Gas Hazards in Battery Power Storage

Batteries are effective at reducing power outages since they can also store excess traditional grid energy. The energy stored within batteries can be released whenever a large volume of power is needed, such as during a power failure at a data centre to prevent data being lost, or as a back-up power supply to a hospital or military application to ensure the continuity of vital services. Large scale batteries can also be used to plug short-term gaps in demand from the grid. These battery compositions can also be used in smaller sizes to power electric cars and may be further scaled down to power commercial products, such as phones, tablets, laptops, speakers and – of course – personal gas detectors.

Gas hazards

The main gas risk emitted by batteries, specifically lead acid batteries, is hydrogen. It is possible to get both hydrogen and oxygen evolved during charging however, a lead acid battery is likely to have catalytic recombination parts internally, so oxygen is less of a risk. Hydrogen is always a cause for concern, as it can collect and build up. A situation that is obviously worsened when they are charged in a space with a poor airflow.

When charging, lead-acid batteries consist of lead and oxide at the positive terminal, and of spongy lead at the negative anode, using concentrated sulfuric acid as the electrolyte. The presence of sulfuric acid is another cause for concern if the battery leaks or is ever damaged because concentrated acids harm people, metals and the environment.

When charging batteries also emit oxygen and hydrogen because of the electrolysis process. The levels of hydrogen produced soar when a lead acid battery cell “blows” or is unable to be charged properly. The amount of gas present is relevant because high levels of hydrogen make it highly explosive, even though it is not toxic. Hydrogen has a 100% lower explosive limit of 4.0% by volume, at which level an ignition source would cause fires or for hydrogen more usually, explosions. Fires and explosions are an issue not only for the workers within the space, but also for the surrounding equipment and infrastructure.

Importance of Gas Detection Technology

Gas detection is an invaluable safety technology often equipped in battery charging rooms. Ventilation is also advised, and while helpful, it is not fool proof as fan motors can fail and should not be relied upon as the sole safety measure for battery charging areas. Fans mask the problem while gas detection notifies personnel to act before problems escalate. Gas detection systems are crucial in informing personnel of increasing gas leaks before becoming dangerous. Gas detection units comply with local building codes and NFPA 111, the National Fire Protection Association standard on stored electrical energy emergency and standby power systems. They include maintenance, operation, installation, and testing provisions regarding the system’s performance. In addition to permanent gas detection systems, handheld units are available. The benchmark products are provided by Crowcon and are listed below.

Portable Gas Detectors

Crowcon’s portable gas detectors (Gasman, Gas-Pro, T4x, Tetra 3 and T4) protect against a wide range of industrial gas hazards, with both single gas and multi-gas monitors available. With a wide range of sizes and complexities, you can find the right portable gas detection solution to meet the number and type of gas sensors you need and your display and certification requirements.

Fixed Gas Detectors

Crowcon gas detection fixed systems offer a flexible range of solutions that can measure flammable, toxic, and oxygen gases, report their presence, and activate alarms or associated equipment. Crowcon fixed gas monitoring systems (Xgard, Xgard Bright and XgardIQ) are designed to be interfaced with manual call points, fire and gas detectors, and distributed control systems (DCS).

Control Panels

Crowcon gas detection control panels offer a flexible range of solutions that can measure flammable, toxic, and oxygen gases, report their presence, and activate alarms or associated equipment. Crowcon fixed gas (Vortex, GM Addressable Controllers, Gasmaster) monitoring systems are designed to be interfaced with manual call points, fire and gas detectors and distributed control systems (DCS). In addition, each system can be engineered to drive remote annunciators and mimic panels. Crowcon has a gas detection product to suit your application regardless of your operation.

Temperature Measurement

Crowcon has extensive experience with temperature measurement. There are several models of temperature measurement, from pocket thermometers to industrial kits ranging from -99.9 to 299.9°C with probes and clamps. They are enhancing their fixed detection capabilities by adding high-temperature electrochemical sulphur dioxide detection for battery manufacturing and charging stations. This is critical during the first charge of a battery, as a fault is most likely at that time. Their fast-acting systems detect the precursors to thermal runaway and quickly terminate power to the batteries to avoid damage.

To find out more on the dangers of gas hazards in battery power visit our industry page for more information.

Industry Overview: Waste to Energy

The waste to energy industry utilises several waste treatment methods. Municipal and industrial solid waste is converted into electricity, and sometimes into heat for industrial processing and district heating systems. The main process is of course incineration, but intermediate steps of pyrolysis, gasification, and anaerobic digestion are sometimes used to convert the waste into useful by-products that are then used to generate power through turbines or other equipment. This technology is gaining wide recognition globally as a greener and cleaner form of energy than traditional burning of fossil fuels, and as a means of reducing waste production.

Types of waste to energy

Incineration

Incineration is a waste treatment process that involves the combustion of energy rich substances contained within waste materials, typically at high temperatures around 1000 degrees C. Industrial plants for waste incineration are commonly referred to as waste-to-energy facilities and are often sizeable power stations in their own right. Incineration and other high-temperature waste treatment systems are often described as “thermal treatment”. During the process waste is converted into heat and steam that can be used to drive a turbine in order to generate electricity. This method currently has an efficiency of around 15-29%, although it does have potential for improvements.

Pyrolysis

Pyrolysis is a different waste treatment process where decomposition of solid hydrocarbon wastes, typically plastics, takes place at high temperatures without oxygen present, in an atmosphere of inert gases. This treatment is usually conducted at or above 500 °C, providing enough heat to deconstruct the long chain molecules including bio-polymers into simpler lower mass hydrocarbons.

Gasification

This process is used to make gaseous fuels from heavier fuels and from waste containing combustible material. In this process, carbonaceous substances are converted into carbon dioxide (CO2), carbon monoxide (CO) and a small amount of hydrogen at high temperature. In this process, gas is generated which is a good source of usable energy. This gas can then be used to produce electricity and heat.

Plasma Arc Gasification

In this process, a plasma torch is used to ionise energy rich material. Syngas is produced which may then be used to make fertiliser or generate electricity. This method is more of a waste disposal technique than a serious means of generating gas, often consuming as much energy as the gas it produces can provide.

Reasons for Waste to Energy

As this technology is gaining wide recognition globally in regards to waste production and the demand for clean energy.

