompasses the storage, transportation and processing of crude oil and natural gas. The transportation of crude oil and natural gas is done by both land and sea with large volumes transported in tankers and marine vessels. On land, transportation methods used are tankers and pipelines. Challenges within the midstream sector include but are not limited to maintaining the integrity of storage and transportation vessels and protecting workers involved in cleaning, purging and filling activities. 

Monitoring of storage tanks is essential to ensure the safety of workers and machinery. 

Downstream

The downstream sector refers to the refining and processing of natural gas and crude oil and the distribution of finished products. This is the stage of the process where these raw materials are transformed into products which are used for a variety of purposes such as fuelling vehicles and heating homes.  

The refining process for crude oil is generally split into three basic steps: separation, conversion and treatment. Natural gas processing involves separating the various hydrocarbons and fluids to produce ‘pipeline quality’ gas. 

The gas hazards which are typical within the downstream sector are hydrogen sulphide, sulphur dioxide, hydrogen and a wide range of toxic gases. Crowcon’s Xgard and Xgard Bright fixed detectors both offer a wide range of sensor options to cover all the gas hazards present in this industry. Xgard Bright is also available with the next generation MPS™ sensor, for the detection of over 15 flammable gases in one detector. Also available are both single and multi-gas personal monitors to ensure workers safety in these potentially hazardous environments. These include the Gas-Pro and T4x, with Gas-Pro providing 5 gas support in a compact and rugged solution.

Why is gas emitted in cement production?

How is cement produced?

Concrete is one of the most important and commonly used materials in global construction. Concrete is widely used in the construction of both residential and commercial buildings, bridges, roads and more. 

The key component of concrete is cement, a binding substance which binds all the other components of concrete (generally gravel and sand) together. More than 4 billion tonnes of cement is used worldwide every year, illustrating the massive scale of the global construction industry. 

Making cement is a complex process, starting with raw materials including limestone and clay which are placed in large kilns of up to 120m in length, which are heated to up to 1,500°C. When heated at such high temperatures, chemical reactions cause these raw materials to come together, forming cement. 

As with many industrial processes, cement production is not without its dangers. The production of cement has the potential to release gases which are harmful to workers, local communities and the environment. 

What gas hazards are present in cement production?

The gases generally emitted in cement plants are carbon dioxide (CO2), nitrous oxides (NOx) and sulphur dioxide (SO2), with CO2 accounting for the majority of emissions. 

The sulphur dioxide present in cement plants generally comes from the raw materials which are used in the cement production process. The main gas hazard to be aware of is carbon dioxide, with the cement making industry responsible for a massive 8% of global CO2 emissions. 

The majority of carbon dioxide emissions are created from a chemical process called calcination. This occurs when limestone is heated in the kilns, causing it to break down into CO2 and calcium oxide.  The other main source of CO2 is the combustion of fossil fuels. The kilns used in cement production are generally heated using natural gas or coal, adding another source of carbon dioxide into addition to that which is generated through calcination. 

Detecting gas in cement production

In an industry which is a large producer of hazardous gases, detection is key. Crowcon offer a wide range of both fixed and portable detection solutions. 

Xgard Bright is our addressable fixed-point gas detector with display, providing ease of operation and reduced installation costs. Xgard Bright has options for the detection of carbon dioxide and sulphur dioxide, the gases of most concern in cement mixing. 

For portable gas detection, the Gasman’s  rugged yet portable and lightweight design make it the perfect single-gas solution for cement production, available in a safe area CO2 version offering 0-5% carbon dioxide measurement. 

For enhanced protection, the Gas-Pro multi-gas detector can be equipped with up to 5 sensors, including all of those most common in cement production, CO2, SO2 and NO2.

Car Parks are More Dangerous Than You Think

Road vehicles can emit a number of harmful gases through exhaust fumes, the most common being carbon monoxide (CO) and nitrogen dioxide (NO2). Whilst these cause gases are an issue in open air environments, there is particular cause for concern in more confined spaces such as underground and multi-storey car parks. 

Why are car parks of specific concern? 

The gases emitted through exhaust fumes are absolutely an issue regardless of where they are being emitted, and contribute to a wide variety of issues including air pollution. However, in car parks any dangers these gases cause are exasperated due to the high number of vehicles in a small, confined area and the lack of natural ventilation to ensure that these gases do not reach dangerous levels. 

