Industrioversigt: Affald til energi

Affald til energiindustrien anvender flere forskellige affaldsbehandlingsmetoder. Kommunalt og industrielt fast affald omdannes til elektricitet og undertiden til varme til industriel forarbejdning og fjernvarmesystemer. Hovedprocessen er naturligvis forbrænding, men der anvendes undertiden mellemliggende trin som pyrolyse, forgasning og anaerob nedbrydning til at omdanne affaldet til nyttige biprodukter, som derefter anvendes til at generere strøm via turbiner eller andet udstyr. Denne teknologi vinder stor anerkendelse globalt set som en grønnere og renere form for energi end traditionel afbrænding af fossile brændstoffer og som et middel til at reducere affaldsproduktionen.

Typer af affald til energi

Forbrænding

Forbrænding er en affaldsbehandlingsproces, der indebærer forbrænding af energirige stoffer i affaldsmaterialer, typisk ved høje temperaturer på omkring 1000 grader C. Industrielle anlæg til affaldsforbrænding kaldes almindeligvis affaldsforbrændingsanlæg og er ofte store kraftværker i sig selv. Forbrænding og andre affaldsbehandlingssystemer med høj temperatur beskrives ofte som "termisk behandling". Under processen omdannes affaldet til varme og damp, som kan bruges til at drive en turbine til at generere elektricitet. Denne metode har i dag en effektivitet på ca. 15-29 %, men der er dog mulighed for forbedringer.

Pyrolyse

Pyrolyse er en anden affaldsbehandlingsproces, hvor nedbrydning af fast kulbrinteaffald, typisk plast, finder sted ved høje temperaturer uden ilt i en atmosfære af inerte gasser. Denne behandling foregår normalt ved eller over 500 °C, hvilket giver tilstrækkelig varme til at nedbryde de langkædede molekyler, herunder biopolymerer, til mere enkle kulbrinter med lavere masse.

Forgasning

Denne proces anvendes til at fremstille gasformigt brændstof fra tungere brændstoffer og fra affald, der indeholder brændbart materiale. Ved denne proces omdannes kulstofholdige stoffer ved høj temperatur til kuldioxid (CO2), kulilte (CO) og en lille mængde brint. Ved denne proces dannes der gas, som er en god kilde til brugbar energi. Denne gas kan derefter bruges til at producere elektricitet og varme.

Plasma lysbueforgasning

I denne proces bruges en plasmabrænder til at ionisere energirigt materiale. Der produceres syntesegas, som derefter kan bruges til at fremstille gødning eller til at generere elektricitet. Denne metode er mere en teknik til bortskaffelse af affald end et seriøst middel til at generere gas, idet den ofte bruger lige så meget energi som den gas, den producerer, kan levere.

Årsager til affald til energi

Da denne teknologi vinder stor anerkendelse globalt set med hensyn til affaldsproduktion og efterspørgslen efter ren energi.

  • Undgår metanemissioner fra deponeringsanlæg
  • Kompenserer for drivhusgasemissioner fra elproduktion med fossilt brændstof
  • Genvinder og genbruger værdifulde ressourcer, f.eks. metaller
  • Producerer ren, pålidelig grundbelastet energi og damp
  • Bruger mindre jord pr. megawatt end andre vedvarende energikilder
  • Bæredygtig og stabil vedvarende brændstofkilde (sammenlignet med vind og sol)
  • Destruerer kemisk affald
  • resulterer i lave emissionsniveauer, typisk langt under de tilladte niveauer
  • Katalytisk destruktion af nitrogenoxider (NOx), dioxiner og furaner ved hjælp af selektiv katalytisk reduktion (SCR)

Hvad er gasfarerne?

Der findes mange processer til at omdanne affald til energi, bl.a. biogasanlæg, affaldsudnyttelse, perkolatpulje, forbrænding og varmegenvinding. Alle disse processer udgør en gasfare for dem, der arbejder i disse miljøer.

