Balloon gas safety: The dangers of Helium and Nitrogen 

Balloon gas is a mixture of helium and air. Balloon gas is safe when used correctly but you should never deliberately inhale the gas as it is an asphyxiant and can result in health complications. Like other asphyxiants, the helium in balloon gas occupies some of the volume normally taken by air, preventing that air being used to keep fires going or to keep bodies functioning.  

There are other asphyxiants used in industrial applications. For example, use of nitrogen has become almost indispensable in numerous industrial manufacturing and transport processes. While the uses of nitrogen are numerous, it must be handled in accordance with industrial safety regulations. Nitrogen should be treated as a potential safety hazard regardless of the scale of the industrial process in which it is being employed. Carbon dioxide is commonly used as an asphyxiant, especially in fire suppression systems and some fire extinguishers. Similarly, helium is non-flammable, non-toxic and doesn’t react with other elements in normal conditions. However, knowing how to properly handle helium is essential, as a misunderstanding could lead to errors in judgement which could result in a fatal situation as helium is used in many everyday situations. As for all gases, proper care and handling of helium containers is vital. 

What are the dangers? 

When you inhale helium knowingly or unknowingly it displaces air, which is partly oxygen. This means that as you inhale, oxygen that would normally be present in your lungs has been replaced with helium. As oxygen plays a role in many functions of your body, including thinking and moving, too much displacement poses a health risk. Typically, inhaling a small volume of helium will have a voice-altering effect, however, it may also cause a bit of dizziness and there is always the potential for other effects, including nausea, light headedness and/or a temporary loss of consciousness – all the effects of oxygen deficiency. 

  • As with most asphyxiants, nitrogen gas, like helium gas, is colorless and odourless. In the absence of nitrogen detecting devices, the risk of industrial workers being exposed to a dangerous nitrogen concentration is significantly higher. Also whilst helium often rises away from the working area due to its low density, nitrogen remains, spreading out from the leak and not dispersing quickly. Hence systems operating on nitrogen developing undetected leaks is a major safety regulatory concern. Occupational health preventive guidelines attempt to address this increased risk using additional equipment safety checks. The problem is low oxygen concentrations affecting personnel. Initially symptoms include mild shortness of breath and cough, dizziness and perhaps restlessness, followed by rapid breathing chest pain and confusion, with prolonged inhalation resulting in high blood pressure, bronchospasm and pulmonary edema. 
  • Helium can cause these exact same symptoms if it is contained in a volume and can’t escape. And in each case a complete replacement of the air with the asphyxiant gas causes rapid knockdown where a person just collapses where they stand resulting in a variety of injuries. 

Balloon Gas Safety Best Practice 

In accordance with OSHA guidelines, mandatory testing is required for confined industrial spaces with the responsibility being placed on all employers. Sampling atmospheric air within these spaces will help to determine its suitability for breathing. Tests to be carried out on the sampling air most importantly include oxygen concentrations, but also combustible gas presence and tests for toxic vapours to identify build ups of those gases. 

Regardless of the duration of stay, OSHA requires all employers to provide an attendant just outside a permit-required space whenever personnel are working within. This person is required to constantly monitor the gaseous conditions within the space and call for rescuers if the worker inside the confined space becomes unresponsive. It is vital to note that at no time should the attendant attempt to enter the hazardous space to conduct a rescue unassisted. 

In restricted areas forced draft air circulation will significantly reduce the build-up of helium, nitrogen or other asphyxiant gas and limit the chances of a fatal exposure. While this strategy can be used in areas with low nitrogen leak risks, workers are prohibited from entering pure nitrogen gas environments without using appropriate respiratory equipment. In these cases, personnel must use appropriate artificially supplied air equipment. 

Seasonal Gas Dangers

When it comes to gas safety there’s no off-season, although it is important to know that there is such a thing as seasonal gas safety. When temperatures rise and fall, or the rain falls in deluge, it can have unique impacts on your gas appliances. To help you get a better understanding on seasonal gas safety, here is everything you need to know about key challenges throughout the year.  

Gas safety on holiday 

When on holiday, the last thing on your mind is gas safety, however, it’s crucial that you keep yourself safe. Whether it’s a long summer holiday or a winter weekend getaway are you packing a carbon monoxide monitor in your suitcase? If not, you should be. Gas safety on holiday is just as important as it is at home, this is because when you’re on holiday you have less knowledge or control over the state of any gas appliances. 