What gases are present in car parks? 

Vehicles emit a variety of exhaust gases including carbon dioxide, carbon monoxide, nitrogen dioxide and sulphur dioxide. Carbon monoxide and nitrogen dioxide are the most common and are also of particular concern due to the potential negative impacts on human health that exposure to these gases can have. 

What are the dangers of gases in car parks? 

Out of the two most common gases in car parks, carbon monoxide poses the more significant threat to human health. It is an odourless, colourless and tasteless gas making it almost impossible to detect without some sort of detection equipment. 

Carbon monoxide is dangerous as it negatively impacts the transport of oxygen around the body which can cause a wide range of health problems. Breathing low levels of CO can cause nausea, dizziness, headaches, confusion and disorientation. Regularly breathing low levels of CO may cause more permanent health issues. At very high levels carbon monoxide can cause loss of consciousness and even death, with around 60 deaths attributed to carbon monoxide poisoning in England and Wales every year. 

Breathing in nitrogen dioxide also has negative health impacts including breathing and respiratory issues as well as damage to lung tissue. Exposure to high concentrations can cause inflammation of the airways and prolonged exposure can lead to irreversible damage to the respiratory system 

What regulations are there? 

In 2015, a new European Standard (EN 50545-1) was introduced, specifically relating to the detection of toxic gases such as CO and NO2 in car parks and tunnels. EN 50545-1 specifies requirements for remote gas detectors and control panels to be used in car parks. The goal of the standard is to increase the safety of gas detection systems in car parks and prevent the use of inadequate systems. Th standard also the alarm levels to be used for gas detection in car parks, shown in the table below. 

  Alarm 1  Alarm 2  Alarm 3 
CO  30 ppm  60 ppm  150 ppm 
NO2  3 ppm  6 ppm  15 ppm 

 

Crowcon Park System 

Crowcon have recently launched a new range of fixed detectors and control panels designed specifically for gas detection in car parks. 

The SMART P set of detectors, consisting of the SMART P-1 and SMART P-2 can detect CO, NO2 and petrol vapours, with the SMART P-2 offering simultaneous detection of both CO and NO2 in a single detector. The MULTISCAN++PK control panel can manage and monitor up to 256 detectors. Every product in the range has been designed to fulfil the requirements of the European Standard EN 50545-1. 

The importance of gas detection in the Petrochemical Industry

Closely linked to oil and gas, the petrochemicals industry takes raw materials from refining and gas processing and, through chemical process technologies, converts them into valuable products. In this sector, the organic chemicals produced in the largest volumes are methanol, ethylene, propylene, butadiene, benzene, toluene and xylenes (BTX). These chemicals are the building blocks of many consumer goods including plastics, clothing fabric, construction materials, synthetic detergents and agrichemical products.

Potential Hazards

Exposure to potential hazardous substances is more likely to occur during shutdown or maintenance work as these are a deviation from the refinery’s routine operations. As these deviations are out of normal routine, care should be exercised at all times to avoid the inhalation of solvent vapours, toxic gases, and other respiratory contaminants. The assistance of constant automated monitoring is helpful in determining the presence of solvents or gases, allowing their associated risks to be mitigated. This includes warning systems such as gas and flame detectors, supported by emergency procedures, and permit systems for any kind of potentially dangerous work.

The petroleum industry is split into upstream, midstream and downstream and these are defined by the nature of the work that takes place in each area. Upstream work is typically known as the exploration and production (E&P) sector. Midstream refers to the transportation of products through pipelines, transit and oil tankers as well as the wholesale marketing of petroleum-based products. The downstream sector refers to the refining of petroleum crude oil, the processing of raw natural gas and the marketing and distribution of finished products.

Upstream

Fixed and portable gas detectors are needed to protect plant and personnel from the risks of flammable gas releases (commonly methane) as well as from high levels of H2S, particularly from sour wells. Gas detectors for O2 depletion, SO2 and volatile organic compounds (VOCs) are required items of personal protection equipment (PPE), which is usually highly visible colour and worn near breathing space. Sometimes HF solution is used as a scouring agent. Key requirements for gas detectors are rugged and reliable design and long battery life. Models with design elements that support easy fleet management and compliance obviously have an advantage. You can read about VOC risk and Crowcon’s solution in our case study.