I et biogasanlæg produceres der biogas. Denne dannes, når organiske materialer som f.eks. landbrugs- og madaffald nedbrydes af bakterier i et iltfattigt miljø. Det er en proces, der kaldes anaerob nedbrydning. Når biogassen er blevet opsamlet, kan den bruges til at producere varme og elektricitet til motorer, mikroturbiner og brændselsceller. Det er klart, at biogas har et højt indhold af metan samt et betydeligt indhold af svovlbrinte (H2S), og dette skaber flere alvorlige gasrisici. (Læs vores blog for at få flere oplysninger om biogas). Der er imidlertid en forhøjet risiko for brand og eksplosion, risiko for lukkede rum, kvælning, iltmangel og gasforgiftning, som regel fraH2Seller ammoniak (NH3). Arbejdstagere på et biogasanlæg skal have personlige gasdetektorer, der registrerer og overvåger brændbare gasser, ilt og giftige gasser somH2Sog CO.

I en affaldsindsamling er det almindeligt at finde den brandfarlige gas metan (CH4) og de giftige gasserH2S, CO og NH3. Det skyldes, at affaldsbunkerne er bygget flere meter under jorden, og at gasdetektorerne normalt er monteret højt oppe i områderne, hvilket gør det vanskeligt at servicere og kalibrere dem. I mange tilfælde er et prøvetagningssystem en praktisk løsning, da luftprøver kan bringes til et praktisk sted og måles.

Perkolat er en væske, der løber ud fra et område, hvor affaldet er indsamlet, og hvor perkolatpuljer udgør en række gasrisici. Disse risici omfatter risikoen for brandfarlig gas (eksplosionsrisiko),H2S(gift, korrosion), ammoniak (gift, korrosion), CO (gift) og ugunstige iltniveauer (kvælning). Pulje af perkolat og passager, der fører til puljen af perkolat, som kræver overvågning af CH4,H2S, CO, NH3, ilt (O2) ogCO2. Der bør placeres forskellige gasdetektorer langs vejene til perkolatbassinet med udgang til eksterne kontrolpaneler.

Forbrænding og varmegenvinding kræver detektion afO2 og de giftige gasser svovldioxid (SO2) og CO. Disse gasser udgør alle en trussel for dem, der arbejder i kedelhusområder.

En anden proces, der er klassificeret som en gasfare, er en luftskrubber. Processen er farlig, da røggassen fra forbrænding er meget giftig. Det skyldes, at den indeholder forurenende stoffer som f.eks. kvælstofdioxid (NO2), SO2, hydrogenklorid (HCL) og dioxin. NO2 og SO2 er vigtige drivhusgasser, mens HCL alle disse her nævnte gastyper er skadelige for menneskers sundhed.

Hvis du vil læse mere om affald til energiindustrien, kan du besøge vores brancheside.

Betydningen af gasdetektion i den petrokemiske industri

Den petrokemiske industri, der er tæt forbundet med olie og gas, bruger råmaterialer fra raffinering og gasbehandling og omdanner dem ved hjælp af kemiske procesteknologier til værdifulde produkter. I denne sektor er de organiske kemikalier, der produceres i de største mængder, methanol, ethylen, propylen, butadien, benzen, toluen og xylener (BTX). Disse kemikalier er byggestenene i mange forbrugsgoder, herunder plast, tøjstof, byggematerialer, syntetiske vaskemidler og agrokemiske produkter.

Potentielle farer

Eksponering for potentielle farlige stoffer er mere sandsynlig i forbindelse med nedlukning eller vedligeholdelsesarbejde, da dette er en afvigelse fra raffinaderiets rutinemæssige drift. Da disse afvigelser er uden for den normale rutine, bør man altid være forsigtig med at undgå indånding af opløsningsmiddeldampe, giftige gasser og andre forurenende stoffer i åndedrætsorganerne. Konstant automatiseret overvågning er en hjælp til at fastslå tilstedeværelsen af opløsningsmidler eller gasser, så de dermed forbundne risici kan mindskes. Dette omfatter advarselssystemer som gas- og flammedetektorer, der understøttes af nødprocedurer og tilladelsessystemer for enhver form for potentielt farligt arbejde.

