The Importance of Early Gas Detection in Battery Storage

It’s not an exaggeration to say that the rise of lithium-ion batteries has revolutionised the energy landscape. These compact powerhouses have helped shift our society away from complete fossil fuel dependence, powering the rise of electric vehicles and enabling us to store renewable energy on a previously impossible scale. However, lithium-ion batteries are not an entirely risk-free energy source and can be volatile, which is a cause for concern for battery energy storage systems (BESS) who need to safeguard people – and their assets – from danger.

The Explosive Rise of Batteries

With the rise in lithium-ion batteries, has come a rise in high-profile cases of thermal runaway causing extraordinary damage through explosive fires, causing untold harm to the local environment, as well as eye-watering repair costs. Indeed, the widely-known risks of toxic thermal runaway has caused some pushback against the establishing of BESS sites, making it of paramount importance that battery energy supply can be made demonstrably safer.

Thermal runaway, characterised by uncontrolled heat generation and rapid battery failure, can lead to catastrophic consequences such as fires and explosions. What’s more, as heat can trigger thermal runaway in other batteries, the failure of one can lead to the failure of many, compounding the potential damage cost. While BESS insurers are well aware of such a risk, and have stipulations in place regarding fire, once fire has broken out the damage is already done. Prevention is always better than the cure, and so as suppliers and stakeholders in the lithium-ion battery industry, it’s imperative we address these risks head-on and prioritise safety measures to protect both assets and lives.

The Need for Early Gas Detection

Fortunately, FM Global and UL, two of the world’s largest public safety testing labs, have recognised the importance of gas detection in mitigating the risks associated with lithium-ion battery storage. Their documentation and standards serve as a testament to the critical role that early gas detection plays in ensuring the safety and reliability of energy storage systems. By adhering to these guidelines and implementing comprehensive gas detection strategies, suppliers can bolster their safety protocols and instil confidence in their products.

One of the key indicators of an impending thermal runaway event is the off-gassing from the compounds within the battery. As the internal components degrade or are subjected to extreme conditions, gases such as carbon dioxide, carbon monoxide, and hydrogen may be released, as well as other flammable gases ethylene and propylene. Detecting these gases early is critical, as it provides an opportunity to intervene before the situation escalates further, averting potential disasters. However, ensuring your gas detection system is able to recognise the wide variety of toxic and combustible gases accurately without getting poisoned is crucial. If it’s not accurate, it’s simply not effective and you’re putting your people and property at risk.

Cutting-Edge Gas Detection

While the importance of fire safety and suppression systems in mitigating the risks of lithium-ion battery fires is well-documented, the significance of gas detection systems is often overlooked. Unlike fires, which are often visible and generate smoke, gas emissions can go unnoticed until it’s too late. This gap in awareness underscores the need for robust gas detection solutions to complement existing safety protocols.

Crowcon’s patented MPS™ technology, specifically designed to fill the void left by other gas sensors, offers a reliable and effective solution for detecting gas emissions at the earliest stages of battery failure. The MPS sensor uses advanced micro-pellistor technology to detect a wide range of gases with unparalleled sensitivity and accuracy, able to detect gases at extremely low concentrations, allowing for early intervention and prevention of thermal runaway events. Furthermore, its compact design and ease of integration make it an ideal choice for both new installations and retrofitting existing systems. With Crowcon’s MPS sensor, suppliers can proactively monitor gas emissions and take prompt action to mitigate risks, ensuring the safety and integrity of their lithium-ion battery storage solutions.

Safeguarding a Battery-Powered Future

The importance of early gas detection in battery storage cannot be overstated. Not only can the cost of failing to detect the early warning signs be devastating to your business, but as suppliers and stakeholders in the energy industry, it is our collective responsibility to prioritise safety and implement robust measures to mitigate risks. The only way to do this is through an innovative and rigorous approach to gas detection. By investing in advanced gas detection technologies, you will not only be safeguarding your assets, but the very future of energy storage, helping pave the way for a more sustainable tomorrow.

Contact the Crowcon team today to learn more about how their innovative solutions can enhance the safety and reliability of your battery storage systems. Together, let’s build a brighter and safer battery-powered future.

Battery Safety: What is Off-Gassing and Why Does it Occur​?

Batteries have become an integral part of our daily lives, powering everything from smartphones to electric vehicles. But have you ever considered the potential risks associated with the batteries that enable the seamless functioning of these devices? While advancements in battery technology have revolutionised the way we live, it’s crucial to explore the potential hazards these power sources pose.

Lithium-ion batteries are combustible and hazardous, with the potential of dangerous and explosive thermal runaway – which can not only have devastating consequences for the environment and property but can threaten human life. Therefore, it is important to understand the first signs of a possible disaster – off-gassing.

Understand Off-gassing: The Silent Emission

Off-gassing refers to the release of gases from lithium-ion batteries often as a result of abuse or misuse. When a battery is subjected to conditions such as overcharging, over-discharging, or physical damage, it can lead to the breakdown of internal components, causing the release of gases. These gases typically include carbon dioxide, carbon monoxide, and other volatile organic compounds – which can be toxic for anyone who may come in contact with them.

Explaining Off-gassing Dynamics:

Off-gassing dynamics differ based on battery setups. In enclosed setups like racks or small housings, off-gassing can accumulate within the confined space, increasing the risk of pressure buildup and ignition. In open setups, such as outdoor installations, off-gassing may dissipate more easily, but still poses risks in poorly ventilated areas.

How Off-gassing Occurs and the Timeline:

Although not always a guaranteed precursor to thermal runaway in lithium-ion batteries, off-gassing events typically occur early in their failure. Thermal runaway occurs when a battery undergoes uncontrolled heating, leading to a rapid increase in temperature and pressure within the cell. This escalation can ultimately result in the battery catching fire or exploding, posing significant safety hazards.

The timeline for off-gassing can vary depending on the severity of the abuse and the type of battery. In some cases, off-gassing may occur gradually over time as the battery undergoes repeated stress, while in other instances, it may occur suddenly due to a single event, such as overcharging.

Factors in which Off-gassing can occur:

  • Physical Damage: Any damage to the battery, such as punctures or crushing, can cause internal components to degrade, leading to off-gassing.
  • Overcharging: Excessive charging can cause the decomposition of electrolytes within the battery, leading to gas generation.
  • Overheating: Like off-gassing, excessive heat can trigger thermal runaway by destabilising the battery’s internal chemistry.
  • Over-discharging: Discharging a battery beyond its recommended limit can also result in the release of gases.
  • Internal Short Circuits: Any malfunction that causes a short circuit within the battery can initiate thermal runaway.
  • Manufacturing Defects: Faulty manufacturing processes can introduce weaknesses in the battery structure, making it more susceptible to thermal runaway.