Midstream

Fixed monitoring of flammable gases situated close to pressure relief devices, filling and emptying areas is necessary to deliver early warning of localised leaks. Multi-gas portable monitors must be used to maintain personal safety, especially during work in confined spaces and supporting hot work permit area testing. Infrared technology in flammable gas detection supports purging with the ability to operate in inert atmospheres and delivers reliable detection in areas where pellistor type detectors would fail, due to poisoning or volume level exposure. You can read more on how infrared detection works in our blog and read our case study of infrared monitoring in refinery settings in Southeast Asia.

Portable laser methane detection (LMm) allows users to pin-point leaks at distance and in hard-to-reach areas, reducing the need for personnel to enter potentially dangerous environments or situations while performing routine or investigative leak monitoring. Using LMm is a quick and effective way to check areas for methane with a reflector, from up to 100m away. These areas include closed buildings, confined spaces and other difficult-to-reach areas such as above-ground pipelines that are near water or behind fences.

Downstream

In downstream refining, the gas risks may be almost any hydrocarbon, and may also include hydrogen sulphide, sulphur dioxide and other by-products. Catalytic flammable gas detectors are one of the oldest flammable gas detector types. They work well, but must have a bump testing station, to ensure each detector responds to the target gas and is still functional. The ongoing demand to reduce facility down-time whilst ensuring safety, especially during shutdown and turnaround operations, means that gas detection manufacturers must deliver solutions offering ease of use, straightforward training and reduced maintenance times, along with local service and support.

During plant shutdowns, processes are stopped, items of equipment are opened and checked and the number of people and moving vehicles at the site is many times higher than normal. Many of the processes undertaken will be hazardous and require specific gas monitoring. For example, welding and tank cleaning activities require area monitors as well as personal monitors to protect those on site.

Confined space

Hydrogen sulphide (H2S) is a potential problem in the transport and storage of crude oil. The cleaning of storage tanks presents a high hazard potential. Many confined-space entry problems can occur here, including oxygen deficiency resulting from previous inerting procedures, rusting, and oxidation of organic coatings. Inerting is the process of reducing the oxygen levels in a cargo tank to remove the oxygen element required for ignition. Carbon monoxide can be present in the inerting gas. In addition to H2S, depending on the characteristics of the product previously stored in the tanks, other chemicals that may be encountered include metal carbonyls, arsenic, and tetraethyl lead.

Our Solutions

Elimination of these gas hazards is virtually impossible, so permanent workers and contractors must depend on reliable gas detection equipment to protect them. Gas detection can be provided in both fixed and portable forms. Our portable gas detectors protect against a wide range of gas hazards, these include Clip SGD, Gasman, Tetra 3,Gas-Pro, T4, Gas-Pro TK and Detective+. Our fixed gas detectors are used in many applications where reliability, dependability and lack of false alarms are instrumental to efficient and effective gas detection, these include Xgard, Xgard Bright, Fgard IR3 Flame Detector and IRmax. Combined with a variety of our fixed detectors, our gas detection control panels offer a flexible range of solutions that measure flammable, toxic and oxygen gases, report their presence and activate alarms or associated equipment, for the petrochemical industry our panels include Addressable Controllers, Vortex and Gasmonitor.

To find out more on the gas hazards in the petrochemical industry visit our industry page for more information.

Gas-Pro TK: Dual readings of %LEL and %Vol

Gas-Pro TK (re-branded from Tank-Pro) dual range portable monitor measures the concentration of flammable gas in inerted tanks. Available for methane, butane and propane, Gas-Pro TK uses a dual IR flammable gas sensor – the best technology for this specialist environment. Gas-Pro TK dual IR features auto-range switching between %vol. and %LEL measurement, to ensure operation at the correct measurement range. This technology isn’t damaged by high hydrocarbon concentrations and does not need oxygen concentrations to work, as are the limiting factors of catalytic bead/ pellistors in such environments. 

What problem is Gas-Pro TK specifically designed to overcome? 