Olieindustrien er opdelt i opstrøms-, mellem- og nedstrømsled, og disse er defineret af arten af det arbejde, der udføres i hvert område. Opstrømsarbejde er typisk kendt som efterforsknings- og produktionssektoren (E&P). Midstream-området henviser til transport af produkter gennem rørledninger, transit og olietankskibe samt engrosmarkedsføring af oliebaserede produkter. Downstream-sektoren henviser til raffinering af råolie, forarbejdning af rå naturgas og markedsføring og distribution af færdige produkter.

Opstrøms

Der er behov for faste og bærbare gasdetektorer for at beskytte anlæg og personale mod risikoen for udslip af brændbare gasser (almindeligvis metan) og høje niveauer afH2S, især fra sure brønde. Gasdetektorer forO2-udtømning, SO2 og flygtige organiske forbindelser (VOC) er obligatoriske dele af det personlige værnemiddel, som normalt har en meget synlig farve og bæres i nærheden af åndedrætsrum. Undertiden anvendes HF-opløsning som skuremiddel. De vigtigste krav til gasdetektorer er robust og pålideligt design og lang batterilevetid. Modeller med designelementer, der understøtter nem flådestyring og overholdelse af reglerne, har naturligvis en fordel. Du kan læse om VOC-risiko og Crowcons løsning i vores casestudie.

Vadested

Fast overvågning af brændbare gasser tæt på overtryksanordninger, påfyldnings- og tømningsområder er nødvendig for at sikre tidlig varsling af lokale lækager. Der skal anvendes bærbare multigasmonitorer for at opretholde personsikkerheden, især under arbejde i lukkede rum og til støtte for afprøvning af områder med tilladelse til varmt arbejde. Infrarød teknologi til detektering af brændbare gasser understøtter rensning med evnen til at fungere i inaktive atmosfærer og giver pålidelig detektering på områder, hvor pellistortype detektorer ville svigte på grund af forgiftning eller eksponering for volumenniveau. Du kan læse mere om, hvordan infrarød detektion fungerer, i vores blog og læse vores casestudie om infrarød overvågning i raffinaderi-miljøer i Sydøstasien.

Bærbar lasermetan-detektion (LMm) giver brugerne mulighed for at lokalisere lækager på afstand og i svært tilgængelige områder, hvilket reducerer behovet for, at personalet skal gå ind i potentielt farlige miljøer eller situationer, når de udfører rutinemæssig eller undersøgende lækageovervågning. LMm er en hurtig og effektiv måde at kontrollere områder for metan med en reflektor på op til 100 m afstand. Disse områder omfatter lukkede bygninger, lukkede rum og andre svært tilgængelige områder som f.eks. rørledninger over jorden, der ligger tæt på vand eller bag hegn.

Nedstrøms

I downstream-raffinering kan gasrisikoen være næsten enhver form for kulbrinte og kan også omfatte svovlbrinte, svovldioxid og andre biprodukter. Katalytiske detektorer for brændbare gasser er en af de ældste typer af detektorer for brændbare gasser. De fungerer godt, men skal have en stødprøvningsstation for at sikre, at hver detektor reagerer på målgassen og stadig er funktionsdygtig. Det vedvarende krav om at reducere anlæggenes nedetid og samtidig sikre sikkerheden, især under nedlukning og turnaround-operationer, betyder, at gasdetektorproducenterne skal levere løsninger, der er brugervenlige, let at træne og reducerer vedligeholdelsestiden, samt lokal service og support.

