Water Treatment: The Need For Gas Detection In Detecting Chlorine

Water utility companies help provide clean water for drinking, bathing, and industrial and commercial uses. Wastewater treatment plants and sewage systems help keep our waterways clean and sanitary. Throughout the water industry, the risk of gas exposure and gas-associated hazards are considerable. Harmful gases can be found in water tanks, service reservoirs, pumping wells, treatment units, chemical storage and handling areas, sumps, sewers, overflows, boreholes, and manholes.

What Is Chlorine and Why Is It Dangerous

Chlorine (Cl2) gas appears yellow green in colour, used to sterilise drinking water. However, most chlorine is used in the chemical industry with typical applications including water treatment as well as within the plastics and cleaning agents. Chlorine gas can be recognised by its pungent, irritating odour, which is like the odour of bleach. The strong smell may provide adequate warning to people that they are exposed. Cl2 itself is not flammable, but it can react explosively or form flammable compounds with other chemicals such as turpentine and ammonia.

Chlorine gas can be recognised by its pungent, irritating odour, which is like the odour of bleach. The strong smell may provide adequate warning to people that they are exposed. Chlorine is toxic and if inhaled or drunk in concentrated quantities can prove fatal. If chlorine gas is released into the air, people may be exposed through their skin, eyes or through inhalation. Chlorine is not combustible however can react with most combustibles which poses a fire and explosion risk. It also reacts violently with organic compounds such as ammonia and hydrogen, causing potential fire and explosion.

What is Chlorine used for

Water chlorination began in Sweden during the 18th century with the purpose to remove odours from water. This method continued to be used solely to remove odours from water until 1890 when chlorine was identified as an effective substance for disinfection purposes. Chlorine was first used for disinfection purposes in Great Britain in the early 1900’s which over the next century chlorination became the more favoured method used for water treatment and is now used for water treatment in most countries worldwide.

Chlorination is a method that can disinfect water with high levels of microorganisms where either chlorine or substance that contain chlorine is used to oxidise and disinfect the water. Different processes can be used to achieve safe levels of chlorine in drinking water to prevent against waterborne diseases.

Why Do I Need To Detect Chlorine

Chlorine, being denser than air, tends to disperse throughout low-lying zones in poorly ventilated or stagnant areas. Although non-flammable by itself, chlorine can become explosive when in contact with substances like ammonia, hydrogen, natural gas, and turpentine.

The reaction of the human body to chlorine depends on several factors; the concentration of chlorine present in air, the duration and frequency of exposure. Effects are also dependant on the health of an individual and the environmental conditions during exposure. For example, when small amounts of chlorine are breathed in during short time periods, this can affect the respirational system. Other effects vary from coughing and chest pains, to fluid accumulation in the lungs, skin and eye irritations. To note, these effects do not take place under natural conditions.

Our solution

The use of a chlorine gas detector provides detection and measurement of this substance in the air to prevent any accidents. Equipped with an electrochemical chlorine sensor, a fixed, or portable, single gas or multi gas Cl2 detector will monitor chlorine concentration in the ambient air. We have a wide range of gas detection products to help you meet the demands of the water treatment industry.

Fixed gas detectors are ideal to monitor and alert water treatment plant managers and workers to the presence of all the major gas hazards. The fixed gas detectors can be permanently positioned inside water tanks, sewage systems, and any other areas that present a high risk of gas exposure.

Portable gas detectors are lightweight and robust wearable gas detection devices. The portable gas detectors sound and signal an alert to workers when gas levels are reaching dangerous concentrations, allowing action to be taken. Our Gasman, and Gas-Pro portables have reliable chlorine sensor options, for single gas monitoring and multi-gas monitoring.

Control panels can be applied to coordinate numerous fixed gas detection devices and provide a trigger for alarm systems.

For more information about gas detection within water and water treatment, or to explore more of Crowcon’s gas detection range, please get in touch.

Our Partnership with One Gasmaster Sdn. Bhd.

Providing the full package from sale to commissioning is crucial for service providers. Combining this with experience, technical support, product knowledge and expertise, ensures customers are supplied safe, reliable and suitable equipment to meet their requirements.

Background

Established in 1998, and based in in Selangor, Malaysia, One Gasmaster Sdn. Bhd. is an authorised distributor of Crowcon gas detectors in Malaysia. One Gasmaster specialise in various sectors, including oil and gas and petrochemical, as well as general industries like food and beverage, water treatment plants, chemical, semiconductors and car park monitoring, among others. As one of the pioneers in providing gas detection solutions in Malaysia, they tailor bespoke end-to-end services and deliver high-quality products and work. In 2011, One Gasmaster became an accredited gas detector and analyser calibration service provider.  