  • Avoids methane emissions from landfills
  • Offsets greenhouse gas (GHG) emissions from fossil fuel electrical production
  • Recovers and recycles valuable resources, such as metals
  • Produces clean, reliable base-loaded energy and steam
  • Uses less land per megawatt than other renewable energy sources
  • Sustainable and steady renewable fuel source (compared to wind and solar)
  • Destroys chemical waste
  • Results in low emission levels, typically well below permitted levels
  • Catalytically destroys nitrogen oxides (NOx), dioxins and furans using an selective catalytic reduction (SCR)

What are the Gas Hazards?

There are many processes to turn waste into energy, these include, biogas plants, refuse use, leachate pool, combustion and heat recovery. All these processes pose gas hazards to those working in these environments.

Within a Biogas Plant, biogas is produced. This is formed when organic materials such as agricultural and food waste are broken down by bacteria in an oxygen-deficient environment. This is a process called anaerobic digestion. When the biogas has been captured, it can be used to produce heat and electricity for engines, microturbines and fuel cells. Clearly, biogas has high methane content as well as substantial hydrogen sulphide (H2S), and this generates multiple serious gas hazards. (Read our blog for more information on biogas). However, there is an elevated risk of, fire and explosion, confined space hazards, asphyxiation, oxygen depletion and gas poisoning, usually from H2S or ammonia (NH3). Workers in a biogas plant must have personal gas detectors that detect and monitor flammable gas, oxygen and toxic gases like H2S and CO.

Within a refuse collection it is common to find flammable gas methane (CH4) and toxic gases H2S, CO and NH3. This is because refuse bunkers are built several metres underground and gas detectors are usually mounted high up in areas making those detectors hard to service and calibrate. In many cases, a sampling system is a practical solution as air samples can be brought to a convenient location and measured.

Leachate is a liquid that drains (leaches) from an area in which waste is collected, with leachate pools presenting a range of gas hazards. These include the risk of flammable gas (explosion risk), H2S (poison, corrosion), ammonia (poison, corrosion), CO (poison) and adverse oxygen levels (suffocation). Leachate pool and passageways leading to the leachate pool requiring monitoring of CH4, H2S, CO, NH3, oxygen (O2) and CO2. Various gas detectors should be placed along routes to the leachate pool, with output connected to external control panels.

Combustion and heat recovery requires the detection of O2 and toxic gases sulphur dioxide (SO2) and CO. These gases all pose a threat to those who work in boiler house areas.

Another process that is classed as a gas hazard is an exhaust air scrubber. The process is hazardous as the flue gas from incineration is highly toxic. This is because it contains pollutants such as nitrogen dioxide (NO2), SO2, hydrogen chloride (HCL) and dioxin. NO2 and SO2 are major greenhouse gases, while HCL all of these gas types mentioned here are harmful to human health.

To read more on the waste to energy industry, visit our industry page.

The importance of gas detection in the Medical and Healthcare sector

The need for gas detection in the medical and healthcare sector may be less widely understood outside of the industry, but the requirement is there, nonetheless. With patients across a number of settings receiving a variety of treatment and medical therapies that involve the usage of chemicals, the need to accurately monitor the gases utilised or emitted, within this process is very important to allow for their continued safe treatment. In order to safeguard both patients and, of course, the healthcare professionals themselves, the implementation of accurate and reliable monitoring equipment is a must.

Applications

In healthcare and hospital settings, a range of potentially hazardous gases can present themselves due to the medical equipment and apparatus utilised. Harmful chemicals are also used for disinfectant and cleansing purposes within hospital work surfaces and medical supplies. For example, potentially hazardous chemicals can be used as a preservative for tissue specimens, such as toluene, xylene or formaldehyde. Applications include:

  • Breath gas monitoring
  • Chiller rooms
  • Generators
  • Laboratories
  • Storage rooms
  • Operating theatres
  • Pre-hospital rescue
  • Positive airway pressure therapy
  • High flow nasal cannula therapy
  • Intensive care units
  • Post anaesthesia care unit

Gaz Hazards

Oxygen Enrichment in Hospital Wards

In light of the worldwide pandemic, COVID-19, the need for increased oxygen on hospital wards has been recognised by healthcare professionals due to the escalating number of ventilators in use. Oxygen sensors are vital, within ICU wards specifically, as they inform the clinician how much oxygen is being delivered to the patient during ventilation. This can prevent the risk of hypoxia, hypoxemia or oxygen toxicity. If oxygen sensors do not function as they should; they can alarm regularly, need changing and unfortunately even lead to fatalities. This increased use of ventilators also enriches the air with oxygen and can raise the combustion risk. There is a need to measure the levels of oxygen in the air using a fixed gas detection system to avoid unsafe levels in the air.

Carbon Dioxide

Carbon dioxide level monitoring is also required in healthcare environments to ensure a safe working environment for professionals, as well as to safeguard patients being treated. Carbon dioxide is used within a plethora of medical and healthcare procedures from minimally invasive surgeries, such as endoscopy, arthroscopy and laparoscopy, cryotherapy and anaesthesia. CO2 is also used in incubators and laboratories and, as it is a toxic gas, can cause asphyxiation. Heightened levels of CO2 in the air, emitted by certain machinery, can cause harm to those in the environment, as well as spread pathogens and viruses. CO2 detectors in healthcare environments can therefore improve ventilation, air flow and the wellbeing of all.

Volatile Organic Compounds (VOCs)

A range of VOCs can be found in hospital and healthcare environments and cause harm to those working and being treated within it. VOCs such as aliphatic, aromatic and halogenated hydrocarbons, aldehydes, alcohols, ketones, ethers and terpenes, to name a few, have been measured in hospital environments, originating from a number of specific areas including reception halls, patient rooms, nursing care, post-anaesthesia care units, parasitology-mycology labs and disinfection units. Although still in the research stage of their prevalence in healthcare settings, it is clear VOC ingestion has adverse effects on human health such as irritation to the eyes, nose, and throat; headaches and the loss of coordination; nausea; and damage to the liver, kidneys, or central nervous system. Some VOCs, benzene specifically, is a carcinogen. Implementing gas detection is therefore a must to safeguard everyone from harm.