Under driftsstop stoppes processer, udstyr åbnes og kontrolleres, og antallet af personer og køretøjer på stedet er mange gange større end normalt. Mange af de processer, der gennemføres, vil være farlige og kræver særlig gasovervågning. F.eks. kræver svejsning og tankrensning overvågning af området og personlige overvågere for at beskytte de personer, der befinder sig på stedet.

Begrænsede rum

Svovlbrinte (H2S) er et potentielt problem i forbindelse med transport og oplagring af råolie. Rengøring af lagertanke udgør en stor risiko. Her kan der opstå mange problemer med adgang til lukkede rum, herunder iltmangel som følge af tidligere inertiseringsprocedurer, rustdannelse og oxidation af organiske belægninger. Inertisering er en proces, hvor iltindholdet i en lasttank reduceres for at fjerne det iltelement, der er nødvendigt for antændelse. Kulmonoxid kan være til stede i inertiseringsgassen. Ud overH2Skan der, afhængigt af egenskaberne ved det produkt, der tidligere har været opbevaret i tankene, forekomme andre kemikalier, herunder metalcarbonylsyrer, arsen og tetraethylbly.

Vores løsninger

Det er stort set umuligt at eliminere disse gasfarer, så faste medarbejdere og entreprenører må stole på pålideligt gasdetekteringsudstyr for at beskytte dem. Gasdetektering kan leveres i bådefastogbærbarform. Vores bærbare gasdetektorer beskytter mod en lang række gasfarer, bl.a.Clip SGD,Gasman,Tetra 3,Gas-Pro,T4,Gas-Pro TK ogDetective+. Vores faste gasdetektorer bruges i mange applikationer, hvor pålidelighed, driftssikkerhed og mangel på falske alarmer er afgørende for effektiv gasdetektering, disse inkludererXgard,Xgard Bright, Fgard IR3 Flame DetectorogIRmax. Kombineret med en række af vores faste detektorer tilbyder vores kontrolpaneler til gasdetektering et fleksibelt udvalg af løsninger, der måler brændbare, giftige og iltgasser, rapporterer deres tilstedeværelse og aktiverer alarmer eller tilhørende udstyr, til den petrokemiske industri inkluderer vores panelerAddressable Controllers, Vortex og Gasmonitor.

Hvis du vil vide mere om gasfarer i den petrokemiske industri, kan du besøge voresbranchesidefor at få flere oplysninger.

Betydningen af gasdetektion i den medicinske og sundhedsmæssige sektor

Behovet for gasdetektering i den medicinske sektor og sundhedssektoren er måske ikke så udbredt uden for branchen, men behovet er der ikke desto mindre. Da patienter på tværs af en række områder modtager en række forskellige behandlinger og medicinske terapier, der involverer brug af kemikalier, er behovet for nøjagtig overvågning af de gasser, der anvendes eller udsendes i denne proces, meget vigtigt for at sikre en fortsat sikker behandling. For at beskytte både patienterne og naturligvis sundhedspersonalet selv er det et must at implementere nøjagtigt og pålideligt overvågningsudstyr for at beskytte både patienterne og naturligvis sundhedspersonalet selv.

Programmer

I sundhedssektoren og på hospitaler kan der forekomme en række potentielt farlige gasser på grund af det medicinske udstyr og apparatur, der anvendes. Der anvendes også skadelige kemikalier til desinfektions- og rengøringsformål på sygehusets arbejdsflader og i medicinsk udstyr. Potentielt farlige kemikalier kan f.eks. anvendes som konserveringsmiddel til vævsprøver, f.eks. toluen, xylen eller formaldehyd. Anvendelsesområder omfatter:

  • Overvågning af åndedrætsgasser
  • Kølerrum
  • Generatorer
  • Laboratorier
  • Opbevaringsrum
  • Operationssale
  • Præhospital redning
  • Positiv luftvejstrykbehandling
  • Behandling med højflow-næsekanyle
  • Intensivafdelinger
  • Postanæstesiafdeling