When you wish to enter a fuel storage tank for inspection or maintenance, you may start with it full of flammable gas. You can’t just start pumping air in to displace the flammable gas because at some point in the transition from only fuel present to only air present, there would be an explosive mixture of fuel and air. Instead, you must pump in an inert gas, usually nitrogen to displace the fuel without introducing oxygen. The transition from 100% flammable gas and 0% volume nitrogen, to 0% volume flammable gas and 100% nitrogen enables a safe transition from 100% nitrogen to air. Using this two-step process enables a safe transition from fuel to air without risking an explosion. 

During this process there is no air or oxygen present, so catalytic bead / pellistor sensors will not work properly and will also be poisoned by the high levels of flammable gas. The dual range IR sensor used by Gas-Pro TK does not require any air or oxygen to function, so it is ideal to monitor the whole of the process, from %volume to %LEL concentrations, while also monitoring oxygen levels in the same environment. 

What is LEL? 

The Lower Explosive Limit (LEL) is the lowest concentration of a gas or vapour that will burn in air. Readings are a percentage of that, with 100%LEL the minimum amount of gas needed to combust. LEL varies from gas to gas, but for most flammable gases it is less than 5% by volume. This means that it takes a relatively low concentration of gas or vapour to produce a high risk of explosion.
Three things must be present for an explosion to occur: combustible gas (the fuel), air and a source of ignition (as shown in the diagram). In addition, the fuel must be present at the right concentration, between the Lower Explosive Limit (LEL), below which the gas/air mixture is too lean to burn, and the Upper Explosive Limit (UEL), above which the mixture is too rich and there is not enough of a supply of oxygen to sustain a flame. 

Safety procedures are generally concerned with detecting flammable gas well before it reaches an explosive concentration, so gas detection systems and portable monitors are designed to initiate alarms before gases or vapours reach the Lower Explosive Limit. Specific thresholds vary according to the application, but the first alarm is typically set at 20% LEL and a further alarm is commonly set to 40% LEL. LEL levels are defined in the following standards: ISO10156 (also referenced in EN50054, which has since been superseded) and IEC60079. 

What is %Volume? 

The percent by volume scale is used to give the concentration of one gas type in a mixture of gases as a percentage of the volume of gas present. It is just a different scale with, for example the methane lower explosive limit concentration is displayed at 4.4% volume instead of 100% LEL or 44000ppm, which are all equivalent. If there was 5% or more methane present in air, we would have a highly dangerous situation where any spark or hot surface could cause an explosion where air (specifically oxygen) is present. If there is 100%volume reading, it means that there is no other gas present in the gas mix. 

Gas-Pro TK 

Our Gas-Pro TK has been designed for use in specialist inerted tank environments to monitor levels of flammable gases and oxygen, as standard gas detectors will not work. In ‘Tank Check Mode’ Our Gas-Pro TK device is suitable for specialist application of monitoring inerted tank spaces during purging or gas freeing, as well as doubles as a regular personal gas safety monitor in normal operation. It enables users to monitor the gas mix in tanks carrying flammable gas during transport at sea (as it is marine approved) or on shore, such as oil tankers and oil storage terminals. At 340g, Gas-Pro TK is up to six times lighter than other monitors for this application; a boon if you have to carry it with you all day. 

In Tank Check mode, the Crowcon Gas-Pro TK, monitors concentrations of flammable gas and oxygen, checking that an unsafe mixture is not developing. The device auto-ranges, switching between %vol and %LEL as gas concentration demands, without manual intervention, and notifies the user as it happens. Gas-Pro TK has real-time oxygen concentrations from within the tank on its display, so users can track the oxygen levels, either for when the oxygen levels are low enough to safely load and store fuel, or high enough for safe tank entry during maintenance. 

The Gas-Pro TK is available calibrated to methane, propane or butane.  With IP65 and IP67 ingress protection, Gas-Pro TK meets the demands of most industrial environments. With optional MED certifications, it is a valuable tool for tank monitoring on-board vessels. The optional High H₂S Sensor addition allows users to analyse possible risk if gases vent during purging. With this option, users can monitor over the 0-100 or 0-1000ppm range. 

Please note: if the fuel in the tank is hydrogen or ammonia, a different gas detection technique is required – and you should contact Crowcon. 

For more information on our Gas-Pro TK visit our product page or get in contact with our team.

Crowcon hours of business over the Holiday, Christmas and New Year period 

As it draws to a close, we hope you’ve had an excellent 2022, and thank you for your custom and support during the year. It has certainly been challenging but successful. We are looking forward to more of the same in 2023 and wish the same for you. 