One Gasmaster’s primary focus lies in providing comprehensive environmental monitoring and industrial hygiene solutions that utilise an extensive array of detection tools, including both our fixed and portable detectors. 

Views on gas detection

Gas detection equipment plays a crucial role in ensuring the safety of workers and the environment by detecting and alerting the presence of hazardous gases in most industries. Our range of gas detection equipment includes portable detectors and fixed systems offering flexibility and comprehensive coverage for different safety and operational needs. Aiming to develop a greener and more sustainable planet for future generations, One Gasmaster mitigate their environmental impact by detecting and monitoring the release of harmful gases and overall air quality. As a certified gas detection solutions provider, One Gasmaster recognise the importance of open communication and transparency in our line of work. We prioritise long-term partnerships with their customers, fostering a collaborative relationship based on trust, reliability, and mutual growth. “To provide the best service possible, we strongly believe in working closely with every customer. By understanding their unique needs, we can ensure that we supply the right equipment and offer customised solutions specifically tailored to meet their requirements and safety protections. Our goal is to deliver a personalized experience and exceed their expectations.” – Sales Director of Gas Detection Division, Bernard Lim. 

Working with Crowcon

“We have been working with Crowcon since 1996 and were officially appointed as an exclusive distributor in Malaysia from 1998 until now. Their technical support Engineers are trained and certified by Crowcon to perform testing and commissioning and troubleshooting for Crowcon’s range of products. Our calibration certificates are accredited with ISO 17025.” – Sales Director of Gas Detection Division, Bernard Lim.  

Our partnership allows One Gasmaster to distribute our products in Malaysia within the oil and gas, retail, and other various sectors in Malaysia. One Gasmaster’s relentless pursuit of improvement positions them as a trusted partner, delivering superior services and contributing to enhanced customer experience. 

Molecular Property Spectrometer™ Flammable Gas Sensors

Developed by NevadaNano, Molecular Property Spectrometer™ (MPS™) sensors represent the next generation of flammable gas detectors. MPS™ can quickly detect over 15 characterised flammable gases at once. Until recently, anyone who needed to monitor flammable gases had to select either a traditional flammable gas detector containing a pellistor sensor calibrated for a specific gas, or containing an infra-red (IR) sensor which also varies in output according to the flammable gas being measured, and hence needs to be calibrated for each gas. While these remain beneficial solutions, they are not always ideal. For example, both sensor types require regular calibration and the catalytic pellistor sensors also need frequent bump testing to ensure they have not been damaged by contaminants (known as ‘sensor poisoning’ agents) or by harsh conditions. In some environments, sensors must frequently be changed, which is costly in terms of both money and downtime, or product availability. IR technology cannot detect hydrogen – which has no IR signature, and both IR and pellistor detectors sometimes incidentally detect other (i.e., non-calibrated) gases, giving inaccurate readings that may trigger false alarms or concern operators.  

Building on over 50 years of gas expertise, Crowcon is pioneering advanced MPS™ sensor technology that detects and accurately identifies over 15 different flammable gases in one device. Now available in Crowcon’s flagship Xgard Bright fixed detector and portable detectors Gasman and T4x. 

Benefits of Molecular Property Spectrometer™ Flammable Gas Sensors 

The MPS™ sensor delivers key features that provide real world tangible benefits to operator and hence workers. These include:  

No calibration 

When implementing a system containing a fixed head detector, it is common practice to service on a recommended schedule defined by manufacturer. This entails ongoing regular costs as well potentially disrupting production or process in order service or even gain access to detector or multiple detectors. There may also be a risk to personnel when detectors are mounted in particularly hazardous environments. Interaction with an MPS sensor is less stringent because there are no unrevealed failure modes, provided air is present. It would be wrong to say there is no calibration requirement. One factory calibration, followed by a gas test when commissioning is sufficient, because there is an internal automated calibration being performed every 2 seconds throughout the working life of the sensor. What is really meant is – no customer calibration.  

Multi species gas – ‘True LEL’™ 

Many industries and applications use or have as a by-product multiple gases within the same environment. This can be challenging for traditional sensor technology which can detect only a single gas that they were calibrated for at the correct level and can result in inaccurate reading and even false alarms which can halt process or production if another flammable gas type is present. The lack of response or over response frequently faced in multi gas environments can be frustrating and counterproductive compromising safety of best user practices. The MPS™ sensor can accurately detect multiple gases at once and instantly identify gas type. Additionally, the MPS™ sensor has a on board environmental compensation and does not require an externally applied correctional factor. Inaccurate readings and false alarms are a thing of the past. 