Gaz Farer

Iltberigelse på hospitalsafdelinger

I lyset af den verdensomspændende pandemi COVID-19 har sundhedspersonalet erkendt behovet for mere ilt på hospitalsafdelingerne på grund af det stigende antal respiratorer, der er i brug. Iltsensorer er afgørende, især på intensivafdelinger, da de informerer klinikeren om, hvor meget ilt der tilføres patienten under ventilationen. Dette kan forebygge risikoen for hypoxi, hypoxæmi eller ilttoksicitet. Hvis iltsensorerne ikke fungerer, som de skal, kan de slå alarm regelmæssigt, skal udskiftes og kan desværre endda føre til dødsfald. Denne øgede brug af ventilatorer beriger også luften med ilt og kan øge risikoen for forbrænding. Der er behov for at måle iltindholdet i luften ved hjælp af et fast gasdetektionssystem for at undgå usikre niveauer i luften.

Carbondioxid

Overvågning af kuldioxidniveauet er også påkrævet i sundhedssektoren for at sikre et sikkert arbejdsmiljø for fagfolk og for at beskytte de patienter, der behandles. Kuldioxid anvendes inden for et væld af medicinske og sundhedsmæssige procedurer, fra minimalt invasive operationer, såsom endoskopi, artroskopi og laparoskopi, kryoterapi og anæstesi.CO2 anvendes også i kuvøser og laboratorier, og da det er en giftig gas, kan den forårsage kvælning. ForhøjedeCO2-niveauer i luften, som udledes af visse maskiner, kan skade personer i omgivelserne og sprede patogener og vira.CO2-detektorer i sundhedssektoren kan derfor forbedre ventilationen, luftstrømmen og alles velbefindende.

Flygtige organiske forbindelser (VOC'er)

En række VOC'er kan findes på hospitaler og i sundhedsvæsenet og kan skade dem, der arbejder og behandles i disse miljøer. VOC'er som f.eks. alifatiske, aromatiske og halogenerede kulbrinter, aldehyder, alkoholer, ketoner, ethere og terpener, for blot at nævne nogle få, er blevet målt i hospitalsmiljøer og stammer fra en række specifikke områder, herunder receptionshaller, patientværelser, sygepleje, plejeafdelinger efter anæstesi, parasitologiske og mykologiske laboratorier og desinfektionsenheder. Selv om det stadig er på forskningsstadiet med hensyn til deres udbredelse i sundhedssektoren, er det klart, at indtagelse af VOC'er har negative virkninger på menneskers sundhed, f.eks. irritation af øjne, næse og hals, hovedpine og tab af koordination, kvalme og skader på lever, nyrer og centralnervesystemet. Nogle VOC'er, især benzen, er kræftfremkaldende. Det er derfor et must at indføre gasdetektion for at beskytte alle mod skader.

Gassensorer bør derfor anvendes på PACU, ICU, EMS, præhospital redning, PAP-terapi og HFNC-terapi til at overvåge gasniveauerne i en række apparater, herunder respiratorer, iltkoncentratorer, iltgeneratorer og anæstesiapparater.

Standarder og certificeringer

Care Quality Commission (CQC ) er den organisation i England, der regulerer kvaliteten og sikkerheden af den pleje, der leveres inden for alle sundheds-, læge-, social- og sundhedsvæsenets og frivillige plejeområder i hele landet. Kommissionen giver oplysninger om bedste praksis for tildeling af ilt til patienter og korrekt måling og registrering af niveauer, opbevaring og uddannelse i brugen af denne og andre medicinske gasser.

Det britiske tilsynsorgan for medicinske gasser er MHRA (Medicines and Healthcare products Regulatory Agency). Det er et forvaltningsorgan under Department of Health and Social Care (DHSC), der sikrer befolkningens og patienternes sundhed og sikkerhed gennem regulering af lægemidler, sundhedsprodukter og medicinsk udstyr i sektoren. De fastsætter passende standarder for sikkerhed, kvalitet, ydeevne og effektivitet og sikrer, at alt udstyr anvendes sikkert. Alle virksomheder, der fremstiller medicinske gasser, skal have en producenttilladelse udstedt af MHRA.