What are the dangers of Off-gassing buildup?

Off-gassing buildup can lead to the battery storage container turning into a pressure vessel that is just waiting for a spark to ignite. To mitigate this risk, it’s crucial to have a monitored ventilation system in place. Additionally, compliance with FM standards is essential, as BESS should maintain lower than 25% LFL or have a container that can open to vent gas, ensuring safety in case of off-gassing.

Why Early Detection of Off-gassing is Critical:

Early detection plays a critical role in preventing catastrophic battery incidents. By identifying signs of off-gassing at the onset, operators can intervene before the situation escalates into thermal runaway. Here’s why early detection is crucial:

  1. Preventative Maintenance: Early detection allows for timely maintenance and corrective action to address battery issues before they worsen. Routine monitoring of off-gassing can help identify underlying problems in battery systems, such as overcharging or internal damage, enabling proactive maintenance to mitigate risks.
  2. Risk Mitigation: Off-gassing serves as an early warning sign of potential battery failures. By monitoring off-gassing levels, operators can implement risk mitigation measures, such as adjusting charging parameters or isolating malfunctioning batteries, to prevent thermal runaway and its associated hazards.
  3. Enhanced Safety: Timely detection of off-gassing enhances safety for both personnel and property. It provides an opportunity to evacuate affected areas, implement emergency protocols, and minimise the impact of battery-related incidents on surrounding environments. Additionally, early intervention reduces the likelihood of injuries and property damage resulting from thermal runaway events.
  4. Cost Savings: Detecting off-gassing early can help avoid costly repairs or replacements of damaged batteries and equipment. By addressing issues proactively, operators can extend the lifespan of batteries, optimise performance, and avoid unplanned downtime, resulting in significant cost savings over time.
  5. Regulatory Compliance: Many regulatory standards and guidelines mandate the monitoring of off-gassing as part of battery safety protocols. Early detection ensures compliance with regulatory requirements and demonstrates a commitment to maintaining safe battery operations in accordance with industry standards.

Incorporating robust gas detection systems and technologies for early detection of off-gassing is essential for proactive risk management and maintaining the integrity of battery systems. By prioritising early detection, stakeholders can safeguard against potential hazards, minimise disruptions, and promote the safe and sustainable use of battery technology across various applications.

Klik her for at for at tale med os om beskyttelseing din virksomhed

For mere information om batterisikkerhed, download vores e-bog 'The Battery Boom: The Explosive Rise of Thermal Runaway and how you can prevent it'.

Få dit GRATIS eksemplar af e-bogen 'The Battery Boom'

En batteridrevet fremtid: Fremkomsten af litium-ion-batterier, og hvad det betyder for bæredygtighedsindsatsen

I takt med at vi kollektivt bevæger os mod en grønnere fremtid, hvor skiftet til bæredygtige energiløsninger er blevet et centralt globalt samfundspolitisk spørgsmål, er litium-ion-batterier kommet i centrum som en mulig løsning. Takket være deres evne til at lagre store mængder energi i en forholdsvis let og kompakt form, har de revolutioneret alt fra forbrugernes wearables til elektriske køretøjer. Men i hvilket omfang er en batteridrevet fremtid virkelig den perfekte energiløsning, vi har ledt efter?

Fremme af grønnere energimuligheder

Stigningen i litium-ion-batterier kommer med et væld af fordele, når vi bevæger os væk fra afhængigheden af fossile brændstoffer, og bidrager til betydelige reduktioner i drivhusgasemissioner og luftforurening. Især i forhold til elektrificeringen af transport gennem elektriske køretøjer (EV'er). Ved at drive elbiler med ren elektricitet, der er lagret i batterier, kan transportsektoren reducere sin afhængighed af fossile brændstoffer og mindske udledningen af drivhusgasser og forurenende stoffer. Efterhånden som elbilsektoren bliver mere konkurrencedygtig, og mange regeringer tilskynder til udbredelsen af elbiler, fortsætter udviklingen af batteriteknologien med at forbedre elbilernes rækkevidde, opladningshastighed og pris, hvilket fremskynder deres udbredelse og yderligere reducerer afhængigheden af køretøjer med forbrændingsmotor.

Litium-ion-batterier spiller også en stadig vigtigere rolle i stabiliseringen af elnettet, da de gør det muligt at integrere intermitterende vedvarende energikilder som sol- og vindenergi i elnettet. Solen skinner ikke altid, og det blæser ikke altid - men ved at lagre overskydende energi, der genereres i perioder med høj produktion, og aflade den, når der er brug for det, gør batterier det lettere at sikre en pålidelig forsyning af ren energi på en pålidelig og stabil måde, som tidligere har været vanskelig at opnå. Ved at optimere energistyringen og reducere de tab, der er forbundet med traditionelle energisystemer, bidrager batterier til en mere effektiv og bæredygtig energianvendelse på tværs af forskellige sektorer.

Hvor grønne er litium-ion-batterier egentlig?

Den stigende udbredelse af batterier har dog sine egne miljømæssige konsekvenser. Udvinding og forarbejdning af sjældne jordartsmetaller som litium og kobolt foregår ofte under udnyttende forhold i mineområder, og udvindingsprocessen kan også have betydelige miljøpåvirkninger, herunder ødelæggelse af levesteder og vandforurening. Desuden giver bortskaffelsen af lithium-ion-batterier ved slutningen af deres livscyklus også anledning til bekymring om genbrug og risikoen for, at farligt affald slipper ud i miljøet.

Men der er et andet problem med litium-ion-batterier, som med deres øgede anvendelse har ført til en stigning i farlige hændelser: deres flygtige og brændbare natur. Enhver, der har set litium-ion-batterier løbe løbsk, kan ikke undgå at genkende den risiko, der er forbundet med den øgede brug af dem. Selv svigt i små litium-ion elektroniske apparater kan forårsage dødbringende og ødelæggende eksplosioner og brande, hvilket gør opbevaring og brug af batterier i større målestok nødvendig med robuste sikkerhedsforanstaltninger.

Risikostyring med litium-ion-batterier

Heldigvis er der måder, hvorpå man kan mindske risikoen ved lithium-ion-batterier. Almindeligvis bruges batteristyringssystemer (BMS) til at overvåge batteriets opladningsniveau, spænding, strøm og temperatur - hvilket kan hjælpe med at identificere problemer med alle batterier. Men der findes en mere effektiv og pålidelig måde at opdage termisk løbskhed på: gasdetektering.