Although, there isn’t much difference between gas safety in a caravan or gas safety on boats, gas safety when camping in a tent is different. Gas camping stoves, gas heaters (such as table and patio heaters), and even solid fuel BBQs can produce carbon monoxide (CO) thereby leading to possible poisoning. Therefore, if they are brought into a tent, a caravan or any other enclosed space, during or after use, they can emit harmful CO putting anyone around them in danger. 

It’s also important to remember that gas safety regulations in other countries may differ from those outside the UK. While you can’t be expected to know what’s legal and what’s not everywhere you go, you can keep you and others around you safe by following some simple tips. 

Tips for gas safety on holiday 

  • Ask if the gas appliances in your accommodation have been serviced and safety checked. 
  • Take an audible carbon monoxide alarm with you.
  • When you arrive, the appliances may not work in the same way as those you have at home. If no instructions are provided, then contact your holiday rep or accommodation owner for assistance if you’re unsure.
    • Be aware of the signs of unsafe gas appliances 
    • Black marks and stains around the appliance 
    • Lazy orange or yellow flames instead of crisp blue ones 
    • High levels of condensation in your accommodation
  • Never use gas cookers, stoves or BBQs for heating, and ensure they have adequate ventilation when in use.  

BBQ safety

Summer is a time for being outdoors and enjoying long evenings. Come rain or shine we light up our BBQs with usually the only worries being whether it will rain, or the sausages are fully cooked through. Gas safety isn’t just something for the home, or industrial environments, BBQs need special attention to ensure they’re safe.  

Carbon monoxide is a gas that its health risks are widely known with many of us installing detectors in our homes and businesses. However, the association of carbon monoxide is associated with our BBQs is unknown. If the weather is poor, we may decide to barbeque in the garage doorway or under a tent or canopy. Some of us may even bring our BBQs into the tent after use.  These can all be potentially fatal as the carbon monoxide collects in these confined areas. It must be noted that the cooking area should be well away from buildings and be well ventilated with fresh air, otherwise you are at risk of carbon monoxide poisoning. Knowing the signs of carbon monoxide poisoning is vital – Headaches, Nausea, Breathlessness, Dizziness, Collapse or Loss of consciousness. 

Equally with a propane or butane gas canister, we store in our garages, sheds and even our homes unaware that there is a risk of a potentially deadly combination of an enclosed space, a gas leak and a spark from an electrical device.  All of which could cause an explosion. 

Gas safety in winter

When the cold weather sets in, gas boilers and gas are fired up for the first time in several months, to keep us warm. However, this increased usage can put extra pressure on appliances and can result in them breaking down. Therefore, preparing for winter by ensuring gas appliances – including boilers, warm air heaters, cookers and fires – have been regularly safety checked and maintained by a qualified Gas Safe registered engineer, who carry gas detectors 

What to do if you suspect a gas leak

If you can smell gas or think there could be a gas leak in a property, boat or caravan, it’s important to act fast. A gas leak poses a risk of fire or even explosion. 

You should: 

  • Extinguish any naked flames to stop the chance of fire or explosion.
  • Turn off the gas at the meter if possible (and safe to do so).
  • Open windows to allow ventilation and ensure the gas dissipates.
  • Evacuate the area immediately to prevent risk to life.
  • Inform your holiday representative or accommodation owner immediately or equivalent.
  • Seek medical attention if you feel unwell or show signs of carbon monoxide poisoning.

Carbon monoxide poisoning symptoms

The signs and symptoms of carbon monoxide poisoning are often mistaken for other illnesses, such as food poisoning or flu. Symptoms include:

  • Headache
  • Dizziness
  • Breathlessness
  • Nausea or feeling sick
  • Collapse
  • Loss of consciousness

Anyone who suspects they are suffering from carbon monoxide poisoning should immediately go outside into the fresh air and seek urgent medical attention. 

Personal gas detectors 

The Clip SDG personal gas detector is designed to withstand the harshest industrial working conditions and delivers industry leading alarm time, changeable alarm levels and event logging as well as user-friendly bump test and calibration solutions. 

Gasman with specialist CO sensor is a rugged, compact single gas detector, designed for use in the toughest environments. Its compact and lightweight design makes it the ideal choice for industrial gas detection. 

Keeping the Emergency Services/First Responders Safe

Emergency Service Personnel/First Responders encounter gas related risks as part of their jobs. However, immediate evaluation of their surrounds is key upon arrival as well as continuous monitoring whilst in a rescue situation are vital for the health of all those involved.  

What Gases are Present?