Gas sensors should therefore be used within PACU, ICU, EMS, pre-hospital rescue, PAP therapy and HFNC therapy to monitor the gas levels of a range of equipment including ventilators, oxygen concentrators, oxygen generators and anaesthesia machines.

Standards and Certifications

The Care Quality Commission (CQC) is the organisation in England that regulates the quality and safety of the care delivered within all healthcare, medical, health and social care, and voluntary care settings across the country. The commission provides best practice details for the administering of oxygen to patients and the proper measurement and recording of levels, storage and training about the use of this and other medical gases.

The UK regulator for medical gases is the Medicines and Healthcare products Regulatory Agency (MHRA). They are an Executive Agency of the Department of Health and Social Care (DHSC) that ensures public and patient health and safety through the regulation of medicines, healthcare products and medical equipment in the sector. They set appropriate standards of safety, quality, performance and effectiveness, and ensure all equipment is used safely. Any company manufacturing medical gases requires a Manufacturer’s Authorisation issued by the MHRA.

In the USA The Food and Drug Association (FDA) regulates the certification process for the manufacture, sale and marketing of designated medical gases. Under Section 575 the FDA states that anyone marketing a medical gas for human or animal drug use without an approved application is breaking specified guidelines. The medical gases that require certification include oxygen, nitrogen, nitrous oxide, carbon dioxide, helium, 20 carbon monoxide, and medical air.

To find out more on the dangers in the medial and healthcare sector, visit our industry page for more information.

Why is gas detection crucial for drink dispense systems

Dispense gas known as beer gas, keg gas, cellar gas or pub gas is used in bars and restaurants as well as the leisure and hospitality industry. Using dispense gas in the process of dispensing beer and soft drinks is common practice worldwide. Carbon dioxide (CO2) or a mix of CO2 and nitrogen (N2) is used as a way of delivering a beverage to the ‘tap’. CO2 as a keg gas helps to keep the contents sterile and at the right composition aiding dispensing.

Gas Hazards

Even when the beverage is ready to deliver, gas-related hazards remain. Those arise in any activity at premises that contain compressed gas cylinders, due to the risk of damage during their movement or replacement. Additionally, once released there is a risk of increased carbon dioxide levels or depleted oxygen levels (due to higher levels of nitrogen or carbon dioxide).

CO2 occurs naturally in the atmosphere (0.04%) and is colourless and odourless. It is heavier than air and if it escapes, will tend to sink to the floor. CO2 collects in cellars and at the bottom of containers and confined spaces such as tanks and silos. CO2 is generated in large amounts during fermentation. It is also injected into beverages during carbonation – to add the bubbles. Early symptoms of exposure to high levels of carbon dioxide include dizziness, headaches, and confusion, followed by loss of consciousness. Accidents and fatalities can occur in extreme cases where a significant amount of carbon dioxide leaks into an enclosed or poorly ventilated volume. Without proper detection methods and processes in place, everyone entering that volume could be at risk. Additionally, personnel within surrounding volumes could suffer from the early symptoms listed above.

Nitrogen (N2) is often used in the dispensing of beer, particularly stouts, pale ales and porters, it also as well as preventing oxidisation or pollution of beer with harsh flavours. Nitrogen helps push the liquid from one tank to another, as well as offer the potential to be injected into kegs or barrels, pressurising them ready for storage and shipment. This gas is not toxic, but does displace oxygen in the atmosphere, which can be a danger if there is a gas leak which is why accurate gas detection is critical.

As nitrogen can deplete oxygen levels, oxygen sensors should be used in environments where any of these potential risks exist. When locating oxygen sensors, consideration needs to be given to the density of the diluting gas and the “breathing” zone (nose level). Ventilation patterns must also be considered when locating sensors. For example, if the diluting gas is nitrogen, then placing the detection at shoulder height is reasonable, however if the diluting gas is carbon dioxide, then the detectors should be placed at knee height.

The Importance of Gas Detection in Drinks Dispense Systems

Unfortunately, accidents and fatalities do occur in the drinks industry due to gas hazards. As a result, in the UK, safe workplace exposure limits are codified by the Health and Safety Executive (HSE) in documentation for the Control of Substances Hazardous to Health (COSHH). Carbon dioxide has an 8-hour exposure limit of 0.5% and a 15-minute exposure limit of 1.5% by volume. Gas detection systems help to mitigate gas risks and allow for drinks manufacturers, bottling plants and bar/pub cellar owners, to ensure the safety of personnel and demonstrate compliance to legislative limits or approved codes of practice.

Oxygen Depletion

The normal concentration of oxygen in the atmosphere is approximately 20.9% volume. Oxygen levels can be dangerous if they are too low (oxygen depletion). In the absence of adequate ventilation, the level of oxygen can be reduced surprisingly quickly by breathing and combustion processes.

Oxygen levels may also be depleted due to dilution by other gases such as carbon dioxide (also a toxic gas), nitrogen or helium, and chemical absorption by corrosion processes and similar reactions. Oxygen sensors should be used in environments where any of these potential risks exist. When locating oxygen sensors, consideration needs to be given to the density of the diluting gas and the “breathing” zone (nose level). Oxygen monitors usually provide a first-level alarm when the oxygen concentration has dropped to 19% volume. Most people will begin to behave abnormally when the level reaches 17%, and hence a second alarm is usually set at this threshold. Exposure to atmospheres containing between 10% and 13% oxygen can bring about unconsciousness very rapidly; death comes very quickly if the oxygen level drops below 6% volume.

Our Solution

Gas detection can be provided in the form of both fixed and portable detectors. Installation of a fixed gas detector can benefit a larger space such as cellars or plant rooms to provide continuous area and staff protection 24 hours a day. However, for worker safety in and around cylinder storage area and in spaces designated as a confined space, a portable detector can be more suited. This is especially true for pubs and beverage dispensing outlets for the safety of workers and those who are unfamiliar in the environment such as delivery drivers, sales teams or equipment technicians. The portable unit can easily be clipped to clothing and will detect pockets of COusing alarms and visual signals, indicating that the user should immediately vacate the area.

For more information about gas detection in drink dispense systems, contact our team.