Forud for termisk løbskhed gennemgår batterierne en proces med "afgasning", hvor øgede mængder af giftige VOC'er frigives. Ved at overvåge gasserne omkring batterierne kan man identificere tegn på stress eller skader, før det termiske løb begynder.

I øjeblikket fokuserer mange forsikringsselskaber på risikoen for brand og opfordrer batterilagringssystemer (BESS) til at have processer på plads for at sikre, at brande kan kontrolleres og håndteres så hurtigt og effektivt som muligt. Men da litium-ion-batterier er meget temperaturfølsomme, er det sandsynligt, at alle andre batterier i nærheden også vil blive uigenkaldeligt beskadiget - eller selv begynde at løbe løbsk, når der først er gået ild i et batteri. Løsningen er enkel: Identificer problemerne så tidligt som muligt ved hjælp af gasdetektering, og sørg for, at brande slet ikke kan opstå, så du er bedre beskyttet mod katastrofer.

Man kan ikke sætte en pris på sikkerhed

Omkostningerne ved at investere i sofistikeret gasdetektering er ubetydelige i forhold til omkostningerne ved brand - ca. 0,01% af omkostningerne ved et nyt projekt - hvilket gør det til et oplagt valg for dem, der ønsker at mindske risikoen ved fremstilling, opbevaring og brug af lithium-ion-batterier. Skaderne på ejendommen, omkostningerne for menneskers sundhed (og endda liv), sammen med skaderne på det naturlige miljø med potentielle forureningsproblemer efter batterisvigt er alle omfattende og betydelige. Kombineret med truslen mod at opretholde en virksomhed oven i den nødvendige skadekontrol, er behovet for at undgå komplicerede og dyre oprydningsoperationer altafgørende. Det er noget, Crowcon-teamet forstår bedre end nogen anden.

Crowcon vil arbejde tæt sammen med dig for at sikre, at din virksomhed og dit personale er så trygge og sikre som muligt gennem banebrydende gasdetekteringsteknologi, såsom MPS™-sensoren. Vores Molecular Property Spectrometer™ (MPS™)-teknologi detekterer nøjagtigt over 15 farlige gasser i én, hvilket giver en højere standard for detektering af brændbare gasser og større tillid til dit batteris sikkerhed.

Klik her for at for at tale med os om beskyttelseing din virksomhed

Selvom realiseringen af litium-ion-teknologiens fulde potentiale stadig kræver, at man tager fat på de miljømæssige og sociale udfordringer, der er forbundet med produktion, vedligeholdelse og bortskaffelse, repræsenterer den stigende udbredelse af litium-ion-batterier et vigtigt skridt i retning af en mere bæredygtig og renere energifremtid. Innovation inden for vedligeholdelse og forbedret effektivitet af vedvarende energiteknologier, såsom genopladelige batterier, er et afgørende skridt i retning af at frigøre samfundet fra afhængigheden af fossile brændstoffer. Fra at drive vores daglige apparater til at drive overgangen til elektrisk transport og vedvarende energi er litium-ion-batterier i spidsen for bæredygtighedsrevolutionen - og Crowcon-teamet er klar til at hjælpe med at skabe en grønnere og sikrere fremtid for de kommende generationer.

For mere information om batterisikkerhed, download vores e-bog 'The Battery Boom: The Explosive Rise of Thermal Runaway and how you can prevent it'.

Få dit GRATIS eksemplar af e-bogen 'The Battery Boom'

Vil du vide mere om, hvordan Crowcon kan hjælpe med at sikre din virksomheds fremtid med førsteklasses gasdetekteringssystemer? Så klik her for at komme i kontakt med et medlem af vores team til en uforpligtende snak.

Den afgørende rolle for regelmæssig service af gasdetektorer

7 grunde til, at regelmæssig servicering af gasdetektorer er afgørende

Gasdetektorer spiller en afgørende rolle for medarbejdernes og infrastrukturens sikkerhed ved hurtigt at opdage og advare dem om tilstedeværelsen af skadelige gasser. Uanset om de bruges i industrien eller i laboratorier, er disse enheder designet til at give tidlige advarsler og forhindre potentielle katastrofer. Men som alt andet udstyr kræver gasdetektorer regelmæssig service for at bevare deres effektivitet og pålidelighed.

1. Sikring af nøjagtighed og pålidelighed:

En af de vigtigste grunde til at servicere en gasdetektor er at sikre dens nøjagtighed. Over tid kan sensorer og komponenter blive nedbrudt på grund af udsættelse for barske miljøforhold, støv eller forurenende stoffer. For eksempel kan detektoren aflæse 46% LEL, når det sande niveau er 50% LEL. Regelmæssig service indebærer kalibrering af detektoren for at bevare dens præcision i detekteringen af selv de mindste spor af farlige gasser. Nøjagtige aflæsninger er afgørende for rettidig og passende reaktion på potentielle trusler.

2. Overholdelse af sikkerhedsstandarder:

Overholdelse af sikkerhedsstandarder og regler er altafgørende i ethvert miljø, hvor der er gasdetektorer til stede. Mange brancher og institutioner har specifikke retningslinjer for brug og vedligeholdelse af gasdetekteringsudstyr. Regelmæssig service sikrer, at detektorerne lever op til eller overgår disse standarder, hvilket hjælper organisationer med at overholde reglerne og undgå juridiske konsekvenser. Sofistikerede instrumenter fører ikke kun en log over deres kalibreringshistorik, men også over enhedernes kommende forfaldsdatoer. Kalibreringscertifikater produceres under produktionen og efter servicering som dokumentation.

3. Lovgivning og branchespecifikke bestemmelser:

Vedligeholdelse af gasdetektorer er ofte reguleret af lovgivning og branchespecifikke regler. I EU regulerer ATEX-direktivet f.eks. udstyr, der er beregnet til brug i eksplosive atmosfærer, herunder gasdetektorer. I USA understreger Occupational Safety and Health Administration (OSHA) vigtigheden af at opretholde et sikkert arbejdsmiljø. Selvom OSHA ikke har specifikke regler for servicering af gasdetektorer, er det afgørende at overholde de generelle sikkerhedsstandarder. På samme måde giver internationale standarder som dem, der er udviklet af International Electrotechnical Commission (IEC), retningslinjer for korrekt vedligeholdelse.

