En kort historie om gasdetektion 

Udviklingen inden for gasdetektion har ændret sig betydeligt i årenes løb. Nye, innovative idéer fra kanariefugle til bærbart overvågningsudstyr giver arbejderne kontinuerlig præcis gasovervågning.

Den industrielle revolution var katalysator for udviklingen af gasdetektion på grund af brugen af meget lovende brændsler som f.eks. kul. Da kul kan udvindes af jorden enten ved minedrift eller underjordisk minedrift, var redskaber som hjelme og flammelys deres eneste beskyttelse mod farerne ved metaneksponering under jorden, som endnu ikke var blevet opdaget. Metangas er farveløs og lugtløs, hvilket gør det svært at vide, at den er til stede, indtil der blev opdaget et mærkbart mønster af sundhedsproblemer. Risikoen ved eksponering for gas resulterede i, at man eksperimenterede med detektionsmetoder for at bevare arbejdernes sikkerhed i mange år fremover.

Et behov for gasdetektion

Da eksponeringen for gas blev åbenbar, forstod minearbejderne, at de var nødt til at vide, om der var en lomme af metangas i minen, hvor de arbejdede. I begyndelsen af det 19. århundrede blev den første gasdetektor registreret, og mange minearbejdere bar flammelamper på deres hjelme for at kunne se, mens de arbejdede, så det var af afgørende betydning at kunne opdage den ekstremt brandfarlige metan. Arbejderen bar et tykt, vådt tæppe over kroppen, mens han bar en lang væge, hvis ende var tændt i brand. Når de gik ind i minerne, bevægede de flammen rundt og langs væggene for at finde gaslommer. Hvis der blev fundet en reaktion, blev den antændt og meddelt besætningen, mens den person, der opdagede den, var beskyttet af tæppet. Med tiden blev der udviklet mere avancerede metoder til gasdetektering.

Introduktion af kanariefugle

Gasdetektion blev flyttet fra mennesker til kanariefugle på grund af deres høje kvidren og lignende nervesystemer til at kontrollere vejrtrækningsmønstre. Kanariefuglene blev placeret i bestemte områder af minen, hvorfra arbejderne så efter kanariefuglene for at passe dem og se, om deres helbred var blevet påvirket. I løbet af arbejdsskiftet lyttede minearbejderne til kanariefuglenes kvidren. Hvis en kanariefugl begyndte at ryste sit bur, var det en stærk indikator på, at den var blevet udsat for en gaslomme, der var begyndt at påvirke dens helbred. Minearbejderne ville så evakuere minen og bemærkede, at det var usikkert at komme ind i den. I nogle tilfælde, hvor kanariefuglen holdt op med at kvidre, vidste minearbejderne, at de skulle skynde sig ud af minen, før gaseksponeringen havde haft en chance for at påvirke deres helbred.

Flammen lys

Flammelyset var den næste udvikling inden for gasdetektering i minen som følge af bekymringer om dyrenes sikkerhed. Flammen gav lys til minearbejderne, men var samtidig anbragt i en flammeskærm, der absorberede al varme og fangede flammen for at forhindre, at den antændte eventuel tilstedeværende metan. Den udvendige skal indeholdt et glas med tre vandrette snit. Den midterste linje var indstillet som det ideelle gasmiljø, mens den nederste linje angav et iltfattigt miljø, og den øverste linje angav methaneksponering eller et iltberiget miljø. Minearbejderne ville tænde flammen i et miljø med frisk luft. Hvis flammen blev svagere eller begyndte at dø, var det et tegn på, at atmosfæren havde en lav iltkoncentration. Hvis flammen blev større, vidste minearbejderne, at der var metan til stede sammen med ilt, hvilket i begge tilfælde indikerede, at de skulle forlade minen.

Den katalytiske sensor

Selv om flammelyset var en udvikling inden for gasdetektionsteknologi, var det dog ikke en "one size fits all"-tilgang til alle industrier. Derfor var den katalytiske sensor den første gasdetektor, der har lighed med moderne teknologi. Sensorerne fungerer efter det princip, at når en gas oxideres, producerer den varme. Den katalytiske sensor fungerer ved hjælp af temperaturændringer, som er proportionale med gaskoncentrationen. Selv om dette var et skridt fremad i udviklingen af den teknologi, der var nødvendig for gasdetektion, krævede det i begyndelsen stadig manuel betjening for at få en aflæsning.

Moderne teknologi

Gasdetektionsteknologien er blevet udviklet enormt siden begyndelsen af det 19. århundrede, hvor den første gasdetektor blev registreret. Der findes nu mere end fem forskellige typer sensorer, der almindeligvis anvendes i alle industrier, herunder Elektrokemisk, Katalytiske perler (Pellistor), Fotoioniseringsdetektor (PID) og infrarød teknologi (IR), sammen med de mest moderne sensorer Molekylær egenskabsspektrometer™ (MPS) og Long-Life Oxygen (LLO2) er moderne gasdetektorer meget følsomme, nøjagtige og vigtigst af alt pålidelige, hvilket alt sammen gør det muligt for alt personale at forblive sikkert og reducere antallet af dødsulykker på arbejdspladsen.

T4x en Compliance 4-gasmonitor 

Det er afgørende at sikre, at den gassensor, du anvender, er fuldt optimeret og pålidelig til detektion og nøjagtig måling af brændbare gasser og dampe, uanset hvilket miljø eller arbejdsplads den befinder sig i, er af største vigtighed.

Fast eller transportabel?

Gasdetektorer findes i en række forskellige former, men de er oftest kendt som faste, bærbare eller transportable, hvor disse anordninger er designet til at opfylde brugerens og omgivelsernes behov og samtidig beskytte sikkerheden for dem, der befinder sig der.

Faste detektorer implementeres som permanent inventar i et miljø for at sikre løbende overvågning af anlæg og udstyr. I henhold til retningslinjer fra Sundheds- og sikkerhedsstyrelsen (HSE) er disse typer sensorer særligt nyttige, når der er mulighed for en lækage til et lukket eller delvist lukket rum, som kan føre til ophobning af brandfarlige gasser. International Gas Carrier Code (IGC-koden) fastslår, at gasdetektionsudstyr skal installeres for at overvåge integriteten af det miljø, som det skal overvåge, og skal testes i overensstemmelse med de anerkendte standarder. For at sikre, at det faste gasdetektionssystem fungerer effektivt, er det afgørende, at sensorerne kalibreres rettidigt og nøjagtigt.

Bærbare detektorer leveres normalt som en lille, håndholdt enhed, der kan bruges i mindre miljøer, lukkede rum, til at spore lækager eller tidlige advarsler om tilstedeværelsen af brandfarlige gasser og dampe i farlige områder. Transportable detektorer er ikke håndholdte, men de kan let flyttes fra sted til sted for at fungere som en monitor "stand-in", mens en fastmonteret sensor er under vedligeholdelse.

Hvad er en 4-gasmåler til overvågning af overholdelse af kravene?

Gassensorer er primært optimeret til at detektere specifikke gasser eller dampe gennem design eller kalibrering. Det er ønskeligt, at en sensor til giftige gasser, f.eks. en sensor til detektering af carbonmonoxid eller svovlbrinte, giver en nøjagtig indikation af målgaskoncentrationen snarere end en reaktion på en anden interfererende forbindelse. Personlige sikkerhedsmonitorer kombinerer ofte flere sensorer for at beskytte brugeren mod specifikke gasrisici. En "Compliance 4-Gas-monitor" omfatter imidlertid sensorer til måling af kulilte (CO), svovlbrinte (H2S), ilt (O2) og brandfarlige gasser; normalt metan (CH4) i én og samme anordning.

Den T4x monitor med den banebrydende MPS™-sensor er i stand til at yde beskyttelse mod CO, H2S, O2 risici med nøjagtig måling af flere brændbare gasser og dampe ved hjælp af en grundlæggende metankalibrering.

Er der behov for en 4-gasovervågningsenhed til overholdelse af kravene?

Mange af de sensorer til brændbare gasser, der anvendes i konventionelle monitorer, er optimeret til at detektere en bestemt gas eller damp gennem kalibrering, men reagerer på mange andre forbindelser. Dette er problematisk og potentielt farligt, da den gaskoncentration, som sensoren viser, ikke er nøjagtig og kan vise en højere (eller farligere) og lavere koncentration af gas/damp, end den er til stede. Da arbejdstagere ofte potentielt kan blive udsat for risici fra flere brændbare gasser og dampe på deres arbejdsplads, er det utrolig vigtigt at sikre, at de er beskyttet ved at implementere en præcis og pålidelig sensor.

Hvordan er den bærbare 4-i-1-gasdetektor T4x anderledes?

For at sikre løbende pålidelighed og nøjagtighed af T4x detektoren. Detektoren bruger MPS™ (Molecular Property Spectrometry) sensorfunktionalitet i sin robuste enhed, der giver en række funktioner for at sikre sikkerheden. Den beskytter mod de fire almindelige gasfarer: kulilte, hydrogensulfid, brændbare gasser og iltsvind, mens T4x multigasdetektoren nu har forbedret detektering af pentan, hexan og andre langkædede kulbrinter. Den har en stor enkeltknap og et menusystem, der er let at følge, så den er nem at bruge for dem, der bærer handsker og har gennemgået minimal træning. Detektoren T4x er robust, men alligevel bærbar, og har en integreret gummistøvle og et valgfrit clip-on-filter, der nemt kan fjernes og udskiftes efter behov. Disse funktioner gør det muligt for sensorerne at forblive beskyttede selv i de mest beskidte miljøer for at sikre, at de kan fungere konstant.

En unik fordel ved T4x -detektoren er, at den sikrer, at eksponeringen for giftige gasser beregnes nøjagtigt gennem et helt skift, selv hvis den slukkes et kort øjeblik, i en pause eller på vej til et andet sted. TWA-funktionen giver mulighed for uafbrudt og afbrudt overvågning, så når detektoren tændes, begynder den igen fra nul, som om den starter på et nyt skift og ignorerer alle tidligere målinger. T4x giver brugeren mulighed for at inkludere tidligere målinger inden for den korrekte tidsramme. Detektoren er ikke kun pålidelig med hensyn til nøjagtig detektion og måling af fire gasser, den er også pålidelig på grund af batteriets levetid. Det holder i 18 timer og er nyttigt til brug på flere eller længere vagter uden at skulle oplades så regelmæssigt.

Under brug anvender T4 et praktisk "trafiklys"-display, der giver konstant visuel sikkerhed for, at den fungerer forsvarligt og overholder stedets bump-test- og kalibreringspolitik. De lysegrønne og røde Positive Safety LED'er er synlige for alle og giver derfor en hurtig, enkel og omfattende indikation af monitorens status for både brugeren og andre omkring dem.

T4x hjælper driftsteams med at fokusere på mere værdiskabende opgaver ved at reducere antallet af sensorudskiftninger med 75 % og øge sensorernes pålidelighed. Ved at sikre overholdelse på hele stedet hjælper T4x sundheds- og sikkerhedschefer ved at eliminere behovet for at sikre, at hver enhed er kalibreret til den relevante brændbare gas, da den nøjagtigt registrerer 19 på én gang. Da den er giftresistent og har fordoblet batterilevetiden, er det mere sandsynligt, at operatørerne aldrig er uden en enhed. T4x reducerer de 5-årige samlede ejeromkostninger med over 25% og sparer 12 g bly pr. detektor, hvilket gør det meget lettere at genbruge den, når dens levetid er slut.

Samlet set har kombinationen af tre sensorer (herunder to nye sensorteknologier MPS og O med lang levetid2) i en allerede populær bærbar multigasdetektor. Crowcon har gjort det muligt at forbedre sikkerheden, omkostningseffektiviteten og effektiviteten for individuelle enheder og hele flåder. Den nye T4x giver længere levetid med højere nøjagtighed til detektering af gasfarer, samtidig med at den er mere bæredygtig end nogensinde før.

Hvor længe vil min gassensor holde?

Gasdetektorer anvendes i vid udstrækning inden for mange industrier (f.eks. vandbehandling, raffinaderier, petrokemiske virksomheder, stålindustrien og byggebranchen for blot at nævne nogle få) for at beskytte personale og udstyr mod farlige gasser og deres virkninger. Brugere af bærbare og faste enheder er bekendt med de potentielt betydelige omkostninger, der kan være forbundet med at holde deres instrumenter sikkert i drift i hele deres levetid. Gassensorer måler koncentrationen af en bestemt analysand af interesse, f.eks. CO (carbonmonoxid), CO2 (kuldioxid) eller NOx (nitrogenoxid). Der findes to mest anvendte gassensorer inden for industrielle applikationer: elektrokemiske sensorer til måling af giftige gasser og ilt og pellistorer (eller katalytiske perler) til måling af brændbare gasser. I de seneste år er der indført både ilt og MPS (Molecular Property Spectrometer) sensorer har givet mulighed for at forbedre sikkerheden.

Hvordan ved jeg, om min sensor er defekt?

Der har været flere patenter og teknikker anvendt på gasdetektorer i løbet af de seneste årtier, som hævder at kunne bestemme, hvornår en elektrokemisk sensor har svigtet. De fleste af disse metoder konkluderer imidlertid kun, at sensoren fungerer ved hjælp af en form for elektrodestimulering, og de kan give en falsk følelse af sikkerhed. Den eneste sikre metode til at påvise, at en sensor fungerer, er at anvende testgas og måle responsen: en bump-test eller fuld kalibrering.

Elektrokemisk sensor

Elektrokemiske sensorer er de mest anvendte i diffusionstilstand, hvor gas i det omgivende miljø trænger ind gennem et hul i cellens overflade. Nogle instrumenter anvender en pumpe til at tilføre luft eller gasprøver til sensoren. Der er monteret en PTFE-membran over hullet for at forhindre vand eller olie i at trænge ind i cellen. Sensorens rækkevidde og følsomhed kan varieres i udformningen ved at anvende forskellige størrelser huller. Større huller giver højere følsomhed og opløsning, mens mindre huller reducerer følsomheden og opløsningen, men øger rækkevidden.

Faktorer, der påvirker den elektrokemiske sensors levetid

Der er tre hovedfaktorer, der påvirker sensorens levetid, herunder temperatur, eksponering for ekstremt høje gaskoncentrationer og fugtighed. Andre faktorer omfatter sensorelektroder og ekstreme vibrationer og mekaniske stød.

Ekstreme temperaturer kan påvirke sensorens levetid. Producenten angiver et driftstemperaturområde for instrumentet: typisk -30˚C til +50˚C. Sensorer af høj kvalitet vil dog kunne modstå midlertidige udsving ud over disse grænser. Kortvarig (1-2 timer) eksponering ved 60-65˚C for H2S- eller CO-sensorer (f.eks.) er acceptabel, men gentagne hændelser vil resultere i fordampning af elektrolytten og forskydninger i basislinjen (nul) og langsommere respons.

Eksponering for ekstremt høje gaskoncentrationer kan også forringe sensorens ydeevne. Elektrokemiske sensorer testes typisk ved at blive udsat for op til ti gange deres konstruktionsgrænse. Sensorer, der er fremstillet af katalysatormateriale af høj kvalitet, bør kunne modstå sådanne eksponeringer uden ændringer i kemien eller tab af ydeevne på lang sigt. Sensorer med lavere katalysatorbelastning kan lide skade.

Den største indflydelse på sensorens levetid er luftfugtighed. Den ideelle miljøbetingelse for elektrokemiske sensorer er 20˚Celsius og 60 % RH (relativ luftfugtighed). Når den omgivende luftfugtighed stiger til over 60 % RH, vil vand blive absorberet i elektrolytten og forårsage fortynding. I ekstreme tilfælde kan væskeindholdet stige 2-3 gange, hvilket potentielt kan resultere i lækage fra sensorhuset og derefter gennem stifterne. Under 60 % RH begynder vandet i elektrolytten at blive afhydreret. Responstiden kan blive betydeligt forlænget, når elektrolytten dehydreres. Sensorelektroder kan under usædvanlige forhold blive forgiftet af forstyrrende gasser, der adsorberes på katalysatoren eller reagerer med den og skaber biprodukter, som hæmmer katalysatoren.

Ekstreme vibrationer og mekaniske stød kan også skade sensorer ved at bryde de svejsninger, der binder platinelektroderne, forbindelsesstrimlerne (eller ledningerne i nogle sensorer) og stifterne sammen.

"Normal" levetid for elektrokemiske sensorer

Elektrokemiske sensorer til almindelige gasser som f.eks. kulilte eller svovlbrinte har en levetid, der typisk er angivet til 2-3 år. Mere eksotiske gassensorer som f.eks. hydrogenfluorid kan have en levetid på kun 12-18 måneder. Under ideelle forhold (stabil temperatur og luftfugtighed på omkring 20˚C og 60 % RH) uden forekomst af forurenende stoffer er det kendt, at elektrokemiske sensorer kan fungere i mere end 4000 dage (11 år). Periodisk eksponering for målgassen begrænser ikke levetiden for disse små brændselsceller: sensorer af høj kvalitet har en stor mængde katalysatormateriale og robuste ledere, som ikke udtømmes af reaktionen.

Pellistor-sensor

Pellistorsensorer består af to matchende trådspoler, der hver er indlejret i en keramisk perle. Der ledes strøm gennem spolerne, hvorved perlerne opvarmes til ca. 500˚C. Den brændbare gas brænder på perlen, og den ekstra varme, der genereres, medfører en stigning i spolernes modstand, som måles af instrumentet for at angive gaskoncentrationen.

Faktorer, der påvirker pellistorsensorens levetid

De to vigtigste faktorer, der påvirker sensorens levetid, er eksponering for høj gaskoncentration og poising eller hæmning af sensoren. Ekstreme mekaniske stød eller vibrationer kan også påvirke sensorens levetid. Katalysatoroverfladens evne til at oxidere gassen mindskes, når den er blevet forgiftet eller hæmmet. Sensorens levetid på mere end ti år er almindelig i applikationer, hvor der ikke er inhiberende eller forgiftende forbindelser til stede. Pellistorer med højere effekt har større katalytisk aktivitet og er mindre sårbare over for forgiftning. Mere porøse perler har også større katalytisk aktivitet, da deres overfladevolumen øges. En dygtig oprindelig konstruktion og sofistikerede fremstillingsprocesser sikrer maksimal porøsitet af perlerne. Eksponering for høje gaskoncentrationer (> 100 % LEL) kan også skade sensorens ydeevne og skabe en forskydning i nul-/baseline-signalet. Ufuldstændig forbrænding resulterer i kulstofaflejringer på perlen: kulstoffet "vokser" i porerne og forårsager mekanisk skade. Kulstoffet kan dog med tiden brændes af og frigøre katalytiske steder igen. Ekstreme mekaniske stød eller vibrationer kan i sjældne tilfælde også forårsage brud på pellistorspolerne. Dette problem er mere udbredt på bærbare gasdetektorer end på gasdetektorer med fastmonteret udstyr, da der er større sandsynlighed for, at de tabes, og da de anvendte pellistorer har en lavere effekt (for at maksimere batterilevetiden) og derfor anvender mere sarte, tyndere trådspoler.

Hvordan ved jeg, om min sensor er defekt?

En pellistor, der er blevet forgiftet, forbliver elektrisk funktionsdygtig, men reagerer muligvis ikke på gas. Gasdetektoren og styresystemet kan derfor se ud til at være i en sund tilstand, men en lækage af brændbar gas kan ikke opdages.

Iltføler

Ikonet Lang levetid 02

Vores nye blyfri, langtidsholdbare iltsensor har ikke komprimerede blystrenge, som elektrolytten skal trænge igennem, hvilket gør det muligt at bruge en tyk elektrolyt, hvilket betyder ingen lækager, ingen korrosion forårsaget af lækager og forbedret sikkerhed. Den ekstra robusthed af denne sensor gør det muligt for os at tilbyde en 5-årig garanti for ekstra tryghed.

Lang levetid - iltsensorer har en lang levetid på 5 år med mindre nedetid, lavere ejeromkostninger og mindre miljøpåvirkning. De måler nøjagtigt ilt over et bredt spektrum af koncentrationer fra 0 til 30 % volumen og er den næste generation af O2-gasdetektion.

MPS-sensor

MPS sensor giver avanceret teknologi, der fjerner behovet for at kalibrere og giver en "ægte LEL-værdi (lavere eksplosionsgrænse)" til aflæsning af femten brændbare gasser, men kan detektere alle brændbare gasser i et miljø med flere arter, hvilket resulterer i lavere løbende vedligeholdelsesomkostninger og reduceret interaktion med enheden. Dette reducerer risikoen for personalet og undgår kostbar nedetid. MPS-sensoren er også immun over for sensorforgiftning.  

Sensorsvigt på grund af forgiftning kan være en frustrerende og dyr oplevelse. Teknologien i MPS™-sensorenpåvirkes ikke af forurenende stoffer i miljøet. Processer, der har forureninger, har nu adgang til en løsning, der fungerer pålideligt med fejlsikret design til at advare operatøren og give personalet og aktiverne i farlige miljøer ro i sindet. Det er nu muligt at detektere flere brændbare gasser, selv i barske miljøer, ved hjælp af én enkelt sensor, der ikke kræver kalibrering og har en forventet levetid på mindst 5 år.