The Importance of Early Gas Detection in Battery Storage

It’s not an exaggeration to say that the rise of lithium-ion batteries has revolutionised the energy landscape. These compact powerhouses have helped shift our society away from complete fossil fuel dependence, powering the rise of electric vehicles and enabling us to store renewable energy on a previously impossible scale. However, lithium-ion batteries are not an entirely risk-free energy source and can be volatile, which is a cause for concern for battery energy storage systems (BESS) who need to safeguard people – and their assets – from danger.

The Explosive Rise of Batteries

With the rise in lithium-ion batteries, has come a rise in high-profile cases of thermal runaway causing extraordinary damage through explosive fires, causing untold harm to the local environment, as well as eye-watering repair costs. Indeed, the widely-known risks of toxic thermal runaway has caused some pushback against the establishing of BESS sites, making it of paramount importance that battery energy supply can be made demonstrably safer.

Thermal runaway, characterised by uncontrolled heat generation and rapid battery failure, can lead to catastrophic consequences such as fires and explosions. What’s more, as heat can trigger thermal runaway in other batteries, the failure of one can lead to the failure of many, compounding the potential damage cost. While BESS insurers are well aware of such a risk, and have stipulations in place regarding fire, once fire has broken out the damage is already done. Prevention is always better than the cure, and so as suppliers and stakeholders in the lithium-ion battery industry, it’s imperative we address these risks head-on and prioritise safety measures to protect both assets and lives.

The Need for Early Gas Detection

Fortunately, FM Global and UL, two of the world’s largest public safety testing labs, have recognised the importance of gas detection in mitigating the risks associated with lithium-ion battery storage. Their documentation and standards serve as a testament to the critical role that early gas detection plays in ensuring the safety and reliability of energy storage systems. By adhering to these guidelines and implementing comprehensive gas detection strategies, suppliers can bolster their safety protocols and instil confidence in their products.

One of the key indicators of an impending thermal runaway event is the off-gassing from the compounds within the battery. As the internal components degrade or are subjected to extreme conditions, gases such as carbon dioxide, carbon monoxide, and hydrogen may be released, as well as other flammable gases ethylene and propylene. Detecting these gases early is critical, as it provides an opportunity to intervene before the situation escalates further, averting potential disasters. However, ensuring your gas detection system is able to recognise the wide variety of toxic and combustible gases accurately without getting poisoned is crucial. If it’s not accurate, it’s simply not effective and you’re putting your people and property at risk.

Cutting-Edge Gas Detection

While the importance of fire safety and suppression systems in mitigating the risks of lithium-ion battery fires is well-documented, the significance of gas detection systems is often overlooked. Unlike fires, which are often visible and generate smoke, gas emissions can go unnoticed until it’s too late. This gap in awareness underscores the need for robust gas detection solutions to complement existing safety protocols.

Crowcon’s patented MPS™ technology, specifically designed to fill the void left by other gas sensors, offers a reliable and effective solution for detecting gas emissions at the earliest stages of battery failure. The MPS sensor uses advanced micro-pellistor technology to detect a wide range of gases with unparalleled sensitivity and accuracy, able to detect gases at extremely low concentrations, allowing for early intervention and prevention of thermal runaway events. Furthermore, its compact design and ease of integration make it an ideal choice for both new installations and retrofitting existing systems. With Crowcon’s MPS sensor, suppliers can proactively monitor gas emissions and take prompt action to mitigate risks, ensuring the safety and integrity of their lithium-ion battery storage solutions.

Safeguarding a Battery-Powered Future

The importance of early gas detection in battery storage cannot be overstated. Not only can the cost of failing to detect the early warning signs be devastating to your business, but as suppliers and stakeholders in the energy industry, it is our collective responsibility to prioritise safety and implement robust measures to mitigate risks. The only way to do this is through an innovative and rigorous approach to gas detection. By investing in advanced gas detection technologies, you will not only be safeguarding your assets, but the very future of energy storage, helping pave the way for a more sustainable tomorrow.

Contact the Crowcon team today to learn more about how their innovative solutions can enhance the safety and reliability of your battery storage systems. Together, let’s build a brighter and safer battery-powered future.

Battery Safety: What is Off-Gassing and Why Does it Occur​?

Batteries have become an integral part of our daily lives, powering everything from smartphones to electric vehicles. But have you ever considered the potential risks associated with the batteries that enable the seamless functioning of these devices? While advancements in battery technology have revolutionised the way we live, it’s crucial to explore the potential hazards these power sources pose.

Lithium-ion batteries are combustible and hazardous, with the potential of dangerous and explosive thermal runaway – which can not only have devastating consequences for the environment and property but can threaten human life. Therefore, it is important to understand the first signs of a possible disaster – off-gassing.

Understand Off-gassing: The Silent Emission

Off-gassing refers to the release of gases from lithium-ion batteries often as a result of abuse or misuse. When a battery is subjected to conditions such as overcharging, over-discharging, or physical damage, it can lead to the breakdown of internal components, causing the release of gases. These gases typically include carbon dioxide, carbon monoxide, and other volatile organic compounds – which can be toxic for anyone who may come in contact with them.

Explaining Off-gassing Dynamics:

Off-gassing dynamics differ based on battery setups. In enclosed setups like racks or small housings, off-gassing can accumulate within the confined space, increasing the risk of pressure buildup and ignition. In open setups, such as outdoor installations, off-gassing may dissipate more easily, but still poses risks in poorly ventilated areas.