4. Forlænget levetid for udstyr:

Gasdetektorer er en investering i sikkerhed. Regelmæssig service forbedrer ikke kun deres ydeevne, men kan også forlænge deres forventede levetid. Forebyggende vedligeholdelse, såsom rengøring, kalibrering og udskiftning af slidte dele, kan bidrage væsentligt til udstyrets levetid og dermed reducere hyppigheden af udskiftninger, hvilket sparer både tid og ressourcer.

5. Minimering af falske alarmer:

En godt vedligeholdt gasdetektor er mindre tilbøjelig til at udløse falske alarmer. Falske aflæsninger resulterer i selvtilfredshed og mindre tillid til udstyret, hvilket potentielt kan udsætte personer for fare. Regelmæssig vedligeholdelse hjælper med at identificere og løse potentielle problemer, der kan udløse falske alarmer, og sikrer, at detektoren kun aktiveres, når der er en reel trussel.

6. Beredskab til nødsituationer:

Gasdetektorer spiller en afgørende rolle i beredskabssystemer.

Regelmæssig service øger deres reaktionsevne, giver tidlig detektion af gaslækager og giver mulighed for hurtig evakuering eller inddæmning. I nødsituationer kan gasdetektorernes pålidelighed gøre en betydelig forskel, når det gælder om at minimere skader og sikre medarbejdernes sikkerhed.

7. Omkostningseffektiv vedligeholdelse:

Selvom service kan opfattes som en ekstra udgift, er det vigtigt at anerkende det som en proaktiv og omkostningseffektiv foranstaltning. Regelmæssig vedligeholdelse hjælper med at identificere potentielle problemer, før de eskalerer, og forhindrer dyre reparationer eller udskiftninger. At investere i service er en lille pris at betale sammenlignet med de potentielle konsekvenser af udstyrssvigt.

Sikring af sikkerhed og pålidelighed

Betydningen af rutinemæssig servicering af gasdetektorer er uomtvistelig. Uanset om de bruges i industrielle eller kommercielle miljøer, spiller disse instrumenter en afgørende rolle for at beskytte medarbejdernes liv såvel som virksomhedens infrastruktur. En korrekt vedligeholdt gasdetektor sikrer ikke kun nøjagtig og pålidelig ydeevne, men hjælper også med at overholde sikkerhedsstandarder, forlænge udstyrets levetid og reducere antallet af falske alarmer. At prioritere regelmæssig servicering af gasdetektorer er uden tvivl med til at beskytte medarbejdernes liv og infrastrukturen.

Hvis du vil vide mere om service eller kalibrering, kan du kontakte vores team eller besøge vores verdensomspændende distributører for at finde dit lokale service- og kalibreringscenter.

Hold dig selv gassikker denne sommer

Det er lige så vigtigt at opretholde gassikkerheden i sommermånederne som om vinteren. Selv om centralvarmen måske er deaktiveret om sommeren, kan din kedel fortsat bruges til varmt vand, og du kan også bruge et gaskomfur til madlavning. Derudover er det vigtigt at overveje gasdrevne griller, som er almindeligt brugt og nydes af en betydelig del af befolkningen. Over 40 % af befolkningen ejer en gasgrill, og omkring 30 % bruger den ugentligt til praktiske udendørs måltider.

Når det gælder gassikkerhed, er der ingen lavsæson. Forsømte apparater og kedler kan udgøre en alvorlig risiko for kulilteforgiftning, hvilket kan få fatale konsekvenser. Her er alt, hvad du behøver at vide om de vigtigste udfordringer i løbet af sommeren.

Sikkerhed ved grillning

Om sommeren nyder vi ofte udendørs aktiviteter og lange aftener. Uanset om det regner eller skinner, bliver grillen et højdepunkt, som typisk giver anledning til minimale bekymringer bortset fra vejret og sikring af grundig tilberedning. Men det er vigtigt at erkende, at gassikkerhed ikke kun gælder i hjemmet og i industrien, da grill kræver særlig opmærksomhed for at sikre sikkerheden.

Mens kuliltenssundhedsrisici er bredt anerkendte, går dens forbindelse til grill ofte ubemærket hen. Under ugunstige vejrforhold vælger vi måske at grille i områder som garager, døråbninger, telte eller baldakiner. Nogle tager endda grillen med ind i teltet efter brug. Denne praksis kan være ekstremt farlig, da kulilte akkumuleres i sådanne lukkede rum. Det er vigtigt at understrege, at madlavningsområdet skal placeres langt fra bygninger og være godt ventileret med frisk luft for at mindske risikoen for kulilteforgiftning. Det er vigtigt at gøre sig bekendt med tegnene på kulilteforgiftning, herunder hovedpine, kvalme, åndenød, svimmelhed, kollaps eller bevidstløshed.

Derudover udgør opbevaring af propan- eller butangasbeholdere i garager, skure og endda huse en anden potentiel fare. Uden at man opdager det, kan kombinationen af et lukket rum, en gaslækage og en gnist fra en elektrisk enhed resultere i en potentielt dødelig eksplosion.

Gassikkerhed på ferien

Når du er på ferie, er gassikkerhed måske ikke din største bekymring, men det er stadig vigtigt for dit velbefindende. Gassikkerhed er lige så vigtig på ferien som derhjemme, da du kan have begrænset viden om eller kontrol over gasapparaternes tilstand i din bolig. Mens gassikkerheden generelt er den samme i campingvogne og både, giver camping i telte unikke overvejelser.

Campingovne med gas, varmeapparater (f.eks. bord- og terrassevarmere) og endda grill med fast brændsel kan udlede kulilte (CO), hvilket udgør en potentiel risiko for forgiftning. Hvis man tager disse ting med ind i et lukket rum, f.eks. et telt eller en campingvogn, kan det derfor bringe alle i nærheden i fare. Derudover er det vigtigt at være opmærksom på, at reglerne for gassikkerhed kan variere fra land til land. Selvom det måske ikke er muligt at være bekendt med alle lokale regler, kan du prioritere sikkerheden ved at følge enkle retningslinjer.

Tips til gassikkerhed på ferien

  • Spørg om service og sikkerhedstjek af gasapparater i din bolig.
  • Medbring en kuliltealarm, der kan høres.
  • Bemærk, at apparaterne i din feriebolig kan være forskellige fra dem derhjemme. Hvis der ikke findes instruktioner, kan du søge hjælp hos din ferierepræsentant eller ejeren af ferieboligen.
    • Genkende tegn på usikre gasapparater:
      • Sorte mærker eller pletter omkring apparatet.
      • Dovne orange eller gule flammer i stedet for blå.
      • Overdreven kondens i din bolig.
    • Brug aldrig gaskomfurer, komfurer eller grill til opvarmning, og sørg for ordentlig ventilation, når du bruger dem.

