Hvad er årsagen til kulbrintebrande?  

Brande med kulbrinter skyldes, at kulstofholdige brændstoffer forbrændes i ilt eller luft. De fleste brændstoffer indeholder et betydeligt indhold af kulstof, herunder papir, benzin og metan - som eksempler på faste, flydende eller gasformige brændstoffer - og deraf stammer kulbrintebrande.

For at der er eksplosionsrisiko skal der være mindst 4,4 % metan i luften eller 1,7 % propan, men for opløsningsmidler kan så lidt som 0,8 til 1,0 % af den luft, der fortrænges, være nok til at skabe en brændstof-luftblanding, der vil eksplodere voldsomt ved kontakt med en gnist.

Farer i forbindelse med brande af kulbrinter

Brande med kulbrinter anses for at være meget farlige sammenlignet med brande, der er antændt som følge af simple brændbare stoffer, da disse brande har kapacitet til at brænde i større omfang og også har potentiale til at udløse en eksplosion, hvis de væsker, der frigives, ikke kan kontrolleres eller inddæmmes. Derfor udgør disse brande en farlig trussel for alle, der arbejder i et højrisikoområde, og farerne omfatter energirelaterede farer som f.eks. forbrænding, afbrænding af omgivende genstande. Dette er en fare på grund af den evne, at brandene kan vokse hurtigt, og at varmen kan ledes, omdannes og udstråles til nye brændselskilder og forårsage sekundære brande.

Giftig farer kan være til stede i forbrændingsprodukter, for f.eks, carbonmonoxid (CO), hydrogencyanid (HCN), saltsyre (HCL), nitrogen dioxid (NO2) og forskellige polycykliske aromatiske kulbrinter (PAH) forbindelser er farlige for personer, der arbejder i disse miljøer. CO bruger ilt der bruges til at transportere den røde blodlegemer rundt i kroppen, i det mindste midlertidigt, hvilket forringer kroppens evne til at transportere ilt fra vores lunger til de celler, der har brug for det. HCN bidrager til dette problem ved at hæmme det enzym, der fortæller de røde blodlegemer, at de skal slippe den ilt, de har, hvor der er brug for den - hvilket yderligere hæmmer kroppens evne til at få ilten til de celler, der har brug for den. HCL er et generelty en sur forbindelse, der dannes gennem overophedninged kabler. Dette er skadeligt for kroppen, hvis indtages da det påvirker slimhinden i mund, næse, hals, luftveje, øjne og lunger. NO2 er dannes i forbrænding ved høj temperatur og der kan forårsage skade på de menneskelige luftveje og øge en persons sårbarhed over for og i nogle tilfælde føre til astmaanfald. PAH'er påvirker kroppen over en længere tidsperiode, med tjene tilfælde fører til kræft og andre sygdomme.

Vi kan slå de relevante sundhedsniveauer op, der er accepteret som sikkerhedsgrænser på arbejdspladsen for raske arbejdstagere inden for Europa og de tilladte eksponeringsgrænser for USA. Dette giver os en 15-minutters tidsvægtet gennemsnitskoncentration og en 8-timers tidsvægtet gennemsnitskoncentration.

For gasser er disse:

Gas STEL (15-minutters TWA) LTEL (8-timers TWA) LTEL (8 timer TWA)
CO 100ppm 20ppm 50ppm
NO2 1ppm 0,5ppm 5 Loftsgrænse
HCL 1ppm 5ppm 5 Loftsgrænse
HCN 0,9ppm 4,5ppm 10ppm

De forskellige koncentrationer repræsenterer de forskellige gasrisici, idet lavere koncentrationer er nødvendige for farligere situationer. Heldigvis har EU regnet det hele ud for os og gjort det til deres EH40-standard.

Måder at beskytte os selv på

Vi kan tage skridt til at sikre, at vi ikke lider under udsættelse for brande eller deres uønskede forbrændingsprodukter. Først og fremmest kan vi naturligvis overholde alle brandsikkerhedsforanstaltninger, som det er lovpligtigt. For det andet kan vi indtage en proaktiv holdning og ikke lade potentielle brændselskilder ophobe sig. Endelig kan vi opdage og advare om tilstedeværelsen af forbrændingsprodukter ved hjælp af passende gasdetektionsudstyr.

Crowcon produktløsninger

Crowcon tilbyder en række udstyr, der kan detektere brændstoffer og de forbrændingsprodukter, der er beskrevet ovenfor. Vores PID produkter detekterer faste og væskebaserede brændstoffer, når de er luftbårne, enten som kulbrinter på støvpartikler eller dampe fra opløsningsmidler. Dette udstyr omfatter vores gas-Pro bærbar. Gasserne kan detekteres af vores Gasman enkelt gas, T3 multigas og Gas-Pro multi gas pumpede bærbare produkter, og vores Xgard, Xgard Bright og Xgard IQ faste produkter - som hver især kan detektere alle de nævnte gasser.

Brandfarlige gas-IR-sensorer – hvordan de fungerer

Her er vores sidste video i serien, der illustrerer arbejdet i kulbrintegas afsløre sensorer. Denne gang viser vi den grundlæggende driftsform for en infrarød (IR) sensor til brændbare gasser.

Infrarøde udledere i sensoren genererer hver stråler af infrarødt lys . Hver stråle er af samme intensitet og afbøjes af et spejl i sensoren på en fotomodtager, som måler niveauet af den modtagne infrarøde værdi. Den "målende" stråle med en frekvens på ca. 3,3μm absorberes af kulbrintegasmolekyler, så stråleintensiteten reduceres . "Referencestrålen" (ca. 3,0μm) absorberes ikke, så den ankommer til modtageren ved fuld styrke. %LEL af den tilstedeværende gas bestemmes af forskellen i intensitet mellem de bjælker, der måles af fotomodtageren.

Fortsæt med at læse "Brandfarlige gas-IR-sensorer – hvordan de fungerer"

Registrering af VOC'er med PID – sådan fungerer det

Efter for nylig at have delt vores video om pellistors, og hvordan de fungerer, troede vi, det ville være fornuftigt også at sende vores video om PID (foto-ioniseringsdetektion). Dette er den foretrukne teknologi til overvågning af eksponering for giftige niveauer af en anden gruppe vigtige gasser – flygtige organiske forbindelser (VOC' er).

Fortsæt med at læse "Detektering af VOC'er med PID – sådan fungerer det"

Pellistor sensorer – hvordan de fungerer

Pellistor gassensorer (eller katalytiske perlegassensorer) har været den primære teknologi til påvisning af brændbare gasser siden 60'erne. Selv om vi har drøftet en række spørgsmål vedrørende påvisning af brændbare gasser og VOC, har vi endnu ikke set på, hvordan pellistorer fungerer. For at kompensere for dette inkluderer vi en videoforklaring, som vi håber, du downloader og bruger som en del af enhver træning, du gennemfører

En pellistor er baseret på en Wheatstone bro kredsløb, og omfatter to "perler", som begge encase platin spoler.  En af perlerne (den 'aktive' perle) behandles med en katalysator, som sænker den temperatur, hvor gassen omkring den antændes. Denne perle bliver varm fra forbrændingen, hvilket resulterer i en temperaturforskel mellem denne aktive og den anden 'reference' perle.  Dette medfører en forskel i modstand, som måles; den mængde gas, der er til stede, er direkte proportional med den, så gaskoncentrationen i procent af dens nedre eksplosive grænse (%LEL*) kan bestemmes nøjagtigt.

Den varme perle og elektriske kredsløb er indeholdt i flammefast sensor hus, bag sintret metal flammefanger (eller sinter), hvorigennem gassen passerer. Begrænset i dette sensorhus, som opretholder en indre temperatur på 500 °C, kan der forekomme kontrolleret forbrænding, isoleret fra det ydre miljø. I høje gaskoncentrationer kan forbrændingsprocessen være ufuldstændig, hvilket resulterer i et lag sod på den aktive perle. Dette vil helt eller delvist forringe ydeevnen. Der skal udvises forsigtighed i miljøer, hvor der kan forekomme gasniveauer på over 70 % LEL.

For mere information om gassensorteknologi til brændbare gasser, læs vores sammenligningsartikel om pellistorer vs infrarød gassensorteknologi: Nedbryder silikoneimplantater din gasdetektion?.

* Nedre eksplosiv grænse - Lær mere

Klik i øverste højre hjørne af videoen for at få adgang til en fil, der kan downloades.

De enkle trin til at passe på dit gasdetekteringsudstyr denne vinter.

Gasdetektorer er der for at redde dit liv, uanset om det er et fast system eller en bærbar detektor, holde dem godt vedligeholdt er en vigtig del af ejerskabet.

Vores gæst blogger i denne uge, Julian, har sammensat enkle trin for at sikre din gasdetektor er op til jobbet, når og hvis det er påkrævet.

Fortsæt med at læse "De enkle trin til at passe på dit gasdetekteringsudstyr denne vinter."