Over the coming Christmas and New Year period, our hours of business reflect local custom and practice, so are different in different countries. We will be closed for business at the following times: 

  • Abingdon, UK 
    from 23rd December 2022 until 3rd January 2023, times to be confirmed. 
  • Dubai, UAE 
    No changes to usual office hours 
  • Mumbai, India 
    No changes to usual office hours 
  • Singapore 
    Closed 26th December 2022 
  • China 
    TBC 
  • USA 
    Closed 23rd December – 26th December and then the 30th of December – 2nd January.

The importance of gas detection in the Medical and Healthcare sector

The need for gas detection in the medical and healthcare sector may be less widely understood outside of the industry, but the requirement is there, nonetheless. With patients across a number of settings receiving a variety of treatment and medical therapies that involve the usage of chemicals, the need to accurately monitor the gases utilised or emitted, within this process is very important to allow for their continued safe treatment. In order to safeguard both patients and, of course, the healthcare professionals themselves, the implementation of accurate and reliable monitoring equipment is a must.

Applications

In healthcare and hospital settings, a range of potentially hazardous gases can present themselves due to the medical equipment and apparatus utilised. Harmful chemicals are also used for disinfectant and cleansing purposes within hospital work surfaces and medical supplies. For example, potentially hazardous chemicals can be used as a preservative for tissue specimens, such as toluene, xylene or formaldehyde. Applications include:

  • Breath gas monitoring
  • Chiller rooms
  • Generators
  • Laboratories
  • Storage rooms
  • Operating theatres
  • Pre-hospital rescue
  • Positive airway pressure therapy
  • High flow nasal cannula therapy
  • Intensive care units
  • Post anaesthesia care unit

Gaz Hazards

Oxygen Enrichment in Hospital Wards

In light of the worldwide pandemic, COVID-19, the need for increased oxygen on hospital wards has been recognised by healthcare professionals due to the escalating number of ventilators in use. Oxygen sensors are vital, within ICU wards specifically, as they inform the clinician how much oxygen is being delivered to the patient during ventilation. This can prevent the risk of hypoxia, hypoxemia or oxygen toxicity. If oxygen sensors do not function as they should; they can alarm regularly, need changing and unfortunately even lead to fatalities. This increased use of ventilators also enriches the air with oxygen and can raise the combustion risk. There is a need to measure the levels of oxygen in the air using a fixed gas detection system to avoid unsafe levels in the air.

Carbon Dioxide

Carbon dioxide level monitoring is also required in healthcare environments to ensure a safe working environment for professionals, as well as to safeguard patients being treated. Carbon dioxide is used within a plethora of medical and healthcare procedures from minimally invasive surgeries, such as endoscopy, arthroscopy and laparoscopy, cryotherapy and anaesthesia. CO2 is also used in incubators and laboratories and, as it is a toxic gas, can cause asphyxiation. Heightened levels of CO2 in the air, emitted by certain machinery, can cause harm to those in the environment, as well as spread pathogens and viruses. CO2 detectors in healthcare environments can therefore improve ventilation, air flow and the wellbeing of all.

Volatile Organic Compounds (VOCs)

A range of VOCs can be found in hospital and healthcare environments and cause harm to those working and being treated within it. VOCs such as aliphatic, aromatic and halogenated hydrocarbons, aldehydes, alcohols, ketones, ethers and terpenes, to name a few, have been measured in hospital environments, originating from a number of specific areas including reception halls, patient rooms, nursing care, post-anaesthesia care units, parasitology-mycology labs and disinfection units. Although still in the research stage of their prevalence in healthcare settings, it is clear VOC ingestion has adverse effects on human health such as irritation to the eyes, nose, and throat; headaches and the loss of coordination; nausea; and damage to the liver, kidneys, or central nervous system. Some VOCs, benzene specifically, is a carcinogen. Implementing gas detection is therefore a must to safeguard everyone from harm.

Gas sensors should therefore be used within PACU, ICU, EMS, pre-hospital rescue, PAP therapy and HFNC therapy to monitor the gas levels of a range of equipment including ventilators, oxygen concentrators, oxygen generators and anaesthesia machines.