En introduktion til olie- og gasindustrien 

Olie- og gasindustrien er en af de største industrier i verden og yder et betydeligt bidrag til den globale økonomi. Denne enorme sektor er ofte opdelt i tre hovedsektorer: opstrøms-, mellem- og nedstrømssektoren. Hver sektor kommer med sine egne unikke gasfarer.

Opstrøms

Opstrømssektoren i olie- og gasindustrien, der undertiden kaldes efterforskning og produktion (eller E&P), beskæftiger sig med at finde steder til olie- og gasudvinding og den efterfølgende boring, udvinding og produktion af råolie og naturgas. Olie- og gasproduktion er en utrolig kapitalintensiv industri, der kræver brug af dyrt maskinudstyr og højt kvalificeret arbejdskraft. Opstrømssektoren er meget omfattende og omfatter både onshore- og offshore-boringer.

Den største gasfare, som man støder på i olie- og gasindustrien, er svovlbrinte (H2S), en farveløs gas, der er kendt for sin tydelige lugt af råddent æg.H2Ser en meget giftig, brandfarlig gas, som kan have skadelige virkninger på vores helbred og føre til bevidstløshed og endog døden ved høje koncentrationer.

Crowcons løsning til detektering af hydrogensulfid kommer i form af XgardIQen intelligent gasdetektor, der øger sikkerheden ved at minimere den tid, operatørerne skal bruge i farlige områder. XgardIQ fås med H2S-sensortil høje temperaturerder er specielt designet til de barske miljøer i Mellemøsten.

Vadested

Midstream-sektoren i olie- og gasindustrien omfatter oplagring, transport og forarbejdning af råolie og naturgas. Transporten af råolie og naturgas foregår både over land og til søs, hvor store mængder transporteres i tankskibe og skibsfartøjer. På land er de anvendte transportmetoder tankskibe og rørledninger. Udfordringerne inden for mellemledssektoren omfatter, men er ikke begrænset til, opretholdelse af opbevarings- og transportbeholdernes integritet og beskyttelse af de arbejdstagere, der er involveret i rengøring, rensning og påfyldning.

Overvågning af lagertanke er afgørende for at sikre arbejdstagernes og maskinernes sikkerhed.

Nedstrøms

Nedstrømssektoren omfatter raffinering og forarbejdning af naturgas og råolie samt distribution af færdigprodukter. Dette er den fase af processen, hvor disse råmaterialer omdannes til produkter, som anvendes til en række forskellige formål, f.eks. til brændstof til køretøjer og opvarmning af boliger.

Raffineringsprocessen for råolie er generelt opdelt i tre grundlæggende trin: separation, konvertering og behandling. Naturgasbehandling omfatter adskillelse af de forskellige kulbrinter og væsker for at fremstille gas af "rørledningskvalitet".

De gasfarer, der er typiske inden for downstream-sektoren, er hydrogensulfid, svovldioxid, brint og en lang række giftige gasser. Crowcons Xgard og Xgard Bright fastmonterede detektorer tilbyder begge en bred vifte af sensormuligheder til at dække alle de gasfarer, der findes i denne industri. Xgard Bright er også tilgængelig med den næste generation af MPS™-sensortil detektering af over 15 brændbare gasser i én detektor. Der fås også personlige monitorer til både en og flere gasser for at sikre medarbejdernes sikkerhed i disse potentielt farlige miljøer. Disse omfatter Gas-Pro og T4xmed Gas-Pro , der understøtter 5 gasser i en kompakt og robust løsning.

Hvorfor udledes der gas i forbindelse med cementproduktion?

Hvordan fremstilles cement?

Beton er et af de vigtigste og mest almindeligt anvendte materialer i det globale byggeri. Beton anvendes i vid udstrækning til opførelse af både bolig- og erhvervsbygninger, broer, veje og meget mere.

Den vigtigste komponent i beton er cement, et bindemiddel, som binder alle de andre komponenter i beton (som regel grus og sand) sammen. Der anvendes mere end 4 mia. tons cement på verdensplan hvert år., hvilket illustrerer den globale byggeindustris enorme omfang.

Fremstilling af cement er en kompleks proces, der starter med råmaterialer, herunder kalksten og ler, som placeres i store ovne på op til 120 m længde, der opvarmes til op til 1.500 °C. Når de opvarmes ved så høje temperaturer, sker der kemiske reaktioner, som får disse råmaterialer til at smelte sammen og danne cement.

Som det er tilfældet med mange andre industrielle processer, er cementproduktion ikke uden farer. Ved produktionen af cement kan der frigives gasser, som er skadelige for arbejdstagerne, lokalsamfundene og miljøet.

Hvilke gasfarer er der ved cementproduktion?

De gasser, der normalt udledes fra cementfabrikker, er kuldioxid (CO2), nitrogenoxider (NOx) og svovldioxid (SO2), medCO2 tegner sig for størstedelen af emissionerne.

Svovldioxiden i cementfabrikker stammer generelt fra de råmaterialer, der anvendes i cementproduktionsprocessen. Den største gasfare, som man skal være opmærksom på, er kuldioxid, idet cementindustrien er ansvarlig for en massiv 8% af den globaleCO2 emissioner.

Størstedelen af kuldioxidemissionerne stammer fra en kemisk proces, der kaldes kalcinering. Dette sker, når kalksten opvarmes i ovnene, hvilket får den til at blive nedbrudt tilCO2 og calciumoxid. Den anden hovedkilde tilCO2 er forbrændingen af fossile brændstoffer. De ovne, der anvendes til cementproduktion, opvarmes generelt med naturgas eller kul, hvilket tilføjer endnu en kilde til kuldioxid ud over den kuldioxid, der opstår ved kalcinering.

Påvisning af gas i cementproduktionen

I en industri, der er en stor producent af farlige gasser, er detektion nøglen. Crowcon tilbyder et bredt udvalg af både faste og bærbare detektionsløsninger.

Xgard Bright er vores adresserbare fastpunktsgasdetektor med display, der giver nem betjening og reducerede installationsomkostninger. Xgard Bright har muligheder for detektering af kuldioxid og svovldioxidsom er de mest problematiske gasser ved cementblanding.