I USA regulerer Food and Drug Association (FDA) certificeringsprocessen for fremstilling, salg og markedsføring af bestemte medicinske gasser. I henhold til afsnit 575 fastslår FDA, at enhver, der markedsfører en medicinsk gas til brug som lægemiddel til mennesker eller dyr uden en godkendt ansøgning, overtræder de fastsatte retningslinjer. De medicinske gasser, der kræver certificering, omfatter ilt, kvælstof, lattergas, kuldioxid, helium, kulilte og medicinsk luft.

Hvis du vil vide mere om farerne i medicinal- og sundhedssektoren, kan du besøge vores brancheside for at få flere oplysninger.

Hvorfor er gasdetektion afgørende for drikkevareudskænkningssystemer

Udskænkningsgas, også kendt som ølgas, fadgas, kældergas eller pubgas, anvendes i barer og restauranter samt i fritids- og hotelbranchen. Det er almindelig praksis at anvende dispenseringsgas i forbindelse med udskænkning af øl og sodavand i hele verden. Kuldioxid (CO2) eller en blanding afCO2 og nitrogen (N2) anvendes til at levere en drik til "hanen".CO2 som fadgas er med til at holde indholdet sterilt og med den rette sammensætning, hvilket fremmer udleveringen.

Farer ved gas

Selv når drikkevarerne er klar til at blive leveret, er der stadig gasrelaterede risici. De opstår ved enhver aktivitet i lokaler, der indeholder trykgasflasker, på grund af risikoen for beskadigelse i forbindelse med flytning eller udskiftning af dem. Når de først er frigivet, er der desuden risiko for forhøjede kuldioxidniveauer eller forringede iltniveauer (på grund af højere niveauer af nitrogen eller kuldioxid).

CO2 forekommer naturligt i atmosfæren (0,04 %) og er farveløs og lugtfri. Det er tungere end luft, og hvis det slipper ud, vil det have tendens til at synke ned på gulvet.CO2 samler sig i kældre og i bunden af containere og lukkede rum som f.eks. tanke og siloer.CO2 dannes i store mængder under gæringen. Det sprøjtes også ind i drikkevarer under kulsyretilsætning - for at give bobler. De tidlige symptomer på udsættelse for høje kuldioxidniveauer omfatter svimmelhed, hovedpine og forvirring, efterfulgt af bevidstløshed. Ulykker og dødsfald kan forekomme i ekstreme tilfælde, hvor en betydelig mængde kuldioxid lækker ind i et lukket eller dårligt ventileret rum. Hvis der ikke er indført ordentlige detektionsmetoder og -processer, kan alle, der kommer ind i det pågældende volumen, være i fare. Desuden kan personalet i de omkringliggende volumener lide af de tidlige symptomer, der er anført ovenfor.

Kvælstof (N2) anvendes ofte til udskænkning af øl, især stouts, pale ales og porters, og det forhindrer også oxidation eller forurening af øl med skarpe smagsstoffer. Nitrogen hjælper med at skubbe væsken fra en tank til en anden og kan også anvendes til at injicere den i fade eller tønder og sætte dem under tryk, så de er klar til opbevaring og forsendelse. Denne gas er ikke giftig, men fortrænger ilten i atmosfæren, hvilket kan være en fare, hvis der opstår en gaslækage, og derfor er nøjagtig gasdetektion afgørende.

Da kvælstof kan nedbryde iltniveauet, bør iltsensorer anvendes i miljøer, hvor der er en af disse potentielle risici. Ved placering af iltsensorer skal der tages hensyn til den fortyndende gassens tæthed og "åndedrætszonen" (næseniveau). Ventilationsmønstre skal også tages i betragtning ved placeringen af sensorerne. Hvis den fortyndende gas f.eks. er nitrogen, er det rimeligt at placere detektoren i skulderhøjde, men hvis den fortyndende gas er kuldioxid, bør detektorerne placeres i knæhøjde.