The importance of Gas Detection in the Water and Wastewater Industry 

Water is vital to our daily lives, both for personal and domestic use and industrial/commercial applications. Whether a facility focuses on the production of clean, potable water or treating effluent, Crowcon is proud to serve a wide variety of water industry clients, providing gas detection equipment that keeps workers safe around the world. 

Gas Hazards 

Apart from common gas hazards known in the industry; methane, hydrogen sulphide, and oxygen, there are bi-product gas hazards and cleaning material gas hazards that occur from purifying chemicals such as ammonia, chlorine, chlorine dioxide or ozone that are used in the decontamination of the waste and effluent water, or to remove microbes from clean water. There is great potential for many toxic or explosive gases to exist as a result of the chemicals used in the water industry. And added to these are chemicals that may be spilled or dumped into the waste system from industry, farming or building work. 

Safety Considerations  

Confined Space Entry 

The pipelines used to transport water require regular cleaning and safety checks; during these operations, portable multi-gas monitors are used to protect the workforce. Pre-entry checks must be completed prior to entering any confined space and commonly O2, CO, H2S and CH4 are monitored. Confined spaces are small, so portable monitors must be compact and unobtrusive for the user, yet able to withstand the wet and dirty environments in which they must perform. Clear and prompt indication of any increase in gas monitored (or any decrease for oxygen) is of paramount importance – loud and bright alarms are effective in raising the alarm to the user. 

Risk assessment 

Risk assessment is critical, as you need to be aware of the environment that you are entering and thus working in. Therefore, understanding the applications and identifying the risks regarding all safety aspects. Focusing on gas monitoring, as part of the risk assessment, you need to be clear on what gases may be present.  

Fit for purpose 

There is a variety of applications within the water treatment process, giving the need to monitor multiple gases, including carbon dioxide, hydrogen sulphide, chlorine, methane, oxygen, ozone and chlorine dioxide. Gas detectors are available for single or multiple gas monitoring, making them practical for different applications as well as making sure that, if conditions change (such as sludge is stirred up, causing a sudden increase in hydrogen sulphide and flammable gas levels), the worker is still protected.  

Legislation   

European Commission Directive 2017/164 issued in January 2017, established a new list of indicative occupational exposure limit values (IOELVs). IOELV are health-based, non-binding values, derived from the most recent scientific data available and considering the availability of reliable measurement techniques. The list includes carbon monoxide, nitrogen monoxide, nitrogen dioxide, sulphur dioxide, hydrogen cyanide, manganese, diacetyl and many other chemicals. The list is based on Council Directive 98/24/EC that considers the protection of the health and safety of workers from the risks related to chemical agents in the workplace. For any chemical agent for which an IOELV has been set at Union level, Member States are required to establish a national occupational exposure limit value. They also are required to take into account the Union limit value, determining the nature of the national limit value in accordance with national legislation and practice. Member States will be able to benefit from a transitional period ending at the latest on 21 August 2023.  

The Health and Safety Executive (HSE) state that each year several workers will suffer from at least one episode of work-related illness. Although, most illnesses are relatively mild cases of gastroenteritis, there is also a risk for potentially fatal diseases, such as leptospirosis (Weil’s disease) and hepatitis. Even though these are reported to the HSE, there could be significant under-reporting as there is often failure to recognise the link between illness and work.  

Under domestic law of the Health and Safety at Work etc Act 1974, employers are responsible for ensuring the safety of their employees and others. This responsibility is reinforced by regulations. 

The Confined Spaces Regulations 1997 applies where the assessment identifies risks of serious injury from work in confined spaces. These regulations contain the following key duties: 

  • Avoid entry to confined spaces, e.g., by doing the work from the outside. 
  • If entry to a confined space is unavoidable, follow a safe system of work.
  • Put in place adequate emergency arrangements before the work start. 

The Management of Health and Safety at Work Regulations 1999 requires employers and self-employed people to carry out a suitable and sufficient assessment of the risks for all work activities for the purpose of deciding what measures are necessary for safety. For work in confined spaces this means identifying the hazards present, assessing the risks and determining what precautions to take. 

Our solutions

Elimination of these gas hazards is virtually impossible, so permanent workers and contractors must depend on reliable gas detection equipment to protect them. Gas detection can be provided in both fixed and portable forms. Our portable gas detectors protect against a wide range of gas hazards, these include T4x, Clip SGD, Gasman, Tetra 3,Gas-Pro, T4 and Detective+. Our fixed gas detectors are used in many applications where reliability, dependability and lack of false alarms are instrumental to efficient and effective gas detection, these include Xgard, Xgard Bright and IRmax. Combined with a variety of our fixed detectors, our gas detection control panels offer a flexible range of solutions that measure flammable, toxic and oxygen gases, report their presence and activate alarms or associated equipment, for the wastewater industry our panels include  Gasmaster.    

To find out more on the gas hazards in wastewater and water treatment visit our industry page for more information.  

Construction and Key Gas Challenges

Workers in the construction industry are at risk from a wide variety of hazardous gases including Carbon Monoxide (CO), Chlorine Dioxide (CLO2), Methane (CH4), Oxygen (O2), Hydrogen Sulphide (H2S) and Volatile Organic Compounds (VOC’s). 

Through the use of specific equipment, transport and the undertaking of sector specific activities, construction is a main contributor to the emission of toxic gases into the atmosphere, which also means construction personnel are more at risk of ingestion of these toxic contaminants. 

Gas challenges can be found in a variety of applications including building material storage, confined spaces, welding, trenching, land clearing and demolition. Ensuring the protection of workers within the construction industry from the multitude of hazards they may encounter is very important. With a specific focus on safeguarding teams from harm by, or the consumption of, toxic, flammable and poisonous gases. 

Gas Challenges 

Confined Space Entry 

Workers are more at risk from hazardous gases and fumes when they are operating within confined spaces.  Those entering these spaces need to be protected from the presence of flammable or/and toxic gases such as Volatile Organic Compounds (ppm VOC), Carbon Monoxide (ppm CO) and Nitrogen Dioxide (ppm NO2). Undertaking clearance measurements and pre-entry safety checks are paramount to ensure safety before a worker enters the space. Whilst in confined spaces gas detection equipment must be worn ongoingly in case of environmental shifts which make the space no longer safe to work in, due to a leak for example, and evacuation is needed. 