Til bærbar gasdetektering er GasmanDet robuste, bærbare og lette design gør den til den perfekte enkeltgasløsning til cementproduktion, og den fås i enCO2-version til sikre områder, der måler 0-5 % kuldioxid.

For øget beskyttelse kan Gas-Pro Multigasdetektoren kan udstyres med op til 5 sensorer, herunder alle de mest almindelige i cementproduktion, CO2SO2 og NO2.

Indtrængen i lukkede rum 

Adgang til et lukket rum (CSE) er et sted, der er stort set lukket, men ikke altid helt lukket, og hvor der kan opstå alvorlig skade på grund af farlige stoffer eller forhold i rummet eller i nærheden, f.eks. iltmangel. Da de er farlige, skal det bemærkes, at enhver adgang til lukkede rum skal være den eneste og sidste mulighed for at udføre arbejde. Forordninger om lukkede rum fra 1997. Godkendt kodeks for praksis, forskrifter og vejledning henvender sig til ansatte, der arbejder i lukkede rum, til dem, der ansætter eller uddanner sådanne personer, og til dem, der repræsenterer dem.

Identifikation af lukkede rum

HSE klassificerer lukkede rum som ethvert sted, herunder kamre, tanke, kar, siloer, gruber, skyttegrave, rør, kloakker, skorstene, brønde eller andre lignende rum, hvor der i kraft af deres lukkede karakter opstår en rimeligt forudsigelig specificeret risiko, som beskrevet ovenfor.

Selv om de fleste lukkede rum er lette at identificere, er det undertiden nødvendigt at identificere dem, da et lukket rum ikke nødvendigvis er lukket på alle sider. Eller udelukkende et lille og/eller vanskeligt at arbejde i et rum - kornsiloer og skibsrum kan være meget store. Selv om disse områder måske ikke er så vanskelige at komme ind eller ud af, har nogle af dem flere indgange/udgange, mens andre har store åbninger eller tilsyneladende er lette at slippe ud af. Nogle af de lukkede rum (f.eks. de rum, der anvendes til sprøjtemaling i autoreparationscentre) anvendes regelmæssigt af mennesker i forbindelse med deres arbejde.

Der kan være tilfælde, hvor et rum i sig selv ikke defineres som et lukket rum, men mens arbejdet er i gang, og indtil iltniveauet er genoprettet (eller forureningsstofferne er spredt ved at ventilere området), klassificeres det som et lukket rum. Scenarierne omfatter svejsning, der vil opbruge noget af den tilgængelige ilt, der kan indåndes, en sprøjtekabine under malingsprøjtning, brug af kemikalier til rengøringsformål, som kan tilføre flygtige organiske forbindelser (VOC) eller sure gasser, eller et område, der er udsat for betydelig rust, som har reduceret den tilgængelige ilt til farlige niveauer.

Hvad er reglerne og bestemmelserne for arbejdsgivere?

I henhold til den nye OSHA (Occupational Safety and Health Administration) standarder afhænger arbejdsgiverens forpligtelse af, hvilken type arbejdsgiver de er. Disse omfatter den kontrollerende entreprenør, værtsarbejdsgiveren, arbejdsgiveren eller underentreprenøren.

Den kontrollerende entreprenør er det primære kontaktpunkt for alle oplysninger om PRCS på stedet.

Arbejdsgiveren: Den arbejdsgiver, der ejer eller forvalter den ejendom, hvor byggearbejdet finder sted.

Arbejdsgiveren kan ikke udelukkende stole på redningstjenesterne. En dedikeret tjeneste skal være klar til at handle i tilfælde af en nødsituation. De ordninger for nødhjælp, der kræves i henhold til forordning 5 i begrænsede rum forordninger, skal være egnede og tilstrækkelige. Om nødvendigt skal der stilles udstyr til rådighed, der gør det muligt at udføre genoplivningsprocedurer. Ordningerne skal være på plads, før nogen person går ind i eller arbejder i et lukket rum.

Den kontrollerende entreprenør: Den arbejdsgiver, der har det overordnede ansvar for byggeriet på byggepladsen.

Arbejdsgiveren eller underleverandøren ved indgangen: Enhver arbejdsgiver, der beslutter, at en ansat, som han leder, skal gå ind i et lukket rum, der kræver en tilladelse.

Medarbejderne har et ansvar for at rejse bekymringer, f.eks. ved at hjælpe med at fremhæve potentielle risici på arbejdspladsen, sikre, at sundheds- og sikkerhedskontroller er praktiske og øge engagementet i at arbejde sikkert og sundt.

Risici og farer: VOC'er

A lukket rum der indeholder visse farlige forhold, kan betragtes som et lukket rum, der kræver tilladelse i henhold til standarden. Tilladelsespligtige lukkede rum kan være umiddelbart farlige for operatørens liv, hvis de ikke identificeres, vurderes, testes og kontrolleres korrekt. Et tilladelsespligtigt lukket rum kan defineres som et lukket rum, hvor der er risiko for et (eller flere) af følgende forhold:

  • Alvorlig personskade som følge af brand eller eksplosion
  • Tab af bevidsthed som følge af forhøjet kropstemperatur
  • Bevidstløshed eller kvælning som følge af gas, røg, damp eller iltmangel
  • Drukning som følge af en stigning i en væskes vandstand
  • kvælning som følge af et frit flydende fast stof eller manglende mulighed for at nå et lufthygiejnisk miljø som følge af at være fanget af et sådant frit flydende fast stof

Disse skyldes følgende farer:

  • Brandfarlige stoffer og iltberigelse
  • Overdreven varme
  • Giftige gasser, røg eller dampe
  • Iltmangel
  • Indtrængning eller tryk af væsker
  • Fritflydende faste materialer
  • Andre farer (f.eks. eksponering for elektricitet, høj støj eller tab af rummets strukturelle integritet) VOC'er.

Egentligt sikre og egnede produkter til sikkerhed i lukkede rum

Disse produkter er certificeret til at opfylde lokale standarder for egensikkerheder.

Den Gas-Pro bærbare multigasdetektor tilbyder detektering af op til 5 gasser i en kompakt og robust løsning. Den har et letlæseligt topmonteret display, som gør den nem at bruge og optimal til gasdetektering i lukkede rum. En valgfri intern pumpe, der aktiveres med flowpladen, gør det nemt at teste før indtrængen, og gør det muligt at bruge Gas-Pro enten i pumpe- eller diffusionstilstand.

Gas-Pro TK tilbyder de samme gassikkerhedsfordele som den almindelige Gas-Pro, samtidig med at den tilbyder Tank Check-tilstand, som automatisk kan variere mellem %LEL og %Volume til inerti-applikationer.

T4 bærbar 4-i-1-gasdetektor giver effektiv beskyttelse mod 4 almindelige gasfarer: kulilte, hydrogensulfid, brændbare gasser og iltsvind. Multigasdetektoren T4 kommer nu med forbedret detektion af pentan, hexan og andre langkædede kulbrinter.

Tetra 3 bærbar multigasmonitor kan detektere og overvåge de fire mest almindelige gasser (kulilte, metan, ilt og hydrogensulfid), men også et udvidet udvalg: ammoniak, ozon, svovldioxid, H2 filtreret CO (til stålværker).

Hvad er farerne ved carbonmonoxid? 

Kulilte (CO) er en farveløs, lugtløs, smagløs og giftig gas, der produceres ved ufuldstændig forbrænding af kulstofbaserede brændstoffer, herunder gas, olie, træ og kul. Det er kun, når brændslet ikke forbrændes fuldstændigt, at der dannes overskydende CO, som er giftigt. Når CO kommer ind i kroppen, forhindrer det blodet i at føre ilt til celler, væv og organer. CO er giftigt, da man hverken kan se, smage eller lugte det, men CO kan dræbe hurtigt og uden advarsel.

Forordning

Sundheds- og sikkerhedsstyrelsen(HSE) forbyder, at arbejdstagere udsættes for mere end 20 ppm (parts per million) i en 8-timers langtidseksponeringsperiode og 100 ppm (dele pr. million) i en korttidseksponeringsperiode på 15 minutter.

OSHA standarder forbyder, at arbejdstagere udsættes for mere end 50 dele CO-gas pr. million luftdele i gennemsnit over en 8-timers periode. 8-timers PEL for CO i søfart er også 50 ppm. Søarbejdere skal dog fjernes fra eksponering, hvis CO-koncentrationen i atmosfæren overstiger 100 ppm. Det maksimale CO-niveau for arbejdstagere, der arbejder med roll-on roll-off-operationer under lastning og losning af gods, er 200 ppm.

Hvilke farer er der?

CO-volumen (ppm (parts per million) Fysiske virkninger

200 ppm Hovedpine i 2-3 timer

400 ppm Hovedpine og kvalme i 1-2 timer, livstruende inden for 3 timer.

800 ppm Kan forårsage kramper, alvorlig hovedpine og opkastninger på under en time, bevidstløshed inden for 2 timer.

1.500 ppm Kan forårsage svimmelhed, kvalme og bevidstløshed på under 20 minutter; død inden for 1 time

6.400 ppm Kan forårsage bevidstløshed efter to til tre indåndinger: død inden for 15 minutter

Omkring 10 til 15 % af de personer, der får en CO-forgiftning, udvikler langsigtede komplikationer. Disse omfatter hjerneskader, syns- og høretab, Parkinsons sygdom og hjertesygdomme.

Hvad er de sundhedsmæssige konsekvenser?

Da CO er så svært at identificere, dvs. farveløs, lugtløs, smagløs og giftig gas, kan det tage tid, før du opdager, at du har fået en CO-forgiftning. Virkningerne af CO kan være farlige.

Konsekvenser for sundheden Fysiske effekter 
Iltmangel CO forhindrer blodsystemet i effektivt at transportere ilt rundt i kroppen, især til vitale organer som hjerte og hjerne. Høje doser af CO kan derfor forårsage døden som følge af kvælning eller mangel på ilt til hjernen.
Centralnervesystemet og hjerteproblemer Da CO forhindrer hjernen i at få tilstrækkeligt med ilt, har det en afsmittende virkning på hjertet, hjernen og centralnervesystemet. Symptomerne omfatter hovedpine, kvalme, træthed, hukommelsestab og desorientering.  

Forhøjede CO-niveauer i kroppen kan medføre manglende balance, hjerteproblemer, koma, kramper og endog døden. Nogle af de berørte kan opleve hurtige og uregelmæssige hjerteslag, lavt blodtryk og hjerterytmeforstyrrelser. Cerebrale ødemer forårsaget af CO-forgiftning er særligt truende, fordi de kan resultere i, at hjernecellerne bliver knust, hvilket påvirker hele nervesystemet.

Åndedrætsorganer Da kroppen kæmper for at fordele luften rundt i kroppen som følge af kulilte på grund af fratagelse af blodcellerne for ilt. Nogle patienter vil opleve åndenød, især når de udfører anstrengende aktiviteter.  

Hverdagens fysiske og sportslige aktiviteter vil kræve en større indsats og gøre dig mere udmattet end normalt. Disse virkninger kan forværres med tiden, efterhånden som din krops evne til at få ilt bliver mere og mere svækket.

Med tiden bliver både hjerte og lunger sat under pres, når kulilteindholdet stiger i kroppens væv. Som følge heraf vil dit hjerte forsøge hårdere at pumpe det, som det fejlagtigt opfatter som iltet blod fra dine lunger til resten af kroppen. Som følge heraf begynder luftvejene at svulme op, så der kommer endnu mindre luft ind i lungerne. Ved langvarig eksponering ødelægges lungevævet til sidst, hvilket resulterer i hjerte-kar-problemer og lungesygdomme.

Kronisk eksponering Kronisk eksponering kan have meget alvorlige langtidsvirkninger, afhængigt af forgiftens omfang. I ekstreme tilfælde kan den del af hjernen, der er kendt som hippocampus, blive beskadiget. Denne del af hjernen er ansvarlig for udviklingen af nye erindringer og er særlig sårbar over for skader.  

Mens de, der lider af langtidsvirkninger af kulilteforgiftning, kommer sig med tiden, er der tilfælde, hvor nogle mennesker lider af permanente virkninger. Dette kan ske, når eksponeringen har været tilstrækkelig stor til at medføre organ- og hjerneskader.

Ufødte babyer Da fosterhæmoglobin blandes lettere med CO end voksenhæmoglobin, bliver babyens carboxyhæmoglobinniveau højere end moderens. Spædbørn og børn, hvis organer stadig er under udvikling, er i risiko for permanente organskader.  

Små børn og spædbørn trækker desuden vejret hurtigere end voksne og har en højere stofskiftehastighed, og derfor indånder de op til dobbelt så meget luft som voksne, især når de sover, hvilket øger deres eksponering for CO.

Hvordan opfylder man kravene?

Den bedste måde at beskytte dig selv mod farerne ved CO er at bære en bærbar CO-gasdetektor af høj kvalitet.