Standards and Certifications

The Care Quality Commission (CQC) is the organisation in England that regulates the quality and safety of the care delivered within all healthcare, medical, health and social care, and voluntary care settings across the country. The commission provides best practice details for the administering of oxygen to patients and the proper measurement and recording of levels, storage and training about the use of this and other medical gases.

The UK regulator for medical gases is the Medicines and Healthcare products Regulatory Agency (MHRA). They are an Executive Agency of the Department of Health and Social Care (DHSC) that ensures public and patient health and safety through the regulation of medicines, healthcare products and medical equipment in the sector. They set appropriate standards of safety, quality, performance and effectiveness, and ensure all equipment is used safely. Any company manufacturing medical gases requires a Manufacturer’s Authorisation issued by the MHRA.

In the USA The Food and Drug Association (FDA) regulates the certification process for the manufacture, sale and marketing of designated medical gases. Under Section 575 the FDA states that anyone marketing a medical gas for human or animal drug use without an approved application is breaking specified guidelines. The medical gases that require certification include oxygen, nitrogen, nitrous oxide, carbon dioxide, helium, 20 carbon monoxide, and medical air.

To find out more on the dangers in the medial and healthcare sector, visit our industry page for more information.

Why is gas detection crucial for drink dispense systems

Dispense gas known as beer gas, keg gas, cellar gas or pub gas is used in bars and restaurants as well as the leisure and hospitality industry. Using dispense gas in the process of dispensing beer and soft drinks is common practice worldwide. Carbon dioxide (CO2) or a mix of CO2 and nitrogen (N2) is used as a way of delivering a beverage to the ‘tap’. CO2 as a keg gas helps to keep the contents sterile and at the right composition aiding dispensing.

Gas Hazards

Even when the beverage is ready to deliver, gas-related hazards remain. Those arise in any activity at premises that contain compressed gas cylinders, due to the risk of damage during their movement or replacement. Additionally, once released there is a risk of increased carbon dioxide levels or depleted oxygen levels (due to higher levels of nitrogen or carbon dioxide).

CO2 occurs naturally in the atmosphere (0.04%) and is colourless and odourless. It is heavier than air and if it escapes, will tend to sink to the floor. CO2 collects in cellars and at the bottom of containers and confined spaces such as tanks and silos. CO2 is generated in large amounts during fermentation. It is also injected into beverages during carbonation – to add the bubbles. Early symptoms of exposure to high levels of carbon dioxide include dizziness, headaches, and confusion, followed by loss of consciousness. Accidents and fatalities can occur in extreme cases where a significant amount of carbon dioxide leaks into an enclosed or poorly ventilated volume. Without proper detection methods and processes in place, everyone entering that volume could be at risk. Additionally, personnel within surrounding volumes could suffer from the early symptoms listed above.

Nitrogen (N2) is often used in the dispensing of beer, particularly stouts, pale ales and porters, it also as well as preventing oxidisation or pollution of beer with harsh flavours. Nitrogen helps push the liquid from one tank to another, as well as offer the potential to be injected into kegs or barrels, pressurising them ready for storage and shipment. This gas is not toxic, but does displace oxygen in the atmosphere, which can be a danger if there is a gas leak which is why accurate gas detection is critical.

As nitrogen can deplete oxygen levels, oxygen sensors should be used in environments where any of these potential risks exist. When locating oxygen sensors, consideration needs to be given to the density of the diluting gas and the “breathing” zone (nose level). Ventilation patterns must also be considered when locating sensors. For example, if the diluting gas is nitrogen, then placing the detection at shoulder height is reasonable, however if the diluting gas is carbon dioxide, then the detectors should be placed at knee height.

The Importance of Gas Detection in Drinks Dispense Systems

Unfortunately, accidents and fatalities do occur in the drinks industry due to gas hazards. As a result, in the UK, safe workplace exposure limits are codified by the Health and Safety Executive (HSE) in documentation for the Control of Substances Hazardous to Health (COSHH). Carbon dioxide has an 8-hour exposure limit of 0.5% and a 15-minute exposure limit of 1.5% by volume. Gas detection systems help to mitigate gas risks and allow for drinks manufacturers, bottling plants and bar/pub cellar owners, to ensure the safety of personnel and demonstrate compliance to legislative limits or approved codes of practice.