Toxic gases like carbon monoxide (CO) and hydrogen cyanide (HCN) are present if there is a fire. Individually these gases are dangerous and even deadly, the two combined is exponentially worse, known as the toxic twins.  

Carbon monoxide (CO) is a colorless, odourless, tasteless, poisonous gas produced by incomplete burning of carbon-based fuels, including gas, oil, wood, and coal. It is only when fuel does not burn fully that excess CO is produced, which is poisonous. When the excess CO enters the body, it stops the blood from bringing oxygen to cells, tissues, and organs. CO is poisonous as you cannot see it, taste it or smell it but CO can kill quickly without warning.  

Hydrogen Cyanide (HCN) is an important industrial chemical and over a million tonnes are produced globally each year. Hydrogen Cyanide (HCN) is a colorless or light blue liquid or gas that is extremely flammable. It has a faint bitter almond odour, although this isn’t detectable to everyone.  There are many uses for hydrogen cyanide, primarily in the manufacture of paints, plastics, synthetic fibres (for example nylon) and other chemicals. Hydrogen cyanide and other cyanide compounds have also been used as a fumigant to control pests. With other uses being in metal cleaning, gardening, ore-extraction, electroplating, dying, printing and photography. Sodium and potassium cyanide and other cyanide salts may be made from hydrogen cyanide. 

What are the risks?

These gases are dangerous individually. However, exposure to both combined is even more dangerous, so an adequate CO and HCN gas detector is essential where the toxic twins are found. Usually, visible smoke is a good guide, however the Toxic Twins are both colorless.  Combined these gases are usually found in fires. in which, Firefighters and other Emergency Personnel are trained to look out for CO poisoning in fires. However, due to the increased use of plastics and man-made fibres, HCN can be released at up to 200ppm in domestic and industrial fires. These two gases cause thousands of fire related deaths annually, so needs more consideration in fire gas detection.  

The attendance of HCN in the environment may not always lead to exposure. However, for HCN to cause any adverse health effects, you need to come into contact with it, i.e., breathing, eating, drinking, or through skin or eye contact with it. Following exposure to any chemical, the adverse health effects are dependent on a number of factors, such as the amount to which you are exposed (dose), the way you are exposed, the duration of exposure, the form of the chemical and if you were exposed to any other chemicals. As HCN is very toxic, it can prevent the body from using oxygen properly. Early signs of exposure to HCN include headache, sickness, dizziness, confusion and even drowsiness. Substantial exposure may rapidly lead to unconsciousness, fitting, coma and possibly death. If a substantial exposure is survived, there may be long-term effects from damage to the brain and other nervous system damage. Effects from skin contact require a large surface of the skin in order to be exposed. 

What Products are Available?

For Emergency Service Teams/First Responders, the use of portable gas detectors is essential. Toxic gases are produced when materials are burnt meaning flammable gases and vapours may be present.  

Our Gas-Pro portable multi gas detector offers detection of up to 5 gases in a compact and rugged solution. It has an easy-to-read top mount display making it easy to use and optimal for confined space gas detection. An optional internal pump, activated with the flow plate, takes the pain out of pre-entry testing and allows Gas-Pro to be worn either in pumped or diffusion modes. In-field pellistor changes for methane, hydrogen, propane, ethane, acetylene (0–100% LEL, with resolution of 1% LEL). By allowing in-field pellistor changes, Gas-Pro detectors give users the flexibility to conveniently test for a range of flammable gases, without needing multiple sensors or detectors. What is more, they can continue to calibrate using existing methane canisters, saving time and money. The gas sensor for hydrogen cyanide has a monitoring measuring range of 0–30 ppm with resolution of 0.1 ppm.  

Tetra 3 portable multi gas monitor can detect and monitor the four most common gases (carbon monoxide, methane, oxygen and hydrogen sulphide), but also an expanded range: ammonia, ozone, sulphur dioxide, H2 filtered CO (for steel plants) and IR carbon dioxide (for safe area use only). 

T4 portable 4-in-1 gas detector provides effective protection against 4 common gas hazards: carbon monoxide, hydrogen sulphide, flammable gases and oxygen depletion. The T4 multi gas detector now comes with improved detection of pentane, hexane and other long chain hydrocarbons. 

Clip Single Gas Detector (SDG) is an industrial gas detector designed for use in hazardous areas and offers reliable and durable fixed life span monitoring in a compact, lightweight and maintenance-free package. Clip SGD has a 2-year life and is available for hydrogen sulphide (H2S), carbon monoxide (CO) or oxygen (O2). 