Trenching and Shoring 

During excavation works, such as trenching and shoring, construction workers are at risk of inhaling harmful gases generated by degradable materials present in certain ground types. If undetected, as well as posing risks to the construction workforce, they can also migrate through subsoil and cracks into the completed building and harm housing residents. Trenched areas can also have reduced oxygen levels, as well as contain toxic gases and chemicals. In these cases atmospheric testing should be performed in excavations that exceed four feet. There is also the risk of hitting utility lines when digging which can cause natural gas leaks and lead to worker fatalities. 

Building Material Storage  

Many of the materials used within construction can release toxic compounds (VOC’s). These can form in a variety of states (solid or liquid) and come from materials such as adhesives, natural and plywood’s, paint, and building partitions. Pollutants include phenol, acetaldehyde and formaldehyde. When ingested, workers can suffer from nausea, headaches, asthma, cancer and even death. VOCs are specifically dangerous when consumed within confined spaces, due to the risk of asphyxiation or explosion. 

Welding and Cutting 

Gases are produced during the welding and cutting process, including carbon dioxide from the decomposition of fluxes, carbon monoxide from the breakdown of carbon dioxide shielding gas in arc welding, as well as ozone, nitrogen oxides, hydrogen chloride and phosgene from other processes. Fumes are created when a metal is heated above its boiling point and then its vapours condense into fine particles, known as solid particulates. These fumes are obviously a hazard for those working in the sector and  illustrate the importance of reliable gas detection equipment to reduce exposure. 

Health and Safety Standards 

Organisations working in the construction sector can prove their credibility and safety operationally by gaining ISO certification. ISO (International Organisation for Standardisation) certification is split across multiple different certificates, all of which recognise varying elements of safety, efficiency and quality within an organisation. Standards cover best practice across safety, healthcare, transportation, environmental management and family. 

Although not a legal requirement, ISO standards are widely recognised as making the construction industry a safer sector by establishing global design and manufacturing definitions for almost all processes. They outline specifications for best practice and safety requirements within the construction industry from the ground up. 

In the UK, other recognised safety certifications include the NEBOSH, IOSH and CIOB courses which all offer varied health and safety training for those in the sector to further their understanding of working safely in their given field.  

To find out more on the gas challenges in construction visit our industry page for more information. 

Gas Hazards in Wastewater

Water is vital to our daily lives, both for personal and domestic use and industrial/commercial applications making water sites both numerous and widespread. Despite the quantity and location of water sites, only two environments predominate, and these are quite specific. They are clean water and wastewater. This blog details gas risks encountered at wastewater sites and how they may be mitigated. 

The wastewater industry is always wet, with temperatures between 4 and 20oc near the water and rarely far from that limited temperature range even away from the immediate location of the wastewater. 90%+ relative humidity, 12 +/- 8oc, atmospheric pressure, with multiple toxic and flammable gas hazards and the risk of oxygen depletion. Gas detectors must be chosen to suit the specific environment in which they operate, and whilst high humidity is generally challenging to all instrumentation, the constant pressure, moderate temperatures and narrow temperature range is a far greater benefit to safety instrumentation. 

Gas Hazards  

The main gases of concern in wastewater treatment plants are:

Hydrogen sulphide, methane and carbon dioxide are the by-products of the decomposition of organic materials that exist in the waste flows feeding the plant. The build-up of these gases may lead to the lack of oxygen, or in some cases, explosion when coupled with a source of ignition. 

Hydrogen sulphide (H2S)

Hydrogen sulphide is a common product of the biodegradation of organic matter; pockets of H2S can collect in rotting vegetation, or sewage itself, and be released when disturbed. Workers in sewerage and wastewater plants and pipework can be overcome by H2S, with fatal consequences. Its high toxicity is the main danger of H2S. Prolonged exposure to 2-5 parts per million (ppm) H2S can cause nausea and headaches and bring tears to the eyes. H2S is an anaesthetic, hence at 20ppm, symptoms include fatigue, headaches, irritability, dizziness, temporary loss of the sense of smell and impaired memory. Severity of symptoms increase with concentration as nerves shut down, through coughing, conjunctivitis, collapse and rapid unconsciousness. Exposure at higher levels can result in rapid knock down and death. Prolonged exposure to low levels of H2S may cause chronic illness or can also kill. Because of this, many gas monitors will have both instantaneous and TWA (Time-Weighted Average) alerts. 

Methane (CH4)

Methane is a colourless, highly flammable gas that is the primary component of natural gas, also referred to as biogas. It can be stored and/or transported under pressure as a liquid-gas. CH4 is a greenhouse gas that is also encountered in normal atmospheric conditions at a rate of approximately 2 parts per million (ppm). High exposure can lead to slurred speech, vision problems and memory loss. 

Oxygen (O2)

The normal concentration of oxygen in the atmosphere is approximately 20.9% volume. In the absence of adequate ventilation, the level of oxygen can be reduced surprisingly quickly by breathing and combustion processes. Olevels may also be depleted due to dilution by other gases such as carbon dioxide (also a toxic gas), nitrogen or helium, and chemical absorption by corrosion processes and similar reactions. Oxygen sensors should be used in environments where any of these potential risks exist. When locating oxygen sensors, consideration needs to be given to the density of the diluting gas and the “breathing” zone (nose level). 

Safety Considerations 

Risk assessment

Risk assessment is critical, as you need to be aware of the environment that you are entering and thus working in. Therefore, understanding the applications and identifying the risks regarding all safety aspects. Focusing on gas monitoring, as part of the risk assessment, you need to be clear on what gases may be present. 

Fit for purpose

There is a variety of applications within the water treatment process, giving the need to monitor multiple gases, including carbon dioxide, hydrogen sulphide, chlorine, methane, oxygen, ozone and chlorine dioxide. Gas detectors are available for single or multiple gas monitoring, making them practical for different applications as well as making sure that, if conditions change (such as sludge is stirred up, causing a sudden increase in hydrogen sulphide and flammable gas levels), the worker is still protected. 