Clip SGDer designet til brug i farlige områder og tilbyder pålidelig og holdbar overvågning af fast levetid i en kompakt, let og vedligeholdelsesfri enhed.Clip SGD har en levetid på 2 år og fås til hydrogensulfid (H2S), kulilte (CO) eller ilt (O2).Clip SDG personlig gasdetektor er designet til at modstå de hårdeste industrielle arbejdsforhold og leverer branchens førende alarmtid, udskiftelige alarmniveauer og hændelseslogning samt brugervenlige bump-test- og kalibreringsløsninger.

Gasmanmed specialiseret CO-sensor er en robust, kompakt enkeltgasdetektor, der er designet til brug i de hårdeste miljøer. Dens kompakte og lette design gør den til det ideelle valg til industriel gasdetektering. Den vejer kun 130 g og er ekstremt holdbar med høj slagfasthed og beskyttelse mod støv/vandindtrængning, høje 95 dB-alarmer, en levende rød/blå visuel advarsel, kontrol med én knap og et letlæseligt, baggrundsbelyst LCD-display, der sikrer klar visning af gasniveauaflæsninger, alarmforhold og batterilevetid. Data- og hændelseslogning er standard, og der er en indbygget 30-dages advarsel, når kalibreringen skal foretages.

Ballongassikkerhed: Farerne ved helium og kvælstof 

Ballongas er en blanding af helium og luft. Ballongas er sikkert, når det bruges korrekt, men du bør aldrig bevidst indånde gassen, da den er kvælende og kan medføre helbredskomplikationer. Ligesom andre kvælningsmidler optager heliumet i ballongas en del af det volumen, som luft normalt optager, hvilket forhindrer luften i at blive brugt til at holde ild i gang eller til at holde organer i gang.

Der findes andre kvælningsmidler, der anvendes i industrielle applikationer. For eksempel er brugen af nitrogen blevet næsten uundværlig i mange industrielle fremstillings- og transportprocesser. Selv om der er mange anvendelsesmuligheder for nitrogen, skal det håndteres i overensstemmelse med de industrielle sikkerhedsforskrifter. Kvælstof bør behandles som en potentiel sikkerhedsrisiko uanset omfanget af den industrielle proces, hvor det anvendes. Kuldioxid anvendes almindeligvis som kvælningsmiddel, især i brandslukningssystemer og i visse brandslukkere. På samme måde er helium ubrændbart og ugiftigt og reagerer ikke med andre grundstoffer under normale forhold. Det er dog vigtigt at vide, hvordan man håndterer helium korrekt, da en misforståelse kan føre til fejlbedømmelser, som kan resultere i en dødelig situation, da helium anvendes i mange dagligdags situationer. Som det er tilfældet med alle gasser, er det vigtigt at passe og håndtere heliumbeholdere korrekt.

Hvilke farer er der?

Når du indånder helium, bevidst eller ubevidst, fortrænger det luft, som til dels er ilt. Det betyder, at når du indånder, er den ilt, der normalt ville være til stede i dine lunger, blevet erstattet med helium. Da ilt spiller en rolle i mange af kroppens funktioner, herunder tænkning og bevægelse, udgør for meget fortrængning en sundhedsrisiko. Typisk vil indånding af en lille mængde helium have en stemmeforandrende virkning, men det kan også forårsage en smule svimmelhed, og der er altid mulighed for andre virkninger, herunder kvalme, svimmelhed og/eller midlertidigt tab af bevidsthed - alle virkninger af iltmangel.

  • Som de fleste kvælningsmidler er kvælstofgas ligesom heliumgas farveløs og lugtfri. Hvis der ikke findes anordninger til detektering af nitrogen, er risikoen for, at industriarbejdere udsættes for en farlig nitrogenkoncentration, betydeligt større. Mens helium ofte stiger op fra arbejdsområdet på grund af sin lave massefylde, forbliver kvælstof i stedet for at sprede sig ud fra lækagen og spredes ikke hurtigt. Derfor er det et stort sikkerhedsmæssigt problem, at systemer, der drives med nitrogen, udvikler uopdagede lækager. I retningslinjerne for arbejdsmiljøforebyggelse forsøger man at imødegå denne øgede risiko ved hjælp af yderligere sikkerhedskontrol af udstyret. Problemet er lave iltkoncentrationer, der påvirker personalet. I begyndelsen omfatter symptomerne let åndenød og hoste, svimmelhed og måske rastløshed, efterfulgt af hurtig vejrtrækning, smerter i brystet og forvirring, med langvarig indånding, der resulterer i forhøjet blodtryk, bronkospasmer og lungeødem.
  • Helium kan forårsage præcis de samme symptomer, hvis det er indeholdt i et volumen og ikke kan slippe ud. Og i hvert enkelt tilfælde medfører en fuldstændig udskiftning af luften med den kvælende gas en hurtig nedslagning, hvor en person bare falder sammen, hvor han eller hun står, hvilket resulterer i en række forskellige skader.

Bedste praksis for ballongassikkerhed

I overensstemmelse med OSHA retningslinjer er der krav om obligatorisk testning af lukkede industrielle rum, og ansvaret påhviler alle arbejdsgivere. Prøver af atmosfærisk luft i disse rum vil hjælpe med at bestemme, om den er egnet til indånding. De test, der skal udføres på prøvetagningsluften, omfatter først og fremmest iltkoncentrationer, men også tilstedeværelse af brændbare gasser og test for giftige dampe for at identificere ophobninger af disse gasser.

Uanset opholdets varighed kræver OSHA, at alle arbejdsgivere sørger for, at der er en ledsager lige uden for et tilladelsespligtigt rum, når personalet arbejder derinde. Denne person skal konstant overvåge gasforholdene i rummet og tilkalde redningsfolk, hvis arbejdstageren i det lukkede rum ikke reagerer. Det er vigtigt at bemærke, at ledsageren på intet tidspunkt må forsøge at trænge ind i det farlige rum for at foretage en redningsaktion uden hjælp.

I begrænsede områder vil tvungen luftcirkulation med træk reducere ophobningen af helium, nitrogen eller andre kvælende gasser betydeligt og begrænse risikoen for en dødelig eksponering. Selv om denne strategi kan anvendes i områder med lav risiko for kvælstoflækager, er det forbudt for arbejdstagere at gå ind i rene kvælstofgasmiljøer uden at bruge passende åndedrætsudstyr. I disse tilfælde skal personalet anvende passende udstyr til kunstig lufttilførsel.