Oxygen Depletion

The normal concentration of oxygen in the atmosphere is approximately 20.9% volume. Oxygen levels can be dangerous if they are too low (oxygen depletion). In the absence of adequate ventilation, the level of oxygen can be reduced surprisingly quickly by breathing and combustion processes.

Oxygen levels may also be depleted due to dilution by other gases such as carbon dioxide (also a toxic gas), nitrogen or helium, and chemical absorption by corrosion processes and similar reactions. Oxygen sensors should be used in environments where any of these potential risks exist. When locating oxygen sensors, consideration needs to be given to the density of the diluting gas and the “breathing” zone (nose level). Oxygen monitors usually provide a first-level alarm when the oxygen concentration has dropped to 19% volume. Most people will begin to behave abnormally when the level reaches 17%, and hence a second alarm is usually set at this threshold. Exposure to atmospheres containing between 10% and 13% oxygen can bring about unconsciousness very rapidly; death comes very quickly if the oxygen level drops below 6% volume.

Our Solution

Gas detection can be provided in the form of both fixed and portable detectors. Installation of a fixed gas detector can benefit a larger space such as cellars or plant rooms to provide continuous area and staff protection 24 hours a day. However, for worker safety in and around cylinder storage area and in spaces designated as a confined space, a portable detector can be more suited. This is especially true for pubs and beverage dispensing outlets for the safety of workers and those who are unfamiliar in the environment such as delivery drivers, sales teams or equipment technicians. The portable unit can easily be clipped to clothing and will detect pockets of COusing alarms and visual signals, indicating that the user should immediately vacate the area.

For more information about gas detection in drink dispense systems, contact our team.

Industry Overview: Food and Beverage 

The food and beverage (F&B) industry includes all companies involved in processing raw food materials, as well as those packaging and distributing them. This includes fresh, prepared foods as well as packaged foods, and both alcoholic and non-alcoholic beverages. 

The food and beverage industry is divided into two major segments, which are the production and the distribution of edible goods. The first group, production, includes the processing of meats and cheeses and the creation of soft drinks, alcoholic beverages, packaged foods, and other modified foods. Any product meant for human consumption, aside from pharmaceuticals, passes through this sector. Production also covers the processing of meats, cheeses and packaged foods, dairy and alcoholic beverages. The production sector excludes foods and fresh produce that are directly produced via farming, as these fall under agriculture. 

The manufacture and processing of food and beverages create substantial risks of fire and toxic gas exposure. Many gases are used for baking, processing and refrigerating foods. These gases can be highly hazardous – either toxic, flammable, or both. 

Gas Hazards 

Food Processing

Secondary food processing methods includes fermentation, heating, chilling, dehydration or cooking of some kind. Many types of commercial food processing consist of cooking, especially industrial steam boilers. Steam boilers are usually gas-fired (natural gas or LPG) or use a combination of gas and fuel oil. For gas-fired steam boilers, natural gas consists mainly of methane (CH4), a highly combustible gas, lighter than air, which is piped directly into boilers. In contrast, LPG consists mainly of propane (C3H8), and usually requires an on-site fuel storage tank. Whenever flammable gases are used on site, forced mechanical ventilation must be included in storage areas, in case of leakage. Such ventilation is usually triggered by gas detectors that are installed near boilers and in storage rooms. 

Chemical Disinfection 

The F&B industry takes hygiene very seriously, as the slightest contamination of surfaces and equipment can provide an ideal breeding ground for all kinds of germs. The F&B sector therefore demands rigorous cleaning and disinfection, which must meet industry standards. 

There are three methods of disinfection commonly used in F&B: thermal, radiation and chemical. Chemical disinfection with chlorine-based compounds is by far the most common and effective way to disinfect equipment or other surfaces. This is because chlorine-based compounds are inexpensive, fast acting and effective against a variety of microorganisms. Several different chlorine compounds are commonly used, of which include hypochlorite, organic and inorganic chloramines, and chlorine dioxide. Sodium hypochlorite solution (NaOCl) is stored in tanks while chlorine dioxide (ClO2) gas is usually generated on site.  

In any combination, chlorine compounds are hazardous and exposure to high concentrations of chlorine can cause severe health issues. Chlorine gases are usually stored on site and a gas detection system should be installed, with a relay output to trigger ventilation fans once a high level of chlorine is detected. 