Legislation  

European Commission Directive 2017/164 issued in January 2017, established a new list of indicative occupational exposure limit values (IOELVs). IOELV are health-based, non-binding values, derived from the most recent scientific data available and considering the availability of reliable measurement techniques. The list includes carbon monoxide, nitrogen monoxide, nitrogen dioxide, sulphur dioxide, hydrogen cyanide, manganese, diacetyl and many other chemicals. The list is based on Council Directive 98/24/EC that considers the protection of the health and safety of workers from the risks related to chemical agents in the workplace. For any chemical agent for which an IOELV has been set at Union level, Member States are required to establish a national occupational exposure limit value. They also are required to take into account the Union limit value, determining the nature of the national limit value in accordance with national legislation and practice. Member States will be able to benefit from a transitional period ending at the latest on 21 August 2023. 

The Health and Safety Executive (HSE) state that each year several workers will suffer from at least one episode of work-related illness. Although, most illnesses are relatively mild cases of gastroenteritis, there is also a risk for potentially fatal diseases, such as leptospirosis (Weil’s disease) and hepatitis. Even though these are reported to the HSE, there could be significant under-reporting as there is often failure to recognise the link between illness and work. 

Our solutions  

Elimination of these gas hazards is virtually impossible, so permanent workers and contractors must depend on reliable gas detection equipment to protect them. Gas detection can be provided in both fixed and portable forms. Our portable gas detectors protect against a wide range of gas hazards, these include T4x, Clip SGD, Gasman, Tetra 3, Gas-Pro, T4 and Detective+. Our fixed gas detectors are used where reliability, dependability and lack of false alarms are instrumental to efficient and effective gas detection, these include Xgard, Xgard Bright and IRmax. Combined with a variety of our fixed detectors, our gas detection control panels offer a flexible range of solutions that measure flammable, toxic and oxygen gases, report their presence and activate alarms or associated equipment, for the wastewater industry our panels include Gasmaster.   

To find out more on the gas hazards in wastewater visit our industry page for more information. 

Gold Mining: What gas detection do I need? 

How is gold mined?

Gold is a rare substance equating to 3 parts per billion of the earth’s outer layer, with most of the world’s available gold coming from Australia. Gold, like iron, copper and lead, is a metal. There are two primary forms of gold mining, including open-cut and underground mining. Open mining involves earth-moving equipment to remove waste rock from the ore body above, and then mining is conducted from the remaining substance. This process requires waste and ore to be struck at high volumes to break the waste and ore into sizes suitable for handling and transportation to both waste dumps and ore crushers. The other form of gold mining is the more traditional underground mining method. This is where vertical shafts and spiral tunnels transport workers and equipment into and out of the mine, providing ventilation and hauling the waste rock and ore to the surface.

Gas detection in mining

When relating to gas detection, the process of health and safety within mines has developed considerably over the past century, from morphing from the crude usage of methane wick wall testing, singing canaries and flame safety to modern-day gas detection technologies and processes as we know them. Ensuring the correct type of detection equipment is utilised, whether fixed or portable, before entering these spaces. Proper equipment utilisation will ensure gas levels are accurately monitored, and workers are alerted to dangerous concentrations within the atmosphere at the earliest opportunity.

What are the gas hazards and what are the dangers?

The dangers those working within the mining industry face several potential occupational hazards and diseases, and the possibility of fatal injury. Therefore, understanding the environments and hazards, they may be exposed to is important.

Oxygen (O2)

Oxygen (O2), usually present in the air at 20.9%, is essential to human life. There are three main reasons why oxygen poses a threat to workers within the mining industry. These include oxygen deficiencies or enrichment, as too little oxygen can prevent the human body from functioning leading to the worker losing consciousness. Unless the oxygen level can be restored to an average level, the worker is at risk of potential death. An atmosphere is deficient when the concentration of O2 is less than 19.5%. Consequently, an environment with too much oxygen is equally dangerous as this constitutes a greatly increased risk of fire and explosion. This is considered when the concentration level of O2 is over 23.5%

Carbon Monoxide (CO)

In some cases, high concentrations of Carbon Monoxide (CO) may be present. Environments that this may occur include a house fire, therefore the fire service are at risk of CO poisoning. In this environment there can be as much as 12.5% CO in the air which when the carbon monoxide rises to the ceiling with other combustion products and when the concentration hits 12.5% by volume this will only lead to one thing, called a flashover. This is when the whole lot ignites as a fuel. Apart from items falling on the fire service, this is one of the most extreme dangers they face when working inside a burning building. Due to the characteristics of CO being so hard to identify, I.e., colorless, odourless, tasteless, poisonous gas, it may take time for you to realise that you have CO poisoning. The effects of CO can be dangerous, this is because CO prevents the blood system from effectively carrying oxygen around the body, specifically to vital organs such as the heart and brain. High doses of CO, therefore, can cause death from asphyxiation or lack of oxygen to the brain. According to statistics from the Department of Health, the most common indication of CO poisoning is that of a headache with 90% of patients reporting this as a symptom, with 50% reporting nausea and vomiting, as well as vertigo. With confusion/changes in consciousness, and weakness accounting for 30% and 20% of reports.

Hydrogen sulphide (H2S)

Hydrogen sulphide (H2S) is a colorless, flammable gas with a characteristic odour of rotten eggs. Skin and eye contact may occur. However, the nervous system and cardiovascular system are most affected by hydrogen sulphide, which can lead to a range of symptoms. Single exposures to high concentrations may rapidly cause breathing difficulties and death.

Sulphur dioxide (SO2)

Sulphur dioxide (SO2) can cause several harmful effects on the respiratory systems, in particular the lung. It can also cause skin irritation. Skin contact with (SO2) causes stinging pain, redness of the skin and blisters. Skin contact with compressed gas or liquid can cause frostbite. Eye contact causes watering eyes and, in severe cases, blindness can occur.

Methane (CH4)

Methane (CH4) is a colorless, highly flammable gas with a primary component being that of natural gas. High levels of (CH4) can reduce the amount of oxygen breathed from the air, which can result in mood changes, slurred speech, vision problems, memory loss, nausea, vomiting, facial flushing and headache. In severe cases, there may be changes in breathing and heart rate, balance problems, numbness, and unconsciousness. Although, if exposure is for a longer period, it can result in fatality.