No sensor poisoning 

In certain environments traditional sensor types can be under risk of poisoning. Extreme pressure, temperature, and humidity all have the potential to damage sensors whist environmental toxins and contaminants can ‘poison’ sensors, leading to severely compromised performance. Detectors in environments where poisons or inhibitors may be encountered, regular and frequent testing is the only way to ensure that performance is not being degraded. Sensor failure due to poisoning can be a costly experience. The technology in the MPS™ sensor is not affected by contaminates in the environment. Processes that have contaminates now have access to a solution that operates reliably with fail safe design to alert operator to offer a peace of mind for personnel and assets located in hazardous environment. Additionally, the MPS sensor is not harmed by elevated flammable gas concentrations, which may cause cracking in conventional catalytic sensor types for example. The MPS sensor carries on working.  

Hydrogen (H2) 

The usage of Hydrogen in industrial processes is increasing as the focus to find a cleaner alternative to natural gas usage. Detection of Hydrogen is currently restricted to pellistor, metal oxide semiconductor, electrochemical and less accurate thermal conductivity sensor technology due to Infra-Red sensors inability to detect Hydrogen. When faced with challenges highlighted above in poisoning or false alarms, the current solution can leave operator with frequent bump testing and servicing in addition to false alarm challenges. The MPS™ sensor provides a far better solution for Hydrogen detection, removing the challenges faced with traditional sensor technology. A long-life, relatively fast responding hydrogen sensor that does not require calibration throughout the life cycle of the sensor, without the risk of poisoning or false alarms, can significantly save on total cost of ownership and reduces interaction with unit resulting in peace of mind and reduced risk for operators leveraging MPS™ technology. All of this is possible thanks to MPS™ technology, which is the biggest breakthrough in gas detection for several decades.  

How does the Molecular Property Spectrometer™ Flammable Gas Sensor work 

A micro-electromechanical system (MEMS) transducer—comprising an inert, micrometer-scale membrane with an embedded heater and thermometer—measures changes in the thermal properties of the air and gases in its proximity. Multiple measurements, akin to a thermal “spectrum,” as well as environmental data are processed to classify the type and concentration of flammable gas(es) present, including gas mixtures. This is called  TrueLEL. 

  1. Gas rapidly defuses through the sensor’s mesh screen and into the sensor chamber, entering the MEMS sensor module.​ 
  2. The joule heater rapidly heats the hot plate.​ 
  3. Real-time environmental conditions (temperature, pressure and humidity) are measured by the integrated environmental sensor.  
  4. The energy required to heat the sample is precisely measured using a resistance thermometer.​ 
  5. The gas level, corrected for gas category and environmental  conditions, is calculated and output to the gas detector. 

MPS in our Products 

Xgard Bright

Many industries and applications use or have as a by-product multiple gases within the same environment. This can be challenging for traditional sensor technology which can detect only a single gas that they were calibrated for at the correct level and can result in inaccurate reading. 

Xgard Bright with MPS™ sensor technology provides a ‘TrueLEL™’reading for all flammable gases in any multi species environment without requiring calibrationor scheduled maintenance over its 5-year+ lifecycle, reducing interruptions to your operations and increases up-time. This in turn reduces the interaction with the detector resulting in a lower total cost of ownership over the sensor life cycle and reduced risk to personnel and production output to complete regular maintenance. Xgard Bright MPS™ is tailor-made for Hydrogen detection, with the MPS™ sensor, only one device is needed saving space without compromising on safety. 

Gasman

Our MPS™ sensor technology has been designed for today’s multi-gas environments, resists contamination and prevents sensor poisoning. Give your teams peace of mind with a purpose-built device in any environment. The MPS technology in our portable gas monitors detects hydrogen and common hydrocarbons automatically in one sensor. Our reliable and dependable Gasman with industry leading sensor technology that your applications demand.

Gasman MPS™ provides a ‘TrueLEL™’reading for all flammable gases in any multi species environment without requiring calibration or scheduled maintenance over its 5-year+ lifecycle, reducing interruptions to your operations and increases up-time. Being poison resistant and withbattery life doubled, operators are more likely to never be without a device. Gasman MPS™ is ATEX Zone 0 approved enabling operators to enter an area in which an explosive gas atmosphere is present continuously or for long periods without fear their Gasman will ignite their environment. 

T4x

T4xAs the industry is continuously demanding improvements in safety, reduced environmental impact, and lower cost of ownership; our reliable and dependable portable T4x gas monitor meets those needs with its industry-leading sensor technologies. It is specifically designed to meet the demands of your applications. 