Betydningen af gasdetektion i drikkevaredispenseringssystemer

Desværre sker der ulykker og dødsfald i drikkevareindustrien på grund af gasrisici. Derfor har Health and Safety Executive (HSE ) i Det Forenede Kongerige kodificeret grænseværdier for sikker eksponering på arbejdspladsen i dokumentationen for Control of Substances Hazardous to Health (COSHH). Kuldioxid har en 8-timers eksponeringsgrænse på 0,5 % og en 15-minutters eksponeringsgrænse på 1,5 volumenprocent. Gasdetektionssystemer hjælper med at mindske gasrisici og gør det muligt for drikkevareproducenter, aftapningsanlæg og ejere af bar- og pubkældre at sikre personalets sikkerhed og påvise overholdelse af lovbestemte grænser eller godkendte praksiskoder.

Iltsvind

Den normale koncentration af ilt i atmosfæren er ca. 20,9 volumenprocent. Iltindholdet kan være farligt, hvis det er for lavt (iltmangel). Hvis der ikke er tilstrækkelig ventilation, kan iltniveauet reduceres overraskende hurtigt ved vejrtrækning og forbrændingsprocesser.

Iltindholdet kan også blive reduceret på grund af fortynding med andre gasser som kuldioxid (også en giftig gas), nitrogen eller helium og kemisk absorption ved korrosionsprocesser og lignende reaktioner. Iltsensorer bør anvendes i miljøer, hvor en af disse potentielle risici er til stede. Ved placering af iltsensorer skal der tages hensyn til den fortyndende gassens tæthed og "åndedrætszonen" (næseniveau). Iltmonitorer giver normalt en alarm på første niveau, når iltkoncentrationen er faldet til 19 % volumenprocent. De fleste mennesker vil begynde at opføre sig unormalt, når niveauet når 17 %, og derfor indstilles der normalt en anden alarm ved denne tærskel. Udsættelse for atmosfærer med et iltindhold på mellem 10 % og 13 % kan meget hurtigt medføre bevidstløshed; døden indtræffer meget hurtigt, hvis iltindholdet falder til under 6 % volumen.

Vores løsning

Gasdetektion kan leveres i form af både faste og bærbare detektorer. Installation af en fastmonteret gasdetektor kan være en fordel i større rum som f.eks. kældre eller fabrikslokaler og sikre kontinuerlig beskyttelse af området og personalet 24 timer i døgnet. Men for arbejdernes sikkerhed i og omkring et flaskeopbevaringsområde og i rum, der er udpeget som lukkede rum, kan en bærbar detektor være mere velegnet. Dette gælder især for pubber og udskænkningssteder for drikkevarer af hensyn til sikkerheden for ansatte og dem, der ikke er fortrolige med miljøet, f.eks. leveringschauffører, salgsteam eller teknikere. Den bærbare enhed kan let fastgøres på tøjet og registrererCO2-lommer ved hjælp af alarmer og visuelle signaler, der angiver, at brugeren straks skal forlade området.

Kontakt vores team for at få flere oplysninger om gasdetektering i drikkevaredispenseringssystemer.

Betydningen af gasdetektering i vand- og spildevandsindustrien 

Vand er afgørende for vores dagligdag, både til personlig brug og husholdningsbrug og til industrielle/kommercielle formål. Uanset om et anlæg fokuserer på produktion af rent drikkevand eller behandling af spildevand, er Crowcon stolt af at betjene en lang række kunder i vandindustrien og levere gasdetekteringsudstyr, der sørger for, at arbejdstagerne er sikre i hele verden.

Gasfarer

Ud over de almindelige gasfarer, der er kendt i industrien - metan, svovlbrinte og ilt - er der også farer ved bi-produktgasser og gasfarer ved rengøringsmaterialer, der opstår fra rensningskemikalier som f.eks. ammoniak, klor, klordioxid eller ozon, der anvendes til dekontaminering af affalds- og spildevand eller til at fjerne mikrober fra rent vand. Der er et stort potentiale for mange giftige eller eksplosive gasser som følge af de kemikalier, der anvendes i vandindustrien. Hertil kommer kemikalier, der kan blive spildt eller dumpet i affaldssystemet fra industrien, landbruget eller byggearbejdet.

Overvejelser om sikkerhed

Indtrængen i lukkede rum

De rørledninger, der anvendes til transport af vand, skal rengøres og sikkerhedskontrolleres regelmæssigt; under disse operationer anvendes bærbare multigasmonitorer for at beskytte arbejdsstyrken. Der skal foretages kontrol før indtrængen i et lukket rum, og der skal normalt anvendesO2, CO,H2Sog CH4 overvåges.Begrænsede rumer små, såbærbare monitorerskal være kompakte og diskrete for brugeren, men samtidig kunne modstå de våde og snavsede miljøer, som de skal fungere i. Tydelig og hurtig indikation af enhver stigning i den overvågede gas (eller ethvert fald for ilt) er af største betydning - høje og klare alarmer er effektive til at give brugeren besked.

Risikovurdering

Risikovurdering er afgørende, da du skal være opmærksom på det miljø, som du kommer ind i og dermed arbejder i. Derfor er det vigtigt at forstå anvendelsesområderne og identificere risiciene i forbindelse med alle sikkerhedsaspekter. Med fokus på gasovervågning skal du som en del af risikovurderingen være klar over, hvilke gasser der kan være til stede.

Egnet til formålet

Der er en række forskellige anvendelser inden for vandbehandlingsprocessen, hvilket giver behov for at overvåge flere gasser, herunder kuldioxid, svovlbrinte, klor, metan, ilt, ozon og klordioxid.Gasdetektorerfås til overvågning af en enkelt eller flere gasser, hvilket gør dem praktiske til forskellige anvendelser og sikrer, at hvis forholdene ændres (f.eks. hvis slammet omrøres, hvilket medfører en pludselig stigning i niveauet af svovlbrinte og brændbare gasser), er medarbejderen stadig beskyttet.

Lovgivning

Europa-Kommissionens direktiv 2017/164der blev udstedt i januar 2017, blev der opstillet en ny liste over vejledende grænseværdier for erhvervsmæssig eksponering (IOELV). IOELV er sundhedsbaserede, ikke-bindende værdier, der er afledt af de seneste tilgængelige videnskabelige data og under hensyntagen til tilgængeligheden af pålidelige måleteknikker. Listen omfatter carbonmonoxid, nitrogenmonoxid, nitrogendioxid, svovldioxid, cyanbrinte, mangan, diacetyl og mange andre kemikalier. Listen er baseret påRådets direktiv 98/24/EFder omhandler beskyttelse af arbejdstagernes sundhed og sikkerhed mod risici i forbindelse med kemiske agenser på arbejdspladsen. For alle kemiske agenser, for hvilke der er fastsat en IOELV på EU-plan, skal medlemsstaterne fastsætte en national grænseværdi for erhvervsmæssig eksponering. De skal også tage hensyn til EU-grænseværdien og fastlægge den nationale grænseværdi i overensstemmelse med national lovgivning og praksis. Medlemsstaterne vil kunne nyde godt af en overgangsperiode, der udløber senest den 21. august 2023.

Sundheds- og sikkerhedsstyrelsen (HSE)oplyser, at adskillige arbejdstagere hvert år vil blive ramt af mindst én arbejdsrelateret sygdom. Selv om de fleste sygdomme er relativt milde tilfælde af gastroenteritis, er der også risiko for potentielt dødelige sygdomme som leptