Did you know about the Sprint Pro’s Ambient Air Monitor?

You probably know that the Sprint Pro has a host of useful functions, but have you ever scrolled through the menu of your Sprint Pro, found the ambient air monitor and wondered how you could use it?  

Well, you need wonder no longer – because in this post we will look at the Sprint Pro ambient air monitor and its uses.

Who needs to carry out ambient air monitoring? 

As a gas engineer, your need for ambient air monitoring may vary according to the type of work you do, but if you specialise in Carbon monoxide (CO)/Carbon dioxide (CO2) detection – for example, if you have CMDDA1 certification for dwellings or undertake COMCAT (commercial catering) reports in the UK, or have equivalent domestic or catering CO/CO2) certification elsewhere in the world – you will probably find this function very useful.  

How does ambient air monitoring work? 

In general terms, ambient air monitoring is simply the measurement of pollutants in the atmosphere, but in a gas detection context it refers to analysis of how much carbon monoxide is in the air.  

In some cases, the level of CO2 is also measured. The Sprint Pro 4 and Sprint Pro 6 both have a direct CO2 infrared sensor fitted, therefore they can measure both CO and CO2.

Ambient air monitoring may be carried out anywhere that CO and/or CO2 present a risk. For example, to detect CO leakages in the home (perhaps from a boiler), or to monitor CO2 levels in commercial catering premises.  

With the Sprint Pro, ambient air monitoring is carried out over a given time period, which may be anything from a few minutes to several days, during which time the analyser samples the ambient air at intervals of between one and thirty minutes. At the end of the test, the device gives readings for the current, peak and whole-test average rates for both CO and CO2. You can save these directly to your log and/or print them out as paper reports. 

Even when it comes to report printing, the Sprint Pro gives you options, so you can print as much or little of the relevant information as you need. This can be very handy when you have just taken literally hundreds of samples over a 7-day period! 

Ambient air monitoring for CO is available on all Sprint Pro models 

Why do I need ambient air monitoring functionality? 

Regardless of specialist certification, having the capacity to analyse ambient air is increasingly useful to HVAC professionals and gas engineers. This is particularly true in light of the COVID-19 pandemic, when the benefits of fresh air and good indoor ventilation have been highlighted. Excessive CO and CO2 are threats to both human and environmental health, and with growing awareness of this, and sustainability becoming an increasingly important social/political/policy topic, the need to quantify and measure them is likely to increase. 

The importance of Gas Detection in the Marine Industry 

Gas detectors for vessels is a device that detects the presence of gases in ships, often as part of a safety system. SOLAS regulations XI- 1/7 requires that vessels have at least one portable gas monitor on board for oxygen and flammable gas detection. This type of equipment is used to detect a gas leak and interface with a control system so a process can be automatically shut down. 

Why is gas detection required? 

Gas detection equipment measures a gas concentration against a calibration gas which acts as a reference point. Some gas detection monitors only can detect a single gas, some gas detectors can detect several toxic or combustible gases and even combinations within one device. 

Marine applications often generate high humidity and dirty conditions. Detection is required from O2 monitoring in cargo room exhausts, to monitoring flammable and toxic gases within various void spaces, to pump room or cabins, fixed systems with sampling are all commonly used in marine settings. 

Gas detection is required within the marine industry due to the high temperature surfaces housed in an engine room, as well as the short circuit in the electrical system. Both factors combine with smoking or other domestic sources of fire or a reaction in the cargo, leave ships extremely vulnerable to fires. Gas detection is therefore a vital piece of equipment in protecting the lives of those who work on these vessels. This is key as many seafarers lose their lives every year due to the toxic working environment, they work in. Therefore, detecting such hazards before they become fatal, is essential to contain the damage which can take the form a disaster, meaning gas detection is one of the most important pieces of equipment on a marine vessel. 

What are the gas hazards? 

There are several different gas hazards, dependant on the vessel type, such as FPSO (floating, production, storage, and offloading), tankers, ferries, submarines, general or cargo tanks.  

FPSO and tankers house flammable gases and hydrogen sulphide. Therefore, there is a gas hazard risk of flammable gas leaks within the pump rooms. Gas hazards in confined spaces are another hazard, as there may be inerted tanks or voids, which therefore may be too much or too little oxygen in these confined space environments and where inerting gases are stored. There are also hydrocarbon oxygen risks during the purging of tanks (from %Volume to %LEL (Lower Explosive Limit)).  

  • Carbon monoxide (CO) and nitrous oxide (NOx) are housed on ferries as a result of the accumulation from vehicle exhausts, as both are poisonous gases, they are both gas hazards to be aware of.  
  • Submarines house hydrogen within battery rooms. Along with CO2 leaks from air conditioning systems. 
  • On general vessels, CO and NOx are present engine rooms. Along with hydrogen sulphide (H2S) and O2 being depleted in bilges, that arise from the on-board sewage treatment plant. Vessels that carry food produce, such as grain, will sometimes be at risk of H2S. 
  • Cargo Tanks house vapour emission control systems which are used to analyse waste vapour gas for oxygen gas content. The system includes a pressure transmitter to monitor the pressure on the waste vapour line. 

Marine standards 

Products installed on any marine vessel must comply with internationally recognized regulations. Therefore, the international standard that applies to a vessel depend upon where it is registered. It is essential that products sold for use on a vessel comply with the standards relevant to the country in which the ship is registered. For example, products fitted to a European-registered vessel undergoing a re-fit in Singapore must comply with the European MED (Marine Equipment Directive) directive. 

There are several different standards that comply to different regions: 

  • EU (European Union) countries: MED (Marine Equipment Directive 96/98/EC). 
  • North America: US Coast Guard (USCG) regulations. 
  • Other countries: SOLAS (Safety of Life at Sea) regulations provide the minimum requirements, however individual countries will require compliance with the standards of their chosen marine insurance body (e.g., BV, DNV etc). 

Why use detectors? 

Gas detectors measure and specify the concentration of specific gases within the air via different technologies. 

Gas meters are also used on-board ships to measure the hydrocarbon content, explosion hazard risk, and the oxygen analysers. Under the current guidelines cargo tanks or any enclosed space on-board the ship must be tested to ensure that the space is gas-free along with ample amount of oxygen for any required personnel to work there. These circumstances include; prior to starting any repair work or before loading as quality control. 

To find out more,  have a look at our Introduction to the Marine Industry or visit our industry page.  

What’s so Important about my Monitors Measuring Range?

What is a Monitor Measuring Range?

Gas monitoring is usually measured in PPM range (parts per million), percentage volume or percentage of LEL (lower explosive limit) this enables Safety Managers, to ensure that their operators are not being exposed to any potentially harmful levels of gases or chemicals. Gas monitoring can be done remotely to ensure that the area is clean before a worker enters the area as well as monitoring gas through a permanently fixed device or body worn portable device to detect any potentially leaks or hazardous areas during the course of the working shift.  

Why are Gas Monitors essential and what are the Ranges of deficiencies or enrichments?

There are three main reasons why monitors are needed; it is essential to detect oxygen deficiencies or enrichment as too little oxygen can prevent the human body from functioning leading to the worker losing consciousness. Unless the oxygen level can be restored to a normal level the worker is at risk of potential death. An atmosphere is considered to be deficient when the concentration of O2 is less than 19.5%. Consequently, an environment that has too much oxygen in it is equally dangerous as this constitutes a greatly increased risk of fire and explosion, this is considered when the concentration level of O2 is over 23.5%. 

Monitors are required when Toxic Gases are present of which can cause considerable harm to the human body. Hydrogen Sulphide (H2S) is a classic example of this. H2S is given off by bacteria when it breaks down organic matter, due to this gas being heavier than air, it can displace air leading to potential harm to persons present and is also a broad-spectrum toxic poison.  

Additionally, gas monitors have the ability to detect flammable gases. Dangers that can be prevented through using a gas monitor are not only though inhaling but they are a potential hazard due to combustion. gas monitors with an LEL range sensor detects and alert against flammable gases.  

Why are they important and how do they work?

Measurement or Measuring Range is the total range that the device can measure in normal conditions. The term normal meaning no overpressure limits (OPL) and within maximum working pressure (MWP).  These values are usually found on the product website or specification datasheet. The measuring range can also be calculated by identifying the difference between the Upper Range Limit (URL) and the Lower Range Limit (LRL) of the device. When trying to determine the range of the detector it is not identifying the area of square footage or within a fixed radius of the detector but instead is identifying the yielding or diffusion of the area being monitored. The process happens as the sensors respond to the gases that penetrate through the monitor’s membranes. Therefore, the devices have the ability to detect gas that is in immediate contact with the monitor. This  highlights the significance of understanding the measuring range of gas detectors and highlight their importance for the safety of the workers present in these environments.   

Are there any products that are available?

Crowcon offer a range of portable monitors; The Gas-Pro portable multi gas detector offers detection of up to 5 gases in a compact and rugged solution. It has an easy-to-read top mount display making it easy to use and optimal for confined space gas detection. An optional internal pump, activated with the flow plate, takes the pain out of pre-entry testing and allows Gas-Pro to be worn either in pumped or diffusion modes. 

The T4 portable 4-in-1 gas detector provides effective protection against 4 common gas hazards: carbon monoxide, hydrogen sulphide, flammable gases and oxygen depletion. The T4 multi gas detector now comes with improved detection of pentane, hexane and other long chain hydrocarbons. Offering you compliance, robustness and low cost of ownership in a simple to use solution. T4 contains a wide range of powerful features to make everyday use easier and safer. 

The Gasman portable single gas detector is compact and lightweight yet is fully ruggedised for the toughest of industrial environments. Featuring simple single button operation, it has a large easy-to-read display of gas concentration, and audible, visual and vibrating alarms.  

Crowcon also offer a flexible range of fixed gas detection products that can detect flammable, toxic and oxygen gases, report their presence and activate alarms or associated equipment. We use a variety of measurement, protection and communications technologies and our fixed detectors have been proven in many arduous environments, including oil and gas exploration, water treatment, chemical plants and steel mills. These fixed gas detectors are used in many applications where reliability, dependability and lack of false alarms are instrumental to efficient and effective gas detection. These include within the automotive and aerospace manufacturing sectors, on scientific and research facilities and in high-utilisation medical, civil or commercial plants.