T4x helps operations teams focus on more value adding tasks by reducing the number of sensor replacementsby 75% and increasing sensor reliability.    

Through ensuring compliance across site T4x helps health and safety managers by eliminating the need to ensure each device is calibratedfor the relevant flammable gas as it accurately detects over 15 at once. Being poison resistant and withbattery life doubled, operators are more likely to never be without a device.​ T4x reduces the 5-year total cost of ownership by over 25% and saves 12g of lead per detector which makes it much easier to recycle at the end of its life, and better for the planet​. 

For more on Crowcon, visit https://www.crowcon.com or for more on MPS visit https://www.crowcon.com/mpsinfixed/

The importance of gas detection in the Petrochemical Industry

Closely linked to oil and gas, the petrochemicals industry takes raw materials from refining and gas processing and, through chemical process technologies, converts them into valuable products. In this sector, the organic chemicals produced in the largest volumes are methanol, ethylene, propylene, butadiene, benzene, toluene and xylenes (BTX). These chemicals are the building blocks of many consumer goods including plastics, clothing fabric, construction materials, synthetic detergents and agrichemical products.

Potential Hazards

Exposure to potential hazardous substances is more likely to occur during shutdown or maintenance work as these are a deviation from the refinery’s routine operations. As these deviations are out of normal routine, care should be exercised at all times to avoid the inhalation of solvent vapours, toxic gases, and other respiratory contaminants. The assistance of constant automated monitoring is helpful in determining the presence of solvents or gases, allowing their associated risks to be mitigated. This includes warning systems such as gas and flame detectors, supported by emergency procedures, and permit systems for any kind of potentially dangerous work.

The petroleum industry is split into upstream, midstream and downstream and these are defined by the nature of the work that takes place in each area. Upstream work is typically known as the exploration and production (E&P) sector. Midstream refers to the transportation of products through pipelines, transit and oil tankers as well as the wholesale marketing of petroleum-based products. The downstream sector refers to the refining of petroleum crude oil, the processing of raw natural gas and the marketing and distribution of finished products.

Upstream

Fixed and portable gas detectors are needed to protect plant and personnel from the risks of flammable gas releases (commonly methane) as well as from high levels of H2S, particularly from sour wells. Gas detectors for O2 depletion, SO2 and volatile organic compounds (VOCs) are required items of personal protection equipment (PPE), which is usually highly visible colour and worn near breathing space. Sometimes HF solution is used as a scouring agent. Key requirements for gas detectors are rugged and reliable design and long battery life. Models with design elements that support easy fleet management and compliance obviously have an advantage. You can read about VOC risk and Crowcon’s solution in our case study.

Midstream

Fixed monitoring of flammable gases situated close to pressure relief devices, filling and emptying areas is necessary to deliver early warning of localised leaks. Multi-gas portable monitors must be used to maintain personal safety, especially during work in confined spaces and supporting hot work permit area testing. Infrared technology in flammable gas detection supports purging with the ability to operate in inert atmospheres and delivers reliable detection in areas where pellistor type detectors would fail, due to poisoning or volume level exposure. You can read more on how infrared detection works in our blog and read our case study of infrared monitoring in refinery settings in Southeast Asia.

Portable laser methane detection (LMm) allows users to pin-point leaks at distance and in hard-to-reach areas, reducing the need for personnel to enter potentially dangerous environments or situations while performing routine or investigative leak monitoring. Using LMm is a quick and effective way to check areas for methane with a reflector, from up to 100m away. These areas include closed buildings, confined spaces and other difficult-to-reach areas such as above-ground pipelines that are near water or behind fences.

Downstream

In downstream refining, the gas risks may be almost any hydrocarbon, and may also include hydrogen sulphide, sulphur dioxide and other by-products. Catalytic flammable gas detectors are one of the oldest flammable gas detector types. They work well, but must have a bump testing station, to ensure each detector responds to the target gas and is still functional. The ongoing demand to reduce facility down-time whilst ensuring safety, especially during shutdown and turnaround operations, means that gas detection manufacturers must deliver solutions offering ease of use, straightforward training and reduced maintenance times, along with local service and support.

During plant shutdowns, processes are stopped, items of equipment are opened and checked and the number of people and moving vehicles at the site is many times higher than normal. Many of the processes undertaken will be hazardous and require specific gas monitoring. For example, welding and tank cleaning activities require area monitors as well as personal monitors to protect those on site.