Gasman is a full function device in a compact and lightweight package – perfect for customers who need more sensor options, TWA and data capability. It comes available with long-life O2 sensor, MPS sensor technology.

MPS Sensor provides advanced technology that removes the need to calibrate and provides a ‘True LEL’ for reading for fifteen flammable gases but can detect all flammable gases in a multi-species environment. Many industries and applications use or have as a by product multiple gases within the same environment. This can be challenging for traditional sensor technology which can detect only a single gas that they were calibrated for and can result in inaccurate reading and even false alarms which can halt process or production. The challenges faced in multi gas species environments can be frustrating and counterproductive. Our MPS™ sensor can accurately detect multiple gases at once and instantly identify gas type. Our MPS™ sensor has a on board environmental compensation and does not require a correctional factor. Inaccurate readings and false alarms are a thing of the past.

Crowcon Connect is a gas safety and compliance insight solution that utilises a flexible cloud data service offering actionable insight from detector fleet. This cloud-based software provides a top level view of device utilisation with dashboard showing proportion of devices that are Assigned or Unassigned to an operator, for the specific region or area selected. Fleet Insights provides overview of devices switch on/off, synced or in alarm.

Why HVAC professionals are at risk from Carbon Monoxide – and how to manage it

Carbon Monoxide (CO) is an odourless, colorless and tasteless gas that is also highly toxic and potentially flammable (at higher levels: 10.9% Volume or 109,000ppm). It is produced by the incomplete combustion of fossil fuels such as wood, oil, coal, paraffin, LPG, petrol and natural gas. Many HVAC systems and units burn fossil fuels, so it’s not hard to see why HVAC professionals may be exposed to CO in their work. Perhaps you have, in the past, felt dizzy or nauseous, or had a headache during or after a job? In this blog post, we’ll look at CO and its effects, and consider how the risks can be managed.

How is CO generated?

As we have seen, CO is produced by incomplete combustion of fossil fuels. This generally happens where there is a general lack of maintenance, insufficient air – or the air is of insufficient quality – to allow complete combustion.

For example, the efficient combustion of natural gas generates carbon dioxide and water vapour. But if there is inadequate air where that combustion takes place, or if the air used for combustion becomes vitiated, combustion fails and produces soot and CO. If there is water vapour in the atmosphere, this can reduce the oxygen level still further and speed up CO production.

What are the dangers of CO?

Normally, the human body uses haemoglobin to transport oxygen via the bloodstream. However, it is easier for the haemoglobin to absorb and circulate CO than oxygen. Consequently, when there is CO around, danger arises because the body’s haemoglobin ‘prefers’ CO over oxygen. When the haemoglobin absorbs CO in this way, it becomes saturated with CO, which is promptly and efficiently transported to all parts of the body in the form of carboxyhaemoglobin.

This can cause a range of physical problems, depending on how much CO is in the air. For example:

200 parts per million (ppm) can cause headache in 2–3 hours.
400 ppm can cause headache and nausea in 1–2 hours, life threatening within 3 hours.
800 ppm can cause seizures, severe headaches and vomiting in under an hour, unconsciousness within 2 hours.
1,500 ppm can cause dizziness, nausea, and unconsciousness in under 20 minutes; death within 1 hour.
6,400 ppm can cause unconsciousness after two to three breaths; death within 15 minutes.

Why are HVAC workers at risk?

Some of the most common events in HVAC settings may lead to CO exposure, for example:

Working in confined spaces, such as basements or lofts.
Working on heating appliances that are malfunctioning, in a poor state of repair, and/or have broken or worn seals; blocked, cracked or collapsed flues and chimneys; allowing products of combustion to enter the working area.
Working on open-flued appliances, especially if the flue is spilling, ventilation is poor and/or the chimney is blocked.
Working on flue-less gas fires and/or cookers, especially where the room volume is of inadequate size and/or the ventilation is otherwise poor.

How much is too much?

The Health and Safety Executive (HSE) publishes a list of workplace exposure limits for many toxic substances, including CO. You can download the latest version free of charge from their website at www.hse.gov.uk/pubns/books/eh40.htm but at time of writing (November 2021) the limits for CO are:

Workplace Exposure Limit

Gas Formula CAS Number Long Term Exposure Limit
(8-hr TWA Reference Period)
Short Term Exposure Limit
(15-min Reference period)
Carbon monoxide CO 630-08-0 20ppm (parts per million) 100ppm (parts per million)

How can I stay safe and prove compliance?

