MOS (metal oxide semiconductor) sensors have been seen as one of the most recent solutions for tackling detection of hydrogen sulphide (H2S) in fluctuating temperatures from up to 50°C down to the mid-twenties, as well as humid climates such as the Middle East.
However, users and gas detection professionals have realised MOS sensors are not the most reliable detection technology. This blog covers why this technology can prove difficult to maintain and what issues users can face.
One of the major drawbacks of the technology is the liability of the sensor “going to sleep” when it doesn’t encounter gas for a period of time. Of course, this is a huge safety risk for workers in the area… no-one wants to face a gas detector that ultimately doesn’t detect gas.
MOS sensors require a heater to equalise, enabling them to produce a consistent reading. However, when initially switched on, the heater takes time to warm up, causing a significant delay between turning on the sensors and it responding to hazardous gas. MOS manufacturers therefore recommend users to allow the sensor to equilibrate for 24-48 hours before calibration. Some users may find this a hinderance for production, as well as extended time for servicing and maintenance.
The heater delay isn’t the only problem. It uses a lot of power which poses an additional issue of dramatic changes of temperature in the DC power cable, causing changes in voltage as the detector head and inaccuracies in gas level reading.
As its metal oxide semiconductor name suggests, the sensors are based around semiconductors which are recognised to drift with changes in humidity- something that is not ideal for the humid Middle Eastern climate. In other industries, semiconductors are often encased in epoxy resin to avoid this, however in a gas sensor this coating would the gas detection mechanism as the gas couldn’t reach the semiconductor. The device is also open to the acidic environment created by the local sand in the Middle East, effecting conductivity and accuracy of gas read-out.
Another significant safety implication of a MOS sensor is that with output at near-zero levels of H2S can be false alarms. Often the sensor is used with a level of “zero suppression” at the control panel. This means that the control panel may show a zero read-out for some time after levels of H2S have begun to rise. This late registering of low-level gas presence can then delay the warning of a serious gas leak, opportunity for evacuation and the extreme risk of lives.
MOS sensors excel in reacting quickly to H2S, therefore the need for a sinter counteracts this benefit. Due to H2S being a “sticky” gas, it is able to be adsorbed onto surfaces including those of sinters, in result slowing down the rate at which gas reaches the detection surface.
To tackle the drawbacks of MOS sensors, we’ve revisited and improved on the electrochemical technology with our new High Temperature (HT) H2S sensor for XgardIQ. The new developments of our sensor allow operation of up to 70°C at 0-95%rh- a significant difference against other manufacturers claiming detection of up to 60°C, especially under the harsh Middle Eastern environments.
Our new HT H2S sensor has been proven to be a reliable and resilient solution for the detection of H2S at high temperatures- a solution that doesn’t fall asleep on the job!
Click here for more information on our new High Temperature (HT) H2S sensor for XgardIQ.