Confined space

Hydrogen sulphide (H2S) is a potential problem in the transport and storage of crude oil. The cleaning of storage tanks presents a high hazard potential. Many confined-space entry problems can occur here, including oxygen deficiency resulting from previous inerting procedures, rusting, and oxidation of organic coatings. Inerting is the process of reducing the oxygen levels in a cargo tank to remove the oxygen element required for ignition. Carbon monoxide can be present in the inerting gas. In addition to H2S, depending on the characteristics of the product previously stored in the tanks, other chemicals that may be encountered include metal carbonyls, arsenic, and tetraethyl lead.

Our Solutions

Elimination of these gas hazards is virtually impossible, so permanent workers and contractors must depend on reliable gas detection equipment to protect them. Gas detection can be provided in both fixed and portable forms. Our portable gas detectors protect against a wide range of gas hazards, these include Clip SGD, Gasman, Tetra 3,Gas-Pro, T4, Gas-Pro TK and Detective+. Our fixed gas detectors are used in many applications where reliability, dependability and lack of false alarms are instrumental to efficient and effective gas detection, these include Xgard, Xgard Bright, Fgard IR3 Flame Detector and IRmax. Combined with a variety of our fixed detectors, our gas detection control panels offer a flexible range of solutions that measure flammable, toxic and oxygen gases, report their presence and activate alarms or associated equipment, for the petrochemical industry our panels include Addressable Controllers, Vortex and Gasmonitor.

To find out more on the gas hazards in the petrochemical industry visit our industry page for more information.

The importance of Gas Detection in the Water and Wastewater Industry 

Water is vital to our daily lives, both for personal and domestic use and industrial/commercial applications. Whether a facility focuses on the production of clean, potable water or treating effluent, Crowcon is proud to serve a wide variety of water industry clients, providing gas detection equipment that keeps workers safe around the world. 

Gas Hazards 

Apart from common gas hazards known in the industry; methane, hydrogen sulphide, and oxygen, there are bi-product gas hazards and cleaning material gas hazards that occur from purifying chemicals such as ammonia, chlorine, chlorine dioxide or ozone that are used in the decontamination of the waste and effluent water, or to remove microbes from clean water. There is great potential for many toxic or explosive gases to exist as a result of the chemicals used in the water industry. And added to these are chemicals that may be spilled or dumped into the waste system from industry, farming or building work. 

Safety Considerations  

Confined Space Entry 

The pipelines used to transport water require regular cleaning and safety checks; during these operations, portable multi-gas monitors are used to protect the workforce. Pre-entry checks must be completed prior to entering any confined space and commonly O2, CO, H2S and CH4 are monitored. Confined spaces are small, so portable monitors must be compact and unobtrusive for the user, yet able to withstand the wet and dirty environments in which they must perform. Clear and prompt indication of any increase in gas monitored (or any decrease for oxygen) is of paramount importance – loud and bright alarms are effective in raising the alarm to the user. 

Risk assessment 

Risk assessment is critical, as you need to be aware of the environment that you are entering and thus working in. Therefore, understanding the applications and identifying the risks regarding all safety aspects. Focusing on gas monitoring, as part of the risk assessment, you need to be clear on what gases may be present.  

Fit for purpose 

There is a variety of applications within the water treatment process, giving the need to monitor multiple gases, including carbon dioxide, hydrogen sulphide, chlorine, methane, oxygen, ozone and chlorine dioxide. Gas detectors are available for single or multiple gas monitoring, making them practical for different applications as well as making sure that, if conditions change (such as sludge is stirred up, causing a sudden increase in hydrogen sulphide and flammable gas levels), the worker is still protected.  

Legislation   

European Commission Directive 2017/164 issued in January 2017, established a new list of indicative occupational exposure limit values (IOELVs). IOELV are health-based, non-binding values, derived from the most recent scientific data available and considering the availability of reliable measurement techniques. The list includes carbon monoxide, nitrogen monoxide, nitrogen dioxide, sulphur dioxide, hydrogen cyanide, manganese, diacetyl and many other chemicals. The list is based on Council Directive 98/24/EC that considers the protection of the health and safety of workers from the risks related to chemical agents in the workplace. For any chemical agent for which an IOELV has been set at Union level, Member States are required to establish a national occupational exposure limit value. They also are required to take into account the Union limit value, determining the nature of the national limit value in accordance with national legislation and practice. Member States will be able to benefit from a transitional period ending at the latest on 21 August 2023.  

The Health and Safety Executive (HSE) state that each year several workers will suffer from at least one episode of work-related illness. Although, most illnesses are relatively mild cases of gastroenteritis, there is also a risk for potentially fatal diseases, such as leptospirosis (Weil’s disease) and hepatitis. Even though these are reported to the HSE, there could be significant under-reporting as there is often failure to recognise the link between illness and work.  

Under domestic law of the Health and Safety at Work etc Act 1974, employers are responsible for ensuring the safety of their employees and others. This responsibility is reinforced by regulations. 

The Confined Spaces Regulations 1997 applies where the assessment identifies risks of serious injury from work in confined spaces. These regulations contain the following key duties: 

  • Avoid entry to confined spaces, e.g., by doing the work from the outside. 
  • If entry to a confined space is unavoidable, follow a safe system of work.
  • Put in place adequate emergency arrangements before the work start. 

The Management of Health and Safety at Work Regulations 1999 requires employers and self-employed people to carry out a suitable and sufficient assessment of the risks for all work activities for the purpose of deciding what measures are necessary for safety. For work in confined spaces this means identifying the hazards present, assessing the risks and determining what precautions to take. 

Our solutions

Elimination of these gas hazards is virtually impossible, so permanent workers and contractors must depend on reliable gas detection equipment to protect them. Gas detection can be provided in both fixed and portable forms. Our portable gas detectors protect against a wide range of gas hazards, these include T4x, Clip SGD, Gasman, Tetra 3,Gas-Pro, T4 and Detective+. Our fixed gas detectors are used in many applications where reliability, dependability and lack of false alarms are instrumental to efficient and effective gas detection, these include Xgard, Xgard Bright and IRmax. Combined with a variety of our fixed detectors, our gas detection control panels offer a flexible range of solutions that measure flammable, toxic and oxygen gases, report their presence and activate alarms or associated equipment, for the wastewater industry our panels include  Gasmaster.    

To find out more on the gas hazards in wastewater and water treatment visit our industry page for more information.  

Our Partnership with Thorne and Derrick

Background 

Founded in 1985, Thorne & Derrick (T&D) and with offices in Chester-Le-Street and Bristol are leaders in product development and problem solving in hazardous areas. T&D distribute our full range of gas detection products, supplying industries such as utilities, power, renewable energy, construction, rail, offshore, oil, gas and petrochemical industries. Thorne & Derrick provide constancy to their global customer portfolio through high responsivity and are absolutely committed to providing world-class customer service. 

Views on gas detection

Portable gas detection is an essential piece of equipment when detecting toxic or explosive gases and measuring gas concentration. T&D put the customers needs at the forefront, by providing workers in all sectors with safety products that are correctly certified and efficient. This helps to alleviate the risk of working in hazardous areas alongside Thorne & Derrick’s provision of certified and safe portable & temporary lighting, power, heat and ventilation to ensure workers can carry out maintenance, repair and installation works safely. 

Through expertise and confidence given by their sales engineers as well as listening to the customer’s requirements, T&D confidently provide solutions that are fully compliant with regulations and that are tailored to what the customer needs. 

Working with Crowcon

A 10-year partnership and continued communication have allowed Thorne & Derrick to supply their customers with gas detection solutions and aim to continue to educate and meet legislation. “We’re thrilled to be working alongside T&D to provide gas detection to support a wide range of applications of applications in numerous industries”- Natalie Lundie, Marketing Lead. With over 35 years of experience, T&D delivers effective gas detection solutions providing confidence for those working in hazardous areas.  

What are the dangers of gas in telecommunications?

The telecommunication industry contains includes cable providers, internet service providers, satellite providers and telephone providers and confined spaces. Even simple above ground termination boxes may contain gas hazards generated from the cable runs underground. Gases such as methane, carbon dioxide and hydrogen sulphide can run through cable trunking accumulating in termination boxes and manifesting as hazards when the termination box is opened.

The risk of danger occurs when a worker is sent to carry out tasks involving opening up of enclosed volumes that may not have been accessed for a period of time. All telecommunications companies have these in abundance.

What are the Dangers?

Those working in the telecommunications industry are at risk from a variety of gaseous dangers, many of which could cause harm to their health and safety. Though less obvious, these risks should be taken as seriously as falls from heights or electrocution, and they require a similar level of training. A worker must not climb to an elevated position without a harness, similarly they shouldn’t be accessing confined spaces without appropriate confined space training. Awareness of the dangers present and minimising the risks that could lead to adverse effects is a well-known safety principle. Training and proper PPE can help protect workers from these hazards.

Gas Hazards and Risks

As there are many confined spaces in the telecommunication industry workers are at risk from the presence of hazardous and toxic gases there. Hazardous gases can also be linked to seemingly simple above-ground termination boxes. Gases such as methane, carbon dioxide and hydrogen sulphide sometimes travel through the cable trunking, and therefore, when the termination box is opened, a build-up of these gases can be released.

Enclosed or partially enclosed spaces with high levels of methane in the air reduce the amount of oxygen available to breathe and therefore can cause mood changes, speech and vision problems, memory loss, nausea, sickness, facial flushing and headaches. In more severe cases and prolonged exposure, there may be changes in breathing and heart rate, balance problems, numbness, and unconsciousness. There is also a risk of fire as methane is highly flammable.

Carbon monoxide (CO) consumption also poses serious health issues to workers, with those ingesting the toxic substance facing flu-like symptoms, chest pain, confusion, fainting arrhythmias, seizures, or even worse health effects for high or long lasting exposures. Hydrogen sulphide (H2S) poisoning causes similar issues, as well as delirium, tremors, convulsions, and skin and eye irritation. Carbon dioxide is an asphyxiant gas that can displace oxygen and hance dizziness.

Our solution

Gas detection can be provided in both fixed and portable forms. Our portable gas detectors protect against a wide range of gas hazards, these include Tetra 3 and T4. Our fixed gas detectors are used where reliability, dependability and lack of false alarms are instrumental to efficient and effective gas detection, these include Xgard and Xgard Bright. Combined with a variety of our fixed detectors, our gas detection control panels offer a flexible range of solutions which are able to measure flammable, toxic and oxygen gases, report their presence and activate alarms or associated equipment, for the telecommunication industry our panels include Gasmaster.

To find out more on the dangers of gas hazards in telecommunication visit our industry page for more information.

Transportation and Key Gas Challenges 

The transportation sector is one of the largest industries in the world, spanning a variety of applications. The sector offers services concerned with the movement of people and cargo of all types, across air freight and logistics, airlines and airport services, road and rail, transportation infrastructure, trucking, highways, rail tracks, and marine ports and services.

Gas hazards during transportation  

The transport of dangerous goods is regulated in order to prevent, accidents involving people or property, damage to the environment. There a numerous gas hazards including the transportation of hazardous material, air conditioning emissions, cabin combustion and hangar leaks. 

The transportation of hazardous materials poses a risk to those involved. There are nine classification areas specified by the United Nations (UN) including explosives, gases, flammable liquids and solids, oxidising substances, toxic substances, radioactive materials, corrosive substances and miscellaneous goods. With the risk of an accident occurring being more likely when transporting these materials. Although the biggest cause for concern within the industry being the transportation of non-flammable non-toxic gas is asphyxiation. As a slow leak in a storage container can drain all of the oxygen in the air and cause the individuals in the environment to suffocate. 

Leaks within aircraft hangars and fuel storage areas of highly explosive aviation fuel is an area that must be monitored to prevent fires, equipment damage, and at the worst fatalities. It is essential to choose a suitable gas detection solution that focuses on the aircraft rather than the aircraft hangar, avoids false alarms, and can monitor large areas. 

Not only is it the external environment that faces gas risks in transportation, those working in the sector also face similar challenges. Air conditioning emissions poses a gas hazard threat due to the burning of fossil fuels leading to a subsequent emission of carbon monoxide (CO). high levels of CO in a confined area such as a vehicle cabin, of more than the normal level (30ppm) or an oxygen level below normal (19%) can result in dizziness, feeling and being sick, tiredness and confusion, stomach pain, shortness of breath and difficulty breathing. Therefore, proper ventilation in these spaces with the assistance of a gas detector is paramount to ensuring the safe of those working in the transportation industry. 

Similarly, in the air sector cabin combustion and fuselage fires, in the central portion of an airplane, poses a real threat. Although flame retardant materials are applied, if a fire does start the cabin’s trim and fittings can still generate toxic gases and vapours that could be more dangerous than the fire itself. Inhalation of harmful gases caused by a fire in these environments tend to be the main direct cause of fatalities.

Transportation Standards and Certifications 

Each mode of transport, (road, rail, air, sea and inland waterway) has its own regulations but they are generally harmonized with the United Nations Economic Commission for Europe (UNECE). The Hazardous Materials Transportation Act (HMTA), enacted in the USA in 1975, states that regardless of the type of transportation, any company whose goods fall into one of the nine categories specified as hazardous by the UN, must comply with the regulations or risk fines and penalties. 

Those working in the transport sector in the UK must comply with the requirements laid out in the UN Model Regulations which assigns each dangerous substance or article a specific class that correlates how dangerous it is. It does this via the packing group (PG) classification, according to PG I, PG II or PG III. 

From an European standpoint the International Carriage of Dangerous Goods by Road (ADR) governs the regulations on how to classify, pack, label and certify dangerous goods. It also comprises vehicle and tank requirements and other operational requirements. The Carriage of Dangerous Goods and Use of Transportable Pressure Equipment Regulations (2009) also is relevant in England, Wales and Scotland. 