How Off-gassing Occurs and the Timeline:

Although not always a guaranteed precursor to thermal runaway in lithium-ion batteries, off-gassing events typically occur early in their failure. Thermal runaway occurs when a battery undergoes uncontrolled heating, leading to a rapid increase in temperature and pressure within the cell. This escalation can ultimately result in the battery catching fire or exploding, posing significant safety hazards.

The timeline for off-gassing can vary depending on the severity of the abuse and the type of battery. In some cases, off-gassing may occur gradually over time as the battery undergoes repeated stress, while in other instances, it may occur suddenly due to a single event, such as overcharging.

Factors in which Off-gassing can occur:

  • Physical Damage: Any damage to the battery, such as punctures or crushing, can cause internal components to degrade, leading to off-gassing.
  • Overcharging: Excessive charging can cause the decomposition of electrolytes within the battery, leading to gas generation.
  • Overheating: Like off-gassing, excessive heat can trigger thermal runaway by destabilising the battery’s internal chemistry.
  • Over-discharging: Discharging a battery beyond its recommended limit can also result in the release of gases.
  • Internal Short Circuits: Any malfunction that causes a short circuit within the battery can initiate thermal runaway.
  • Manufacturing Defects: Faulty manufacturing processes can introduce weaknesses in the battery structure, making it more susceptible to thermal runaway.

What are the dangers of Off-gassing buildup?

Off-gassing buildup can lead to the battery storage container turning into a pressure vessel that is just waiting for a spark to ignite. To mitigate this risk, it’s crucial to have a monitored ventilation system in place. Additionally, compliance with FM standards is essential, as BESS should maintain lower than 25% LFL or have a container that can open to vent gas, ensuring safety in case of off-gassing.

Why Early Detection of Off-gassing is Critical:

Early detection plays a critical role in preventing catastrophic battery incidents. By identifying signs of off-gassing at the onset, operators can intervene before the situation escalates into thermal runaway. Here’s why early detection is crucial:

  1. Preventative Maintenance: Early detection allows for timely maintenance and corrective action to address battery issues before they worsen. Routine monitoring of off-gassing can help identify underlying problems in battery systems, such as overcharging or internal damage, enabling proactive maintenance to mitigate risks.
  2. Risk Mitigation: Off-gassing serves as an early warning sign of potential battery failures. By monitoring off-gassing levels, operators can implement risk mitigation measures, such as adjusting charging parameters or isolating malfunctioning batteries, to prevent thermal runaway and its associated hazards.
  3. Enhanced Safety: Timely detection of off-gassing enhances safety for both personnel and property. It provides an opportunity to evacuate affected areas, implement emergency protocols, and minimise the impact of battery-related incidents on surrounding environments. Additionally, early intervention reduces the likelihood of injuries and property damage resulting from thermal runaway events.
  4. Cost Savings: Detecting off-gassing early can help avoid costly repairs or replacements of damaged batteries and equipment. By addressing issues proactively, operators can extend the lifespan of batteries, optimise performance, and avoid unplanned downtime, resulting in significant cost savings over time.
  5. Regulatory Compliance: Many regulatory standards and guidelines mandate the monitoring of off-gassing as part of battery safety protocols. Early detection ensures compliance with regulatory requirements and demonstrates a commitment to maintaining safe battery operations in accordance with industry standards.

Incorporating robust gas detection systems and technologies for early detection of off-gassing is essential for proactive risk management and maintaining the integrity of battery systems. By prioritising early detection, stakeholders can safeguard against potential hazards, minimise disruptions, and promote the safe and sustainable use of battery technology across various applications.

Click here to speak to us about safeguarding your business

For more information on battery safety, download our eBook ‘The Battery Boom: The Explosive Rise of Thermal Runaway and how you can prevent it’.

Get your FREE copy of ‘The Battery Boom’ eBook

A Battery Powered Future: The Rise of Lithium-ion batteries and what it means for sustainability efforts

As we collectively move towards a greener future in which the shift to sustainable energy solutions have become a core global socio-political issue, lithium-ion batteries have come centre stage as a possible solution. Thanks to their ability to store large amounts of energy in a comparatively lightweight and compact form, they have revolutionised everything from consumer wearables to electric vehicles. But to what extent is a battery-powered future truly the perfect energy solution we’ve been looking for?

Facilitating greener energy opportunities

The rise in lithium-ion batteries comes with a plethora of advantages as we shift away from fossil fuel dependence, contributing to significant reductions in greenhouse gas emissions and air pollution. Particularly in relation to the electrification of transportation through electric vehicles (EVs). By powering EVs with clean electricity stored in batteries, the transportation sector can reduce its reliance on fossil fuels and decrease emissions of greenhouse gases and pollutants. As the EV sector becomes more competitive, and with many governments incentivising the rise of EVs, battery technology advancements continue to improve the range, charging speed, and affordability of EVs, accelerating their adoption and further reducing reliance on internal combustion engine vehicles.

Lithium-ion batteries also play an increasingly crucial role in stabilising power grids, allowing the integration of intermittent renewable energy sources, such as solar and wind power, into the electricity grid. The sun doesn’t always shine and it’s not always windy – but by storing excess energy generated during periods of high production and discharging it when needed, batteries facilitate a reliable supply of clean energy in a reliable, stable way which had previously been difficult to achieve. By optimising energy management and reducing losses associated with traditional energy systems, batteries contribute to more efficient and sustainable energy use across various sectors.

Just how green are lithium-ion batteries?

However, the increasing prevalence of batteries has come with its own set of environmental implications. The extraction and processing of the rare earth metals such as lithium and cobalt are often conducted under exploitative conditions in mining regions, and the extraction process can also have significant environmental impacts, including habitat destruction and water pollution. Furthermore, the disposal of lithium-ion batteries at the end of their life cycle also poses concerns about recycling and the potential for hazardous waste to leak into the environment.

However, there is another area of concern with lithium-ion batteries which, with their increased usage, has led to a rise in dangerous incidents: their volatile and combustible nature. Anyone who has seen thermal runaway of lithium-ion batteries cannot fail to recognise the risk attached to their increased use. Even the failure of small-scale lithium-ion consumer electronic device can cause deadly and devastating explosions and fires, which makes the storage and use of batteries on a larger scale in need of robust safety measures.

Risk management with lithium-ion batteries

Fortunately, there are ways of mitigating the risk attached to lithium-ion batteries. Commonly, Battery Management Systems (BMS) are used to monitor battery charge level, voltage, current and temperature- which can help identify issues with any batteries. However there is a more efficient and reliable way of detecting thermal runaway: gas detection.

Ahead of thermal runaway, the batteries undergo a process of ‘off-gassing’, in which increased quantities of toxic VOCs are released. By monitoring the gasses around the batteries, and signs of stress or damage can be identified before thermal runaway begins.

At present, many insurers focus on the risk of fire, encouraging Battery Energy Storage Systems (BESS) to have processes in place to ensure fires can be controlled and managed as quickly and effectively as possible. However, as lithium-ion batteries are highly sensitive to temperature, once a fire has begun in one battery, it is likely any other batteries in proximity will also be irrevocably damaged- or begin thermal runaway themselves. The solution is simple: identify the problems at the earliest possible stage through gas detection, and ensure fires can’t start in the first place to more robustly safeguard against disaster. 

You can’t put a price on safety

The cost attached to investing in sophisticated gas detection is negligible in contrast with the cost of fire – roughly 0.01% of the cost of a new project – making it an obvious choice for those seeking to mitigate risk with manufacturing, storing and using lithium-ion batteries. The damage to the property, cost to human health (and even life), alongside the harm caused to the natural environment with potential contamination issues following battery failure are all extensive and significant. Combined with the threat to maintaining a business on top of the damage control required, the need to avoid complicated and expensive clean-up operations is paramount. This is something the Crowcon team understand better than anyone.

Crowcon will work closely with you to ensure your business and personnel are as safe and secure as possible through cutting-edge gas detection technology, such as the MPS™ sensor. Our Molecular Property Spectrometer™ (MPS™) technology accurately detects over 15 hazardous gases in one, allowing for a higher standard of flammable gas detection and greater confidence in your battery safety.

Click here to speak to us about safeguarding your business

While realising the full potential of lithium-ion technology still requires addressing the environmental and social challenges associated with its production, maintenance and disposal, the increasing prevalence of lithium-ion batteries represents a significant step towards a more sustainable and cleaner energy future. Innovation in the maintenance and enhanced efficiency of renewable energy technologies, such as rechargeable batteries, is a crucial step in detaching society from dependence on fossil fuels. From powering our everyday devices to driving the transition to electric transportation and renewable energy, lithium-ion batteries are at the forefront of the sustainability revolution – and the Crowcon team are on hand to help make a greener and safer future for generations to come.

For more information on battery safety, download our eBook ‘The Battery Boom: The Explosive Rise of Thermal Runaway and how you can prevent it’.

Get your FREE copy of ‘The Battery Boom’ eBook

Want to know more about how Crowcon can help safeguard your business’ future with premier gas detection systems? Click here to get in touch for an obligation-free chat with a member of our team.

Our Partnership with Hamilton Gas Products Ltd.

Background

With over 50 years of dedicated service, Hamilton Gas Products Ltd. has emerged as a distinguished supplier of gas equipment tailored for LPG and natural gas, catering to the UK and Irish markets. Positioned as a leading retailer in the gas industry, Hamilton Gas Products cultivated strong relationships with esteemed clients like Calor Gas, Flo-Gas, and select Electricity Authorities in the UK and Ireland. Hamilton Gas Products not only offers a diverse range of gas products for everyday use but also addresses the specific needs of gas engineers, installers, caravan and motorhome enthusiasts, and the catering industry. This commitment has solidified Hamilton Gas Products as a reliable and comprehensive source of information for gas-related products and HVAC solutions.

Views on HVAC

HVAC systems play a crucial role in the gas industry by providing efficient, reliable and sustainable heating, ventilation and air conditioning solutions for residential, commercial and industrial applications. Hamilton Gas Products supply many of the appliances, fixtures and fittings that go into these systems as well as the test gear that is used to maintain and service them. Hamilton Gas Products therefore recognise the importance and need for environmental awareness in the industry. HVAC designs play a crucial role in emissions control and help to ensure compliance with environmental regulations. By providing gas engineers with the equipment they need to maintain these systems, prolongs their life and improves the efficiency of the system overall.

Working with Anton by Crowcon

Our partnership with Hamilton Gas Products spans 13 years, during which we have served as a trusted trading partner, supplying the complete range of Anton by Crowcon test equipment to gas installers across the UK and Ireland. Alastair Hamilton, CEO of Hamilton Gas Products notes “Our long standing partnership with Anton by Crowcon has solidified our standing in the gas industry by having the ability to supply, maintain and calibrate the very best in test equipment for gas installers.” Additionally, Hamilton Gas Products is an approved service centre in Ireland. The full range of Anton by Crowcon products is readily available through their online store at www.gasproducts.co.uk and their showroom situated in Bangor, Northern Ireland. Together, we continue to strengthen our collaborative efforts to meet the diverse needs of gas professionals and contribute to the industry’s growth and excellence.

The Critical Role of Regular Servicing for Gas Detectors

7 reasons why regular servicing for Gas Detectors is critical

Gas detectors play a critical role in ensuring the safety of workers and infrastructure  by promptly detecting and alerting them to the presence of harmful gases. Whether used in industrial settings or laboratories, these devices are designed to provide early warnings, preventing potential disasters. However, like any other equipment, gas detectors require regular servicing to maintain their effectiveness and reliability.

1. Ensuring Accuracy and Reliability:

One of the main reasons for servicing a gas detector is to ensure its accuracy. Over time, sensors and components can degrade due to exposure to harsh environmental conditions, dust, or contaminants. For example, the detector may read 46% LEL when the true level is 50% LEL. Regular servicing involves calibrating the detector to maintain its precision in detecting even the slightest traces of hazardous gases. Accurate readings are vital for timely and appropriate responses to potential threats.

2. Compliance with Safety Standards:

Adhering to safety standards and regulations is paramount in any setting where gas detectors are present. Many industries and institutions have specific guidelines regarding the use and maintenance of gas detection equipment. Regular servicing ensures that the detectors meet or exceed these standards, helping organisations remain compliant and avoid legal ramifications. Sophisticated instruments not only keep a log of their calibration history, but also the devices’ upcoming due date.. Calibration certificates are produced during production, and after servicing as a record.

3. Legislation and Industry-Specific Regulations:

Gas detector maintenance is often governed by legislation and industry-specific regulations. For instance, in the European Union, the ATEX directive regulates equipment intended for use in explosive atmospheres, including gas detectors. In the United States, the Occupational Safety and Health Administration (OSHA) emphasises the importance of maintaining a safe working environment. While OSHA doesn’t have specific regulations on gas detector servicing, adherence to general safety standards is crucial. Similarly, international standards like those developed by the International Electrotechnical Commission (IEC) provide guidelines for proper maintenance.

4. Extended Lifespan of Equipment:

Gas detectors are an investment in safety. Regular servicing not only enhances their performance but can also extend their life expectancy. Preventive maintenance, such as cleaning, calibrating, and replacing worn-out parts, can significantly contribute to the longevity of the equipment, thereby reducing the frequency of replacements, saving both time and resources.

5. Minimising False Alarms:

A well-maintained gas detector is less liable to trigger false alarms. False readings result in complacency as well as a decreased trust in the equipment, potentially putting individuals at risk. Regular maintenance helps identify and resolve potential issues that could trigger false alarms, ensuring the detector only activates solely in the presence of a real threat.

6. Emergency Preparedness:

Gas detectors play a critical role in emergency response systems.

Regular servicing increases their responsiveness, providing early detection of gas leaks and allowing for swift evacuation or containment measures. In emergency situations, the reliability of gas detectors can make a significant difference in minimising damage and ensuring the safety of workers.

7. Cost-Effective Maintenance:

While servicing may be perceived  as an extra expense, it is essential to recognise it as a proactive and cost-effective measure. Regular maintenance helps identify potential issues before they escalate, preventing costly repairs or replacements. Investing in servicing is a minor price to pay compared to the potential consequences of equipment failure.

Ensuring Safety and Reliability

The significance of routinely servicing gas detectors is unquestionable. Whether utilised in industrial or commercial environments, these instruments play a crucial role in safeguarding the safety of workers lives as well as the business infrastructure. A properly maintained gas detector not only ensures accurate and reliable performance, but also promotes in adhering to safety standards, prolonging equipment duration and reducing false alarms. Prioritising the regular servicing of gas detectors is unquestionable in contributing to the safeguarding of workers lives and infrastructure.

For more information about servicing or calibration contact our team or visit our worldwide distributors to discover your local service and calibration centre.

Water Treatment: The Need For Gas Detection In Detecting Chlorine

Water utility companies help provide clean water for drinking, bathing, and industrial and commercial uses. Wastewater treatment plants and sewage systems help keep our waterways clean and sanitary. Throughout the water industry, the risk of gas exposure and gas-associated hazards are considerable. Harmful gases can be found in water tanks, service reservoirs, pumping wells, treatment units, chemical storage and handling areas, sumps, sewers, overflows, boreholes, and manholes.

What Is Chlorine and Why Is It Dangerous

Chlorine (Cl2) gas appears yellow green in colour, used to sterilise drinking water. However, most chlorine is used in the chemical industry with typical applications including water treatment as well as within the plastics and cleaning agents. Chlorine gas can be recognised by its pungent, irritating odour, which is like the odour of bleach. The strong smell may provide adequate warning to people that they are exposed. Cl2 itself is not flammable, but it can react explosively or form flammable compounds with other chemicals such as turpentine and ammonia.

Chlorine gas can be recognised by its pungent, irritating odour, which is like the odour of bleach. The strong smell may provide adequate warning to people that they are exposed. Chlorine is toxic and if inhaled or drunk in concentrated quantities can prove fatal. If chlorine gas is released into the air, people may be exposed through their skin, eyes or through inhalation. Chlorine is not combustible however can react with most combustibles which poses a fire and explosion risk. It also reacts violently with organic compounds such as ammonia and hydrogen, causing potential fire and explosion.

What is Chlorine used for

Water chlorination began in Sweden during the 18th century with the purpose to remove odours from water. This method continued to be used solely to remove odours from water until 1890 when chlorine was identified as an effective substance for disinfection purposes. Chlorine was first used for disinfection purposes in Great Britain in the early 1900’s which over the next century chlorination became the more favoured method used for water treatment and is now used for water treatment in most countries worldwide.

Chlorination is a method that can disinfect water with high levels of microorganisms where either chlorine or substance that contain chlorine is used to oxidise and disinfect the water. Different processes can be used to achieve safe levels of chlorine in drinking water to prevent against waterborne diseases.

Why Do I Need To Detect Chlorine

Chlorine, being denser than air, tends to disperse throughout low-lying zones in poorly ventilated or stagnant areas. Although non-flammable by itself, chlorine can become explosive when in contact with substances like ammonia, hydrogen, natural gas, and turpentine.

The reaction of the human body to chlorine depends on several factors; the concentration of chlorine present in air, the duration and frequency of exposure. Effects are also dependant on the health of an individual and the environmental conditions during exposure. For example, when small amounts of chlorine are breathed in during short time periods, this can affect the respirational system. Other effects vary from coughing and chest pains, to fluid accumulation in the lungs, skin and eye irritations. To note, these effects do not take place under natural conditions.

Our solution

The use of a chlorine gas detector provides detection and measurement of this substance in the air to prevent any accidents. Equipped with an electrochemical chlorine sensor, a fixed, or portable, single gas or multi gas Cl2 detector will monitor chlorine concentration in the ambient air. We have a wide range of gas detection products to help you meet the demands of the water treatment industry.

Fixed gas detectors are ideal to monitor and alert water treatment plant managers and workers to the presence of all the major gas hazards. The fixed gas detectors can be permanently positioned inside water tanks, sewage systems, and any other areas that present a high risk of gas exposure.

Portable gas detectors are lightweight and robust wearable gas detection devices. The portable gas detectors sound and signal an alert to workers when gas levels are reaching dangerous concentrations, allowing action to be taken. Our Gasman, and Gas-Pro portables have reliable chlorine sensor options, for single gas monitoring and multi-gas monitoring.

Control panels can be applied to coordinate numerous fixed gas detection devices and provide a trigger for alarm systems.

For more information about gas detection within water and water treatment, or to explore more of Crowcon’s gas detection range, please get in touch.

Our Partnership with One Gasmaster Sdn. Bhd.

Providing the full package from sale to commissioning is crucial for service providers. Combining this with experience, technical support, product knowledge and expertise, ensures customers are supplied safe, reliable and suitable equipment to meet their requirements.

Background

Established in 1998, and based in in Selangor, Malaysia, One Gasmaster Sdn. Bhd. is an authorised distributor of Crowcon gas detectors in Malaysia. One Gasmaster specialise in various sectors, including oil and gas and petrochemical, as well as general industries like food and beverage, water treatment plants, chemical, semiconductors and car park monitoring, among others. As one of the pioneers in providing gas detection solutions in Malaysia, they tailor bespoke end-to-end services and deliver high-quality products and work. In 2011, One Gasmaster became an accredited gas detector and analyser calibration service provider.  

One Gasmaster’s primary focus lies in providing comprehensive environmental monitoring and industrial hygiene solutions that utilise an extensive array of detection tools, including both our fixed and portable detectors. 

Views on gas detection

Gas detection equipment plays a crucial role in ensuring the safety of workers and the environment by detecting and alerting the presence of hazardous gases in most industries. Our range of gas detection equipment includes portable detectors and fixed systems offering flexibility and comprehensive coverage for different safety and operational needs. Aiming to develop a greener and more sustainable planet for future generations, One Gasmaster mitigate their environmental impact by detecting and monitoring the release of harmful gases and overall air quality. As a certified gas detection solutions provider, One Gasmaster recognise the importance of open communication and transparency in our line of work. We prioritise long-term partnerships with their customers, fostering a collaborative relationship based on trust, reliability, and mutual growth. “To provide the best service possible, we strongly believe in working closely with every customer. By understanding their unique needs, we can ensure that we supply the right equipment and offer customised solutions specifically tailored to meet their requirements and safety protections. Our goal is to deliver a personalized experience and exceed their expectations.” – Sales Director of Gas Detection Division, Bernard Lim. 

Working with Crowcon

“We have been working with Crowcon since 1996 and were officially appointed as an exclusive distributor in Malaysia from 1998 until now. Their technical support Engineers are trained and certified by Crowcon to perform testing and commissioning and troubleshooting for Crowcon’s range of products. Our calibration certificates are accredited with ISO 17025.” – Sales Director of Gas Detection Division, Bernard Lim.  

Our partnership allows One Gasmaster to distribute our products in Malaysia within the oil and gas, retail, and other various sectors in Malaysia. One Gasmaster’s relentless pursuit of improvement positions them as a trusted partner, delivering superior services and contributing to enhanced customer experience. 

Molecular Property Spectrometer™ Flammable Gas Sensors

Developed by NevadaNano, Molecular Property Spectrometer™ (MPS™) sensors represent the next generation of flammable gas detectors. MPS™ can quickly detect over 15 characterised flammable gases at once. Until recently, anyone who needed to monitor flammable gases had to select either a traditional flammable gas detector containing a pellistor sensor calibrated for a specific gas, or containing an infra-red (IR) sensor which also varies in output according to the flammable gas being measured, and hence needs to be calibrated for each gas. While these remain beneficial solutions, they are not always ideal. For example, both sensor types require regular calibration and the catalytic pellistor sensors also need frequent bump testing to ensure they have not been damaged by contaminants (known as ‘sensor poisoning’ agents) or by harsh conditions. In some environments, sensors must frequently be changed, which is costly in terms of both money and downtime, or product availability. IR technology cannot detect hydrogen – which has no IR signature, and both IR and pellistor detectors sometimes incidentally detect other (i.e., non-calibrated) gases, giving inaccurate readings that may trigger false alarms or concern operators.  

Building on over 50 years of gas expertise, Crowcon is pioneering advanced MPS™ sensor technology that detects and accurately identifies over 15 different flammable gases in one device. Now available in Crowcon’s flagship Xgard Bright fixed detector and portable detectors Gasman and T4x. 

Benefits of Molecular Property Spectrometer™ Flammable Gas Sensors 

The MPS™ sensor delivers key features that provide real world tangible benefits to operator and hence workers. These include:  

No calibration 

When implementing a system containing a fixed head detector, it is common practice to service on a recommended schedule defined by manufacturer. This entails ongoing regular costs as well potentially disrupting production or process in order service or even gain access to detector or multiple detectors. There may also be a risk to personnel when detectors are mounted in particularly hazardous environments. Interaction with an MPS sensor is less stringent because there are no unrevealed failure modes, provided air is present. It would be wrong to say there is no calibration requirement. One factory calibration, followed by a gas test when commissioning is sufficient, because there is an internal automated calibration being performed every 2 seconds throughout the working life of the sensor. What is really meant is – no customer calibration.  

Multi species gas – ‘True LEL’™ 

Many industries and applications use or have as a by-product multiple gases within the same environment. This can be challenging for traditional sensor technology which can detect only a single gas that they were calibrated for at the correct level and can result in inaccurate reading and even false alarms which can halt process or production if another flammable gas type is present. The lack of response or over response frequently faced in multi gas environments can be frustrating and counterproductive compromising safety of best user practices. The MPS™ sensor can accurately detect multiple gases at once and instantly identify gas type. Additionally, the MPS™ sensor has a on board environmental compensation and does not require an externally applied correctional factor. Inaccurate readings and false alarms are a thing of the past. 

No sensor poisoning 

In certain environments traditional sensor types can be under risk of poisoning. Extreme pressure, temperature, and humidity all have the potential to damage sensors whist environmental toxins and contaminants can ‘poison’ sensors, leading to severely compromised performance. Detectors in environments where poisons or inhibitors may be encountered, regular and frequent testing is the only way to ensure that performance is not being degraded. Sensor failure due to poisoning can be a costly experience. The technology in the MPS™ sensor is not affected by contaminates in the environment. Processes that have contaminates now have access to a solution that operates reliably with fail safe design to alert operator to offer a peace of mind for personnel and assets located in hazardous environment. Additionally, the MPS sensor is not harmed by elevated flammable gas concentrations, which may cause cracking in conventional catalytic sensor types for example. The MPS sensor carries on working.  

Hydrogen (H2) 

The usage of Hydrogen in industrial processes is increasing as the focus to find a cleaner alternative to natural gas usage. Detection of Hydrogen is currently restricted to pellistor, metal oxide semiconductor, electrochemical and less accurate thermal conductivity sensor technology due to Infra-Red sensors inability to detect Hydrogen. When faced with challenges highlighted above in poisoning or false alarms, the current solution can leave operator with frequent bump testing and servicing in addition to false alarm challenges. The MPS™ sensor provides a far better solution for Hydrogen detection, removing the challenges faced with traditional sensor technology. A long-life, relatively fast responding hydrogen sensor that does not require calibration throughout the life cycle of the sensor, without the risk of poisoning or false alarms, can significantly save on total cost of ownership and reduces interaction with unit resulting in peace of mind and reduced risk for operators leveraging MPS™ technology. All of this is possible thanks to MPS™ technology, which is the biggest breakthrough in gas detection for several decades.  

How does the Molecular Property Spectrometer™ Flammable Gas Sensor work 

A micro-electromechanical system (MEMS) transducer—comprising an inert, micrometer-scale membrane with an embedded heater and thermometer—measures changes in the thermal properties of the air and gases in its proximity. Multiple measurements, akin to a thermal “spectrum,” as well as environmental data are processed to classify the type and concentration of flammable gas(es) present, including gas mixtures. This is called  TrueLEL. 

  1. Gas rapidly defuses through the sensor’s mesh screen and into the sensor chamber, entering the MEMS sensor module.​ 
  2. The joule heater rapidly heats the hot plate.​ 
  3. Real-time environmental conditions (temperature, pressure and humidity) are measured by the integrated environmental sensor.  
  4. The energy required to heat the sample is precisely measured using a resistance thermometer.​ 
  5. The gas level, corrected for gas category and environmental  conditions, is calculated and output to the gas detector. 

MPS in our Products 

Xgard Bright

Many industries and applications use or have as a by-product multiple gases within the same environment. This can be challenging for traditional sensor technology which can detect only a single gas that they were calibrated for at the correct level and can result in inaccurate reading. 

Xgard Bright with MPS™ sensor technology provides a ‘TrueLEL™’reading for all flammable gases in any multi species environment without requiring calibrationor scheduled maintenance over its 5-year+ lifecycle, reducing interruptions to your operations and increases up-time. This in turn reduces the interaction with the detector resulting in a lower total cost of ownership over the sensor life cycle and reduced risk to personnel and production output to complete regular maintenance. Xgard Bright MPS™ is tailor-made for Hydrogen detection, with the MPS™ sensor, only one device is needed saving space without compromising on safety. 

Gasman

Our MPS™ sensor technology has been designed for today’s multi-gas environments, resists contamination and prevents sensor poisoning. Give your teams peace of mind with a purpose-built device in any environment. The MPS technology in our portable gas monitors detects hydrogen and common hydrocarbons automatically in one sensor. Our reliable and dependable Gasman with industry leading sensor technology that your applications demand.

Gasman MPS™ provides a ‘TrueLEL™’reading for all flammable gases in any multi species environment without requiring calibration or scheduled maintenance over its 5-year+ lifecycle, reducing interruptions to your operations and increases up-time. Being poison resistant and withbattery life doubled, operators are more likely to never be without a device. Gasman MPS™ is ATEX Zone 0 approved enabling operators to enter an area in which an explosive gas atmosphere is present continuously or for long periods without fear their Gasman will ignite their environment. 

T4x

T4xAs the industry is continuously demanding improvements in safety, reduced environmental impact, and lower cost of ownership; our reliable and dependable portable T4x gas monitor meets those needs with its industry-leading sensor technologies. It is specifically designed to meet the demands of your applications. 

T4x helps operations teams focus on more value adding tasks by reducing the number of sensor replacementsby 75% and increasing sensor reliability.    

Through ensuring compliance across site T4x helps health and safety managers by eliminating the need to ensure each device is calibratedfor the relevant flammable gas as it accurately detects over 15 at once. Being poison resistant and withbattery life doubled, operators are more likely to never be without a device.​ T4x reduces the 5-year total cost of ownership by over 25% and saves 12g of lead per detector which makes it much easier to recycle at the end of its life, and better for the planet​. 

For more on Crowcon, visit https://www.crowcon.com or for more on MPS visit https://www.crowcon.com/mpsinfixed/

UKCA Certification Changes: T4 and Gas-Pro

UKCA and UKCA MED (AKA Red Ensign) has been introduced as a result of Britain’s withdrawal from the European Economic Area (EEA), commonly referred to as Brexit. Due to Crowcon product label size and logo size for UKCA and CE, products for UK and European markets will have separate labels and therefore, part numbers.

What is UKCA Marking?

“UKCA” stands for “UK Conformity Assessed” marking is a new UK product marking that is used for goods being placed on the market in Great Britain (England, Wales and Scotland). It covers most goods that previously required the CE marking. The UKCA marking came into effect on 1st January 2021, where goods placed on the market in Great Britain for the first time must be UKCA marked. However, to allow businesses time to adjust to the new requirements, business have still been able to use the CE marking but this is only until 31st December 2024.

Due to the ongoing economic negotiations that surround the Northern Ireland Protocol, the UKCA mark may not be used on its own for marking of products for sale. The existing CE mark will continue to be accepted in NI and there is no requirement for Crowcon to use a UKNI marking.  The UKNI mark is only required for certain situations for example if using a 3rd party UK notified body to carry out a mandatory conformity assessment.

What do I need to know today?

A result of Brexit, from 1st January 2023, MED approved products to be used on UK flagged ships must have the UKCA MED marking, Red Ensign (however any product manufactured with a CE mark before the 31st December 2022 can still be placed onboard a vessel with a UK registered flag). The affected products and new part numbers are below:

Product

EU

UKCA MED

T4

T4-HOCA-MD

T4-ZOCA-MD

T4-HOZA-MD

T4-ZOZA-MD

T4-HOCA-MD-CRD

T4-ZOCA-MD-CRD

T4-HOZA-MD-CRD

T4-ZOZA-MD-CRD

T4-HOCA-UM

T4-ZOCA-UM

T4-HOZA-UM

T4-ZOZA-UM

T4-HOCA-UM-CRD

T4-ZOCA-UM-CRD

T4-HOZA-UM-CRD

T4-ZOZA-UM-CRD

Gas-Pro

GPPE8ABC-DADBZZFDOC
GPPE8ABC-ACZZFDOCZZ
GPPE8ABC-ALZZFDOCZZ
GPPE8ABC-ZZZZFDOCZZ

GPPE8ABA-DADBZZFDOC
GPPE8ABA-ACZZFDOCZZ
GPPE8ABA-ALZZFDOCZZ
GPPE8ABA-ZZZZFDOCZZ

GPPU0ABC-DADBZZFDOC

GPPU0ABC-ACZZFDOCZZ

GPPU0ABC-ALZZFDOCZZ

GPPU0ABC-ZZZZFDOCZZ

GPPU0ABA-DADBZZFDOC

GPPU0ABA-ACZZFDOCZZ

GPPU0ABA-ALZZFDOCZZ

GPPU0ABA-ZZZZFDOCZZ

Gas-Pro TK

GTPE8AAC-ZZDADBRGOC
GTPE8AAC-ACZZRGOCZZ
GTPE8AAC-ALZZRGOCZZ
GTPE8AAC-ZZZZRGOCZZ

GTPE8AAA-ZZDADBRGOC
GTPE8AAA-ACZZRGOCZZ
GTPE8AAA-ALZZRGOCZZ
GTPE8AAA-ZZZZRGOCZZ

GTPU0AAC-ZZDADBRGOC
GTPU0AAC-ACZZRGOCZZ
GTPU0AAC-ALZZRGOCZZ
GTPU0AAC-ZZZZRGOCZZ

GTPU0AAA-ZZDADBRGOC
GTPU0AAA-ACZZRGOCZZ

GTPU0AAA-ALZZRGOCZZ
GTPU0AAA-ZZZZRGOCZZ

Products used on European ships will continue to be certified with the MED wheel marking and existing product codes.

From 1st January 2024, products sold within the UK (exports are unaffected) which carried the CE mark, will now carry a UKCA mark. This has been amended in November 2022 by the UK government, as it was originally supposed to come into effect in January 2023. As in the past with the CE mark, this guarantees to the consumer that all relevant health and safety regulations and applicable standards for the product have been met by the manufacturer and that it’s safe and legal to use. The UKCA mark covers much the same range of products that were previously marked with the CE mark, such as electrical items, radio equipment, PPE and toys, plus the new addition to the list of aerosol products.

The previous but still applicable initials CE stand for the French Conformité Européenne, or “European Conformity” and indicate that any product carrying this mark conforms with all applicable EU Directives.

Any product sold in the UK which formerly carried a CE mark will carry a UKCA mark from 1st January 2024.

What about the CE Marking?

The “CE” marking will continue to be acceptable in the EU and UK until the end of 2024 (with the exception for marine approved products). However, from 1st January 2024, products will require the UKCA marking, while where the rules for the UK and EU stay the same, the CE marking will still be valid until then. Although, if the EU chooses to alter its rules for CE marking, there may still be a change to products with based on those new rules, this will disqualify you from selling them in the UK.

Summary

The UKCA marking system is a revision of the system we used when we were part of the European Economic Area and now will follow UK legislation rather than that issued by the European Union. The products that require the conformity assessment are almost the same as previously but now with the inclusion of aerosol products.

Manufacturers will still have the same responsibilities for assessing and declaring their products’ conformity. The main difference in the new legislation is that it doesn’t currently cover Northern Ireland, and there will be some cross-over between CE marking and UKCA marking until this situation is resolved.

For more information about UKCA certification changes, read our white paper here.

Gas Hazards in Battery Power Storage

Batteries are effective at reducing power outages since they can also store excess traditional grid energy. The energy stored within batteries can be released whenever a large volume of power is needed, such as during a power failure at a data centre to prevent data being lost, or as a back-up power supply to a hospital or military application to ensure the continuity of vital services. Large scale batteries can also be used to plug short-term gaps in demand from the grid. These battery compositions can also be used in smaller sizes to power electric cars and may be further scaled down to power commercial products, such as phones, tablets, laptops, speakers and – of course – personal gas detectors.

Gas hazards

The main gas risk emitted by batteries, specifically lead acid batteries, is hydrogen. It is possible to get both hydrogen and oxygen evolved during charging however, a lead acid battery is likely to have catalytic recombination parts internally, so oxygen is less of a risk. Hydrogen is always a cause for concern, as it can collect and build up. A situation that is obviously worsened when they are charged in a space with a poor airflow.

When charging, lead-acid batteries consist of lead and oxide at the positive terminal, and of spongy lead at the negative anode, using concentrated sulfuric acid as the electrolyte. The presence of sulfuric acid is another cause for concern if the battery leaks or is ever damaged because concentrated acids harm people, metals and the environment.

When charging batteries also emit oxygen and hydrogen because of the electrolysis process. The levels of hydrogen produced soar when a lead acid battery cell “blows” or is unable to be charged properly. The amount of gas present is relevant because high levels of hydrogen make it highly explosive, even though it is not toxic. Hydrogen has a 100% lower explosive limit of 4.0% by volume, at which level an ignition source would cause fires or for hydrogen more usually, explosions. Fires and explosions are an issue not only for the workers within the space, but also for the surrounding equipment and infrastructure.

Importance of Gas Detection Technology

Gas detection is an invaluable safety technology often equipped in battery charging rooms. Ventilation is also advised, and while helpful, it is not fool proof as fan motors can fail and should not be relied upon as the sole safety measure for battery charging areas. Fans mask the problem while gas detection notifies personnel to act before problems escalate. Gas detection systems are crucial in informing personnel of increasing gas leaks before becoming dangerous. Gas detection units comply with local building codes and NFPA 111, the National Fire Protection Association standard on stored electrical energy emergency and standby power systems. They include maintenance, operation, installation, and testing provisions regarding the system’s performance. In addition to permanent gas detection systems, handheld units are available. The benchmark products are provided by Crowcon and are listed below.

Portable Gas Detectors

Crowcon’s portable gas detectors (Gasman, Gas-Pro, T4x, Tetra 3 and T4) protect against a wide range of industrial gas hazards, with both single gas and multi-gas monitors available. With a wide range of sizes and complexities, you can find the right portable gas detection solution to meet the number and type of gas sensors you need and your display and certification requirements.

Fixed Gas Detectors

Crowcon gas detection fixed systems offer a flexible range of solutions that can measure flammable, toxic, and oxygen gases, report their presence, and activate alarms or associated equipment. Crowcon fixed gas monitoring systems (Xgard, Xgard Bright and XgardIQ) are designed to be interfaced with manual call points, fire and gas detectors, and distributed control systems (DCS).

Control Panels

Crowcon gas detection control panels offer a flexible range of solutions that can measure flammable, toxic, and oxygen gases, report their presence, and activate alarms or associated equipment. Crowcon fixed gas (Vortex, GM Addressable Controllers, Gasmaster) monitoring systems are designed to be interfaced with manual call points, fire and gas detectors and distributed control systems (DCS). In addition, each system can be engineered to drive remote annunciators and mimic panels. Crowcon has a gas detection product to suit your application regardless of your operation.

Temperature Measurement

Crowcon has extensive experience with temperature measurement. There are several models of temperature measurement, from pocket thermometers to industrial kits ranging from -99.9 to 299.9°C with probes and clamps. They are enhancing their fixed detection capabilities by adding high-temperature electrochemical sulphur dioxide detection for battery manufacturing and charging stations. This is critical during the first charge of a battery, as a fault is most likely at that time. Their fast-acting systems detect the precursors to thermal runaway and quickly terminate power to the batteries to avoid damage.

To find out more on the dangers of gas hazards in battery power visit our industry page for more information.