Hydrogen (H2)

Hydrogen Gas is a colorless, odourless, and tasteless gas which is lighter than air. As it is lighter than air this means it float higher than our atmosphere, meaning it is not naturally found, but instead must be created. Hydrogen poses a fire or explosion risk as well as an inhalation risk. High concentrations of this gas can cause an oxygen-deficient environment. Individuals breathing such an atmosphere may experience symptoms which include headaches, ringing in ears, dizziness, drowsiness, unconsciousness, nausea, vomiting and depression of all the senses

Ammonia (NH3)

Ammonia (NH3) is one of the most widely used chemicals globally that is produced both in the human body and in nature. Although it is naturally created (NH3) is corrosive which poses a serve concern for health. High exposure within the air can result in immediate burning to the eyes, nose, throat and respiratory tract. Serve cases can result in blindness.

Other gas risks

Whilst Hydrogen Cyanide (HCN) doesn’t persist within the environment, improper storage, handling and waste management can pose severe risk to human health as well as effects on the environment. Cyanide interferes with human respiration at cellular levels that can cause serve and acute effects, including rapid breathing, tremors, asphyxiation.

Diesel particulate exposure can occur in underground mines as a result of diesel-powered mobile equipment used for drilling and haulage. Although control measures include the use of low sulphur diesel fuel, engine maintenance and ventilation, health implication includes excess risk of lung cancer.

Products that can help to protect yourself

Crowcon provide a range of gas detection including both portable and fixed products all of which are suitable for gas detection within the mining industry.

To find out more visit our industry page here.

Hydrogen Electrolysis

At present the most commercially developed technology available to produce hydrogen is from electrolysis. Electrolysis is an optimistic course of action for carbon-free hydrogen production from renewable and nuclear resources. Water electrolysis is the decomposition of water (H2O) into its basic components, hydrogen (H2) and oxygen (O2), through passing electric current. Water is a complete source for producing hydrogen and the only by-product released during process is oxygen. This process uses electrical energy that can then be stored as a chemical energy in the form of hydrogen.

What is the Process?

To produce Hydrogen, Electrolysis converts electrical energy into chemical energy by storing electrons in stable chemical bonds. Like fuel cells, electrolysers are composed of an anode and a cathode separated by an aqueous electrolyte according to the type of electrolyte material involved and the ionic species it conducts. The electrolyte is an obligatory part as pure water does not have the ability to carry enough charge as it lacks ions. At the anode, water is oxidised into oxygen gas and hydrogen ions. While the cathode, water is reduced to hydrogen gas and hydroxide ions. At present there are three leading electrolysis technologies.

Alkaline Electrolysers (AEL)

This technology has been used on an industrial scale for over 100 years. Alkaline electrolysers operate via transport of hydroxide ions (OH-) through the electrolyte from the cathode to the anode with hydrogen being generated on the cathode side. Operating at 100°–150°C, Electrolysers use a liquid alkaline solution of sodium or potassium hydroxide (KOH) as the electrolyte. In this process the anode and cathode are separated using a diaphragm that prevents remixing. At the cathode, water is split to form H2 and releases hydroxide anions that pass through the diaphragm to recombine at the anode where oxygen is produced. As this is a well-established technology it is relatively low in cost of production as well as it provides a long-time stability. However, it does have a crossover in gases possibly compromising its degree of purity and requires the use of a corrosive liquid electrolyte.

Polymer Electrolyte Membrane Electrolysers (PEM)

Polymer Electrolyte Membrane is the latest technology to be commercially used to produce hydrogen. In a PEM electrolyser, the electrolyte is a solid specialty plastic material. PEM electrolysers operate at 70°–90°C. In this the process the water reacts at the anode to form oxygen and positively charged hydrogen ions (protons). The electrons flow through an external circuit and the hydrogen ions selectively move across the PEM to the cathode. At the cathode, the hydrogen ions combine with electrons from the external circuit to form hydrogen gas. Compared to AEL there are several advantages: the product gas purity is high in a partial load operation, the system design is compact and has a rapid system response. However, component cost is high and durability is low.

Solid Oxide Electrolysers (SOE)

AEL and PEM electrolysers are known as Low-Temperature Electrolysers (LTE). However, Solid oxide Electrolyser (SOE) is known as High-Temperature Electrolyser (HTE). This technology is still at development stage. In SOE, solid ceramic material is used as the electrolyte which conducts negatively charged oxygen ions (O2-) at elevated temperatures, generates hydrogen in a slightly different way. At a temperature about 700°–800°C steam at the cathode combines with electrons from the external circuit to form hydrogen gas and negatively charged oxygen ions. The oxygen ions pass through the solid ceramic membrane and react at the anode to form oxygen gas and generate electrons for the external circuit. Advantages of this technology is that it combines high heat and power efficiency as well as it producing low emissions at a relatively low cost. Although, due to the high heat and power required, start-up time takes longer.

Why is Hydrogen being considered as an alternative fuel?

Hydrogen is considered an alternative fuel under the Energy Policy Act of 1992. Hydrogen produced via electrolysis can contribute zero greenhouse gas emissions, depending on the source of the electricity used. This technology is being pursued to work with renewable (wind, solar, hydro, geothermal) and nuclear energy options to allow virtually zero greenhouse gas and other pollutant emissions. Although, this type of production will require the cost to be decreased significantly to be competitive with more mature carbon-based pathways such as natural gas reforming. There is potential for synergy with renewable energy power generation. Hydrogen fuel and electric power generation could be distributed and sited at wind farms, thereby allowing flexibility to shift production to best match resource availability with system operational needs and market factors.

How Long will my Gas Sensor Last?

Gas detectors are used extensively within many industries (such as water treatment, refinery, petrochemical, steel and construction to name a few) to protect personnel and equipment from dangerous gases and their effects. Users of portable and fixed devices will be familiar with the potentially significant costs of keeping their instruments operating safely over their operational life. Gas sensors are understood to provide a measurement of the concentration of some analyte of interest, such as CO (carbon monoxide), CO2 (carbon dioxide), or NOx (nitrogen oxide). There are two most used gas sensors within industrial applications: electrochemical for toxic gases and oxygen measurement, and pellistors (or catalytic beads) for flammable gases. In recent years, the introduction of both Oxygen and MPS (Molecular Property Spectrometer) sensors have allowed for improved safety.  

How do I know when my sensor has failed? 

There have been several patents and techniques applied to gas detectors over the past few decades which claim to be able to determine when an electrochemical sensor has failed. Most of these however, only infer that the sensor is operating through some form of electrode stimulation and might provide a false sense of security. The only sure method of demonstrating that a sensor is working is to apply test gas and measure the response: a bump test or full calibration. 

Electrochemical Sensor  

Electrochemical sensors are the most used in diffusion mode in which gas in the ambient environment enters through a hole in the face of the cell. Some instruments use a pump to supply air or gas samples to the sensor. A PTFE membrane is fitted over the hole to prevent water or oils from entering the cell. Sensor ranges and sensitivities can be varied in design by using different size holes. Larger holes provide higher sensitivity and resolution, whereas smaller holes reduce sensitivity and resolution but increase the range. 

Factors affecting Electrochemical Sensor Life 

There are three main factors that affect the sensor life including temperature, exposure to extremely high gas concentrations and humidity. Other factors include sensor electrodes and extreme vibration and mechanical shocks.  

Temperature extremes can affect sensor life. The manufacturer will state an operating temperature range for the instrument: typically -30˚C to +50˚C. High quality sensors will, however, be able to withstand temporary excursions beyond these limits. Short (1-2 hours) exposure to 60-65˚C for H2S or CO sensors (for example) is acceptable, but repeated incidents will result in evaporation of the electrolyte and shifts in the baseline (zero) reading and slower response. 

Exposure to extremely high gas concentrations can also compromise sensor performance. Electrochemical sensors are typically tested by exposure to as much as ten-times their design limit. Sensors constructed using high quality catalyst material should be able to withstand such exposures without changes to chemistry or long-term performance loss. Sensors with lower catalyst loading may suffer damage.  

The most considerable influence on sensor life is humidity. The ideal environmental condition for electrochemical sensors is 20˚Celsius and 60% RH (relative humidity). When the ambient humidity increases beyond 60%RH water will be absorbed into the electrolyte causing dilution. In extreme cases the liquid content can increase by 2-3 times, potentially resulting in leakage from the sensor body, and then through the pins. Below 60%RH water in the electrolyte will begin to de-hydrate. The response time may be significantly extended as the electrolyte or dehydrated. Sensor electrodes can in unusual conditions be poisoned by interfering gases that adsorb onto the catalyst or react with it creating by-products which inhibit the catalyst.  

Extreme vibration and mechanical shocks can also harm sensors by fracturing the welds that bond the platinum electrodes, connecting strips (or wires in some sensors) and pins together.  

‘Normal’ Life Expectancy of Electrochemical Sensor 

Electrochemical sensors for common gases such as carbon monoxide or hydrogen sulphide have an operational life typically stated at 2-3 years. More exotic gas sensor such as hydrogen fluoride may have a life of only 12-18 months. In ideal conditions (stable temperature and humidity in the region of 20˚C and 60%RH) with no incidence of contaminants, electrochemical sensors have been known to operate more than 4000 days (11 years). Periodic exposure to the target gas does not limit the life of these tiny fuel cells: high quality sensors have a large amount of catalyst material and robust conductors which do not become depleted by the reaction. 

Pellistor Sensor 

Pellistor sensors consist of two matched wire coils, each embedded in a ceramic bead. Current is passed through the coils, heating the beads to approximately 500˚C. Flammable gas burns on the bead and the additional heat generated produces an increase in coil resistance which is measured by the instrument to indicate gas concentration. 

Factors affecting Pellistor Sensor Life 

The two main factors that affect the sensor life include exposure to high gas concentration and poising or inhibition of the sensor. Extreme mechanical shock or vibration can also affect the sensor life. The capacity of the catalyst surface to oxidise the gas reduces when it has been poisoned or inhibited. Sensor life more than ten years is common in applications where inhibiting or poisoning compounds are not present. Higher power pellistors have greater catalytic activity and are less vulnerable to poisoning. More porous beads also have greater catalytic activity as their surface volume in increased. Skilled initial design and sophisticated manufacturing processes ensure maximum bead porosity. Exposure to high gas concentrations (>100%LEL) may also compromise sensor performance and create an offset in the zero/base-line signal. Incomplete combustion results in carbon deposits on the bead: the carbon ‘grows’ in the pores and creates mechanical damage. The carbon may however be burned off over time to re-reveal catalytic sites. Extreme mechanical shock or vibration can in rare cases also cause a break in the pellistor coils. This issue is more prevalent on portable rather than fixed-point gas detectors as they are more likely to be dropped, and the pellistors used are lower power (to maximise battery life) and thus use more delicate thinner wire coils. 

How do I know when my sensor has failed? 

A pellistor that has been poisoned remains electrically operational but may fail to respond to gas. Hence the gas detector and control system may appear to be in a healthy state, but a flammable gas leak may not be detected. 

Oxygen Sensor 

Long Life 02 Icon

Our new lead-free, long-lasting oxygen sensor does not have compressed strands of lead the electrolyte has to penetrate, allowing a thick electrolyte to be used which means no leaks, no leak induced corrosion, and improved safety. The additional robustness of this sensor allows us to confidently offer a 5-year warranty for added piece of mind. 

Long life-oxygen sensors have an extensive lifespan of 5-years, with less downtime, lower cost of ownership, and reduced environmental impact. They accurately measure oxygen over a broad range of concentrations from 0 to 30% volume and are the next generation of O2 gas detection. 

MPS Sensor  

MPS sensor provides advanced technology that removes the need to calibrate and provides a ‘True LEL (lower explosive limit)’ for reading for fifteen flammable gases but can detect all flammable gases in a multi-species environment, resulting in lower ongoing maintenance costs and reduced interaction with the unit. This reduces risk to personnel and avoids costly downtime. The MPS sensor is also immune to sensor poisoning.  

Sensor failure due to poisoning can be a frustrating and costly experience. The technology in the MPS™ sensor is not affected by contaminates in the environment. Processes that have contaminates now have access to a solution that operates reliably with fail safe design to alert operator to offer a peace of mind for personnel and assets located in hazardous environment. It is now possible to detect multiple flammable gases, even in harsh environments, using just one sensor that does not require calibration and has an expected lifespan of at least 5 years.