Other relevant regulations include the International Carriage of Dangerous Goods by Inland Navigation (ADN), the International Maritime Dangerous Goods (IMDG) and The International Civil Aviation Organization’s (ICAO) Technical Instruction.

Our solution 

Gas detection can be provided in both fixed and portable forms. Our portable gas detectors protect against a wide range of gas hazards, these include T4x, Clip SGD, Gasman, Tetra 3, Gas-pro, and T4. Our fixed gas detectors are used where reliability, dependability and lack of false alarms are instrumental to efficient and effective gas detection, these include Xgard, Xgard Bright, and IRmax. Combined with a variety of our fixed detectors, our gas detection control panels offer a flexible range of solutions which are able to measure flammable, toxic and oxygen gases, report their presence and activate alarms or associated equipment, for the transportation industry our panels include Gasmaster and Vortex 

To find out more on the dangers of gas hazards in transportation visit our industry page for more information.  

Our Partnership with CSL

Background

CSL is one of the largest providers of gas detection in the Irish market and the leading provider of plant and supporting services to the water, wastewater, environmental and industrial sectors. With headquarters in County Carlow, Republic of Ireland, CSL provide 24 hours, 7 days a week, 365 days a year maintenance and support to their customers nationwide through their network of engineers and support personnel located across the country. CSL is a customer-focused company providing a one-stop-shop to their clients. With over 30 years of experience, CSL delivers effective gas detection solutions for the long term. CSL supplies a wide range of gas detection products, from portable devices to complete fixed gas detection systems and customised installations in many sectors. 

Views on gas detection

As a critical safety issue, CSL put the design, equipment selection, long-term maintenance, and clarity of the alarm system to the forefront of our gas detection solutions. “We understand that there is always a balance between investment and striving for the highest level of gas safety. Still, from our point of view, safety wins every time as cutting costs in an area as vital as gas safety is a false economy. This is one of the main reasons we work very hard to develop the relationship and partnership and promote the Crowcon Gas Safety product range. When we meet with our clients and discuss their gas safety challenges, the conversation inevitably discusses costs. Because of the sizeable Crowcon product range, we always have a solution that will meet their budget and safety requirements.”- Peter Nicholson, Head of Marketing. 

Working with Crowcon

A 30-year partnership and continued communication have allowed CSL to supply their customers with gas detection solutions. “Providing fixed and portable solutions ensures a gas safety package that will work for any company or organisation that depends on high-quality gas detection and related equipment.” – Peter Nicholson, Head of Marketing. We’re thrilled to be working alongside CSL to provide gas detection to the Irish market and support with services to the water, wastewater, environmental and industrial sectors. With over 30 years of experience, CSL delivers effective gas detection solutions for the long term through the supply of our portable devices and fixed gas detection systems. 

Our Partnership with Shawcity 

Background

Established in 1976, Shawcity was one of the first companies to introduce specialist gas detection devices to the UK and Irish markets from leading manufacturers around the world. For over 45 years, they have focused on providing the latest monitoring technology in partnership with leading manufacturers to customers across the UK and Ireland.  

Shawcity supports those working in health and safety, occupational hygiene and environmental applications who rely on achieving the highest levels of performance. With instruments available to hire or buy, Shawcity has the capacity to ensure each order is tailored to meet individual project demands. Their portfolio offers an extensive range of monitoring detection including fixed gas detection, potable gas detection and air quality.  

Views on Gas Detection

As the focus on workplace health continues to develop, a better understanding of the ways workers can be impacted is leading to changes in legislation and an increasing responsibility for employers to protect their employees at work. Gas detection, in particular, is critical in terms of potential safety and can, in some cases, involve an immediate threat to life. Ensuring the correct equipment is provided and maintained is one of the key responsibilities that health and safety officers have.  

The latest technology also means that effective monitoring on a personal, area or environmental level has never been easier to achieve. Shawcity works with every customer to ensure the right equipment is supplied for the job every time and also offer free product training. 

Working with Crowcon

The partnership between Crowcon and Shawcity provides an unbeatable combination of industry knowledge and expertise. The two companies work closely together on fixed gas detection projects across many sectors to provide the complete package, from site surveys, planning and design through to installation, commissioning and ongoing service and maintenance.  

Now supplying our portable range, Shawcity now can support an even wider range of new markets and sectors. “Shawcity is an official Trusted Partner. Crowcon and Shawcity collaborate at every stage of the gas detection process – from product development through to technical support – to deliver the best possible service to customers” – Nathan Marks, Fixed Gas Detection Manager at Shawcity.