Food Packaging 

Food packaging serves many purposes; it allows food to be transported and stored safely, protects food, indicates portion sizes and provides information about the product. To keep food items safe for a long time, it is necessary to remove oxygen from the container because otherwise, oxidation will occur when the food comes into contact with oxygen. The presence of oxygen also promotes bacterial growth, which is harmful when consumed. However, if the package is flushed with nitrogen, the shelf life of packaged food can be extended. 

Packagers often use nitrogen (N2) flushing methods for preserving and storing their products. Nitrogen is a non-reactive gas, non-odorous and non-toxic. It prevents oxidation of fresh food with sugars or fats, stops the growth of dangerous bacteria and inhibits spoilage. Lastly, it prevents packages from collapsing by creating a pressurized atmosphere. Nitrogen can be generated on site using generators or delivered in cylinders. Gas generators are cost effective and provide an uninterrupted supply of gas. Nitrogen is an asphyxiant, capable of displacing oxygen in air. Because it has no smell and is non-toxic, workers may not become aware of low oxygen conditions before it is too late.  

Oxygen levels below 19% will cause dizziness and loss of consciousness. To prevent this, oxygen content should be monitored with an electrochemical sensor. Installing oxygen detectors in packaging areas ensures the safety of workers and early detection of leaks. 

Refrigeration Facilities 

Refrigeration facilities in the F&B industry are used to keep food cool for long periods of time. Large-scale food storage facilities often use cooling systems based on ammonia (> 50% NH3), as it is efficient and economical. However, ammonia is both toxic and flammable; it is also lighter than air and fills up enclosed spaces rapidly. Ammonia can become flammable if released in an enclosed space where a source of ignition is present, or if a vessel of anhydrous ammonia is exposed to fire.   

Ammonia is detected with electro-chemical (toxic) and catalytic (flammable) sensor technology. Portable detection, including single- or multi-gas detectors, can monitor instantaneous and TWA exposure to toxic levels of NH3. Multi-gas personal monitors have been shown to improve workers’ safety where a low-range ppm for routine system surveys and flammable range is used during system maintenance. Fixed detection systems include a combination of toxic- and flammable-level detectors connected to local control panels – these are usually supplied as part of a cooling system. Fixed systems can also be used for process over-rides and ventilation control. 

Brewing and Drinks Industry 

The risk involved in the manufacture of alcohol involves sizable manufacturing equipment which can be potentially harmful, both to operate and because of the fumes and vapours that can be emitted into the atmosphere and subsequently impact the environment. Ethanol is the main combustible hazard found within distilleries and breweries is the fumes and vapours produced by ethanol. With the capacity to be emitted from leaks in tanks, casks, transfer pumps, pipes and flexible hoses, ethanol vapour is a very real fire and explosion hazard faced by those in the distillery industry. Once the gas and vapour is released into the atmosphere, it can quickly build and pose a danger to the health of workers. It is worth noting here however, that the concentration required to cause harm to workers’ health has to be very high. With this in mind, the more significant risk from ethanol in the air is that of explosion. This fact reinforces the importance of gas detection equipment to recognise and remedy any leaks straight away, so as to avoid disastrous consequences. 

Packaging, Transport and Dispensing 

Once wine is bottled and beer is packaged, they must be delivered to the relevant outlets. This commonly includes distribution companies, warehousing and in the case of breweries, draymen. Beer and soft drinks use carbon dioxide or a mix of carbon dioxide and nitrogen as a way of delivering a beverage to the ‘tap’. These gases also give beer a longer-lasting head and improve the quality and taste. 

Even when the beverage is ready to deliver, gas-related hazards remain. Those arise in any activity at premises that contain compressed gas cylinders, due to the risk of increased carbon dioxide levels or depleted oxygen levels (due to high levels of nitrogen). Carbon dioxide (CO2) occurs naturally in the atmosphere (0.04%). CO2  is colourless and odourless, heavier than air and if it escapes, will tend to sink to the floor. CO2 collects in cellars and at the bottom of containers and confined spaces such as tanks and silos. CO2  is generated in large amounts during fermentation. It is also injected into beverages during carbonation. 

To find out more on the gas hazards in food and beverage production visit our industry page for more information.