The best way to protect yourself from the hazards of CO is be wearing a high quality, portable CO gas detector. Crowcon’s Clip for CO is a lightweight 93g personal gas detector that sounds at 90db alarm whenever the wearing is being exposed to 30 and 100 ppm CO. The Clip CO is a disposable portable gas detector that has a 2-year lifespan or a maximum of 2900 alarm minutes; whichever is sooner.

Why do Gas Certifications matter?

Who Classifies Gas Certificates?

One of the most significant concerns in an industrial workplace is the potential risk of fire or/and explosion. However, there are directives that set standards in which aim to control explosive atmospheres. ATEX (ATmosphere EXplosibles) is the name commonly given to two European Directives for controlling explosive environments. IECEX (International Electrotechnical Commission for Explosive Atmospheres) is the certification that all electrical devices are required to go through by the International Electrotechnical Commission to ensure that they meet a minimum safety standard that will determine whether they can be used in hazardous or explosive environments. For the US Underwriters Limited (UL) is a safety organisation who provide products that are to be sold into the marketplace with authentication that are safe for use. Similarly, the Canadian National Standards (CSA) provide products placed in the market or put into service with a safety certification displaying that they are fit for use. However, The Safety integrity level (SIL) is the level of risk-reduction provided by a safety function, or to specify a target level of risk reduction. The certificates provided by both ATEX and Sil are what operators rely on in order to prevent fires and explosions but also to keep all those in industrial workplaces safe. 

Workplace Hazards

There are too many workplace hazards to count, however, a hazardous location is stated as an area in which combustible or flammable substance is or has the potential to be in attendance. Hazardous locations are specified by the type of combustible hazard and the probability of it being present. These gradings are determined by classifications set by the National Electric Code (NEC) in the United States and the International Electrochemical Commissions (IEC) internationally. These are defined in two ways; either Class/Division system in Northern America or Zones/Groups internationally.  

Class and Divisions

Divisions: 

Division 1: There is a likelihood the hazard is present during normal operating conditions 

Division 2: The hazard is present during abnormal conditions (i.e., In the event of a spill or leak)  

Classes: 

Class 1Gas 

Class 2Dust 

Class 3Fibres  

Zones and Groups 

Zones: identify the possibility for a hazard to be present 

Zone 0: The hazard is in attendance continuously and for a prolonged period of time 

Zone 1: There is a chance that the hazard is in attendance but at normal operating  conditions 

Zone 2: The hazard is not likely in attendance in normal conditions for an extended period of  time 

Groups: Identify the particular type of hazard 

Group 1: Mining Industry hazard specific 

Group 2: Have a group identifying the hazard is gaseous in nature 

A: Methane, propane, and other similar gases 

B: Ethylene and gases or those that pose a similar hazard risk 

C: Acetylene, hydrogen or similar hazards 

Group 3: Dusts and other groups by size of the particle and type of material 

Understanding the Certification Logos

The logos located on the equipment identify who or what association has tested and assessed the equipment, ensuring its safety based on set standards. Many associations will certify equipment as being explosion proof, clarifying that any ignition will be contained within the device and will not pose a threat to the outside environment. This action is intrinsically safe, thereby stopping the device from creating a spark that may lead to an explosion in a hazardous environment.  

Why Certificates are important

Although it is hard to identify all classification, to ensure that equipment has been certified safe, it is essential to look for familiar logos as a primary sign the equipment is safe and won’t pose a threat to the environment. Certificates allow for easy visual for the operator to not only ensure that the devices work correctly but also protect all those in the hazardous environment its set to measure.  

What’s the difference between a pellistor and an IR sensor?

Sensors play a key role when it comes to monitoring flammable gases and vapours. Environment, response time and temperature range are just some of the things to consider when deciding which technology is best.

In this blog, we’re highlighting the differences between pellistor (catalytic) sensors and infrared (IR) sensors, why there are pros and cons to both technologies, and how to know which is best to suit different environments.

Pellistor sensor

A pellistor gas sensor is a device used to detect combustible gases or vapours that fall within the explosive range to warn of rising gas levels. The sensor is a coil of platinum wire with a catalyst inserted inside to form a small active bead which lowers the temperature at which gas ignites around it. When a combustible gas is present the temperature and resistance of the bead increases in relation to the resistance of the inert reference bead. The difference in resistance can be measured, allowing measurement of gas present. Because of the catalysts and beads, a pellistor sensor is also known as a catalytic or catalytic bead sensor.

Originally created in the 1960’s by British scientist and inventor, Alan Baker, pellistor sensors were initially designed as a solution to the long-running flame safety lamp and canary techniques. More recently, the devices are used in industrial and underground applications such as mines or tunnelling, oil refineries and oil rigs.

Pellistor sensors are relatively lower in cost due to differences in the level of technology in comparison to IR sensors, however they may be required to be replaced more frequently.

With a linear output corresponding to the gas concentration, correction factors can be used to calculate the approximate response of pellistors to other flammable gases, which can make pellistors a good choice when there are multiple flammable vapours present.

Not only this but pellistors within fixed detectors with mV bridge outputs such as the Xgard type 3 are highly suited to areas that are hard to reach as calibration adjustments can take place at the local control panel.

On the other hand, pellistors struggle in environments where there is low or little oxygen, as the combustion process by which they work, requires oxygen. For this reason, confined space instruments which contain catalytic pellistor type LEL sensors often include a sensor for measuring oxygen.

In environments where compounds contain silicon, lead, sulphur and phosphates the sensor is susceptible to poisoning (irreversible loss of sensitivity) or inhibition (reversible loss of sensitivity), which can be a hazard to people in the workplace.

If exposed to high gas concentrations, pellistor sensors can be damaged. In such situations, pellistors do not ‘fail safe’, meaning no notification is given when an instrument fault is detected. Any fault can only be identified through bump testing prior to each use to ensure that performance is not being degraded.

 

IR sensor

Infrared sensor technology is based on the principle that Infrared (IR) light of a particular wavelength will be absorbed by the target gas. Typically there are two emitters within a sensor generating beams of IR light: a measurement beam with a wavelength that will be absorbed by the target gas, and a reference beam which will not be absorbed. Each beam is of equal intensity and is deflected by a mirror inside the sensor onto a photo-receiver. The resulting difference in intensity, between the reference and measurement beam, in the presence of the target gas is used to measure the concentration of gas present.

In many cases, infrared (IR) sensor technology can have a number of advantages over pellistors or be more reliable in areas where pellistor-based sensor performance can be impaired- including low oxygen and inert environments. Just the beam of infrared interacts with the surrounding gas molecules, giving the sensor the advantage of not facing the threat of poisoning or inhibition.

IR technology provides fail-safe testing. This means that if the infrared beam was to fail, the user would be notified of this fault.

Gas-Pro TK uses a dual IR sensor – the best technology for the specialist environments where standard gas detectors just won’t work, whether tank purging or gas freeing.

An example of one of our IR based detectors is the Crowcon Gas-Pro IR, ideal for the oil and gas industry, with the availability to detect methane, pentane or propane in potentially explosive, low oxygen environments where pellistor sensors may struggle. We also use a dual range %LEL and %Volume sensor in our Gas-Pro TK, which is suitable for measuring and switching between both measurements so it’s always safely operating to the correct parameter.

However, IR sensors aren’t all perfect as they only have a linear output to target gas; the response of an IR sensor to other flammable vapours then the target gas will be non-linear.

Like pellistors are susceptible to poisoning, IR sensors are susceptible to severe mechanical and thermal shock and also strongly affected by gross pressure changes. Additionally, infrared sensors cannot be used to detect Hydrogen gas, therefore we suggest using pellistors or electromechanical sensors in this circumstance.

The prime objective for safety is to select the best detection technology to minimise hazards in the workplace. We hope that by clearly identifying the differences between these two sensors we can raise awareness on how various industrial and hazardous environments can remain safe.

For further guidance on pellistor and IR sensors, you can download our whitepaper which includes illustrations and diagrams to help determine the best technology for your application.

You won’t find Crowcon sensors sleeping on the job

MOS (metal oxide semiconductor) sensors have been seen as one of the most recent solutions for tackling detection of hydrogen sulphide (H2S) in fluctuating temperatures from up to 50°C down to the mid-twenties, as well as humid climates such as the Middle East.

However, users and gas detection professionals have realised MOS sensors are not the most reliable detection technology. This blog covers why this technology can prove difficult to maintain and what issues users can face.

One of the major drawbacks of the technology is the liability of the sensor “going to sleep” when it doesn’t encounter gas for a period of time. Of course, this is a huge safety risk for workers in the area… no-one wants to face a gas detector that ultimately doesn’t detect gas.

MOS sensors require a heater to equalise, enabling them to produce a consistent reading. However, when initially switched on, the heater takes time to warm up, causing a significant delay between turning on the sensors and it responding to hazardous gas. MOS manufacturers therefore recommend users to allow the sensor to equilibrate for 24-48 hours before calibration. Some users may find this a hinderance for production, as well as extended time for servicing and maintenance.

The heater delay isn’t the only problem. It uses a lot of power which poses an additional issue of dramatic changes of temperature in the DC power cable, causing changes in voltage as the detector head and inaccuracies in gas level reading. 

As its metal oxide semiconductor name suggests, the sensors are based around semiconductors which are recognised to drift with changes in humidity- something that is not ideal for the humid Middle Eastern climate. In other industries, semiconductors are often encased in epoxy resin to avoid this, however in a gas sensor this coating would the gas detection mechanism as the gas couldn’t reach the semiconductor. The device is also open to the acidic environment created by the local sand in the Middle East, effecting conductivity and accuracy of gas read-out.

Another significant safety implication of a MOS sensor is that with output at near-zero levels of H2S can be false alarms. Often the sensor is used with a level of “zero suppression” at the control panel. This means that the control panel may show a zero read-out for some time after levels of H2S have begun to rise. This late registering of low-level gas presence can then delay the warning of a serious gas leak, opportunity for evacuation and the extreme risk of lives.

MOS sensors excel in reacting quickly to H2S, therefore the need for a sinter counteracts this benefit. Due to H2S being a “sticky” gas, it is able to be adsorbed onto surfaces including those of sinters, in result slowing down the rate at which gas reaches the detection surface.

To tackle the drawbacks of MOS sensors, we’ve revisited and improved on the electrochemical technology with our new High Temperature (HT) H2S sensor for XgardIQ. The new developments of our sensor allow operation of up to 70°C at 0-95%rh- a significant difference against other manufacturers claiming detection of up to 60°C, especially under the harsh Middle Eastern environments.

Our new HT H2S sensor has been proven to be a reliable and resilient solution for the detection of H2S at high temperatures- a solution that doesn’t fall asleep on the job!

Click here for more information on our new High Temperature (HT) H2S sensor for XgardIQ.

An ingenious solution to the problem of high temperature H2S

Due to extreme heat in the Middle East climbing up to 50°C in the height of summer, the necessity for reliable gas detection is critical. In this blog, we’re focusing on the requirement for detection of hydrogen sulphide (H2S)- a long running challenge for the Middle East’s gas detection industry.

By combining a new trick with old technology, we’ve got the answer to reliable gas detection for environments in the harsh Middle Eastern climate. Our new High Temperature (HT) H2S sensor for XgardIQ has been revisited and improved by our team of Crowcon experts by using a combination of two ingenious adaptations to its original design.

In traditional H2S sensors, detection is based on electrochemical technology, where electrodes are used to detect changes induced in an electrolyte by the presence of the target gas. However, high temperatures combined with low humidity causes the electrolyte to dry out, impairing sensor performance so that the sensor has to be replaced regularly; meaning high replacement costs, time and efforts.

Making the new sensor so advanced from its predecessor is its ability to retain the moisture levels within the sensor, preventing evaporation even in high temperature climates. The updated sensor is based on electrolytic gel, adapted to make it more hygroscopic and avoiding dehydration for longer.

As well as this, the pore in the sensor housing has been reduced, limiting the moisture from escaping. This chart indicated weight loss which is indicative of moisture loss. When stored at 55°C or 65°C for a year just 3% of weight is lost. Another typical sensor would lose 50% of its weight in 100 days in the same conditions.

For optimal leak detection, our remarkable new sensor also features an optional remote sensor housing, while the transmitter’s displays screen and push-button controls are positioned for safe and easy access for operators up to 15metres away.

 

The results of our new HT H2S sensor for XgardIQ speak for themselves, with an operating environment of up to 70°C at 0-95%rh, as well featuring a 0-200ppm and T90 response time of less than 30 seconds. Unlike other sensors for detecting H2S, it offers a life expectancy of over 24 months, even in tough climates like the Middle East.

The answer to the Middle East’s gas detection challenges fall in the hands of our new sensor, providing its users with cost-effective and reliable performance.

Click here for more information about the Crowcon HT H2S sensor.

Once again, Gas-Pro is ‘detector of choice’ for volcano environmental expedition

We are all familiar with the term global warming and often see statistics about the potential effects this could have on our planet.  One such prediction is by the end of this century the globe will increase in temperature by between 0.8 and 4 degrees.

What many of us may not know is that volcanoes, which are a completely natural phenomenon, contribute a significant amount of gases into our atmosphere. And these gases are currently not considered in the world’s climate models, which means there is potentially a large margin of error.

However, this could be about to change as Yves Moussallam, an inspiring French Volcanologist, who with the support of Rolex and the 2019 Rolex Awards for Enterprise, has made it his mission to understand volcanos and how they impact on our planet.  He ventures into these dramatic and dangerous environments to take measurements which are used by scientists and climatologists to improve their prediction models.

By observing volcanos, and gathering this vitally important data, he is helping the world understand the impact volcanos are having on climate change.

Yves is no stranger to volcanic expeditions. In 2015, he led a small team to the Nazca subduction zone in South America. Their mission was to provide the first accurate and large-scale estimate of the flux of several volatile gas species.

To keep the team safe, Yves selected Crowcon detection equipment and was delighted with Gas man and Gas-Pro’s lightweight, clean and safe functionality.

Now Yves is back with a new expedition and has turned to Crowcon once again. This time, Yves is heading to the region of Melanesia in Italy.  Satellites, which are used to track volcanic behaviour, have shown that this region is responsible for approximately a third of global volcanic gas emissions.

His expedition will climb these volcanoes and take measurements directly in the volcanic plume.

There are two main methods to measure gases in volcanoes.  The first is via satellite which takes images from space.  The second is to go directly into the field and measure gas released at its source.

Experts believe the method of working directly in the field is the most accurate as it is positioned far closer to the source so there is a reduced risk of error.

To conduct these measurements requires tried, tested and trusted equipment and with Crowcon’s proven track record, Yves turned again to Gas-Pro.

Crowcon’s Gas-Pro includes an onboard datalogging feature which will provide an extra line of data and an idea of average exposure, which is important for expeditions that span longer periods.  It is also lightweight which is hugely beneficial when carrying bulky equipment.

Everyone at Crowcon wishes Yves a safe and successful expedition and we hope the data he gathers will help us understand the impact volcanos have on our world.

#Rolex #RolexAwards #PerpetualPlanet #Perpetual

Helping you stay safe during the BBQ season

Who doesn’t love a summer BBQ? Come rain or shine we light up our BBQs with usually the only worries being whether it will rain, or the sausages are fully cooked through.

While these are important, (especially making sure the sausages are cooked!) many of us are completely unaware of the potential risks.

Carbon monoxide is a gas that has received its fair share of publicity with many of us installing detectors in our homes and businesses, but completely unaware carbon monoxide is associated with our BBQs.

If the weather is poor, we may decide to barbeque in the garage doorway or under a tent or canopy. Some of us may even bring our BBQs into the tent after use.  These can all be potentially fatal as the carbon monoxide collects in these confined areas.

Equally with a propane or butane gas canister, we store in our garages, sheds and even our homes unaware that there is a risk of a potentially deadly combination of an enclosed space, a gas leak and a spark from an electrical device.  All of which could cause an explosion.

All of that said, BBQs are here to stay and if we use them safely, are a great way to spend a summer afternoon.  So, here is a selection of facts and tips from our safety team at Crowcon which we hope will help you enjoy a safe and delicious summer ahead!

 

Quick facts and tips about BBQ charcoals:

  • Carbon monoxide is a colorless and odourless gas so just because we can’t smell or see it, doesn’t mean it’s not there
  • Carbon monoxide is a by-product of burning fossil fuels, which include charcoal and BBQ gas
  • Always use your BBQ in a well-ventilated open area as it can accumulate to toxic levels in enclosed spaces
  • Never bring a charcoal into a tent, even if it seems cold. Remember a smouldering BBQ will still give off carbon monoxide
  • Be aware and act quickly if someone experiences the symptoms of carbon monoxide poisoning which include headaches, dizziness, breathlessness, nausea, confusion, collapse and unconsciousness. These symptoms can be potentially fatal

 

Quick facts and tips about gas cannisters:

  • Gas barbecues tend to use propane, butane or LPG (which is a mixture of the two)
  • Gas BBQs have holes in the bottom to prevent a build-up of gas. This is because gas is heavier than air so will accumulate in low areas or fill a space from the bottom up
  • To avoid the accumulation of gas, cannisters should always be stored outside, upright, in a well-ventilated area, away from heat sources, and away from enclosed low spaces
  • If you store your BBQ in the garage, make sure you disconnect the gas cannister and keep this outside
  • When you are using your BBQ, keep the cannister to one side so it isn’t underneath and close to the heat source and position the BBQ in an open space
  • Always keep the cannister away from ignition sources when changing cannisters
  • Always make sure you turn off the gas at the BBQ as well as on the regulator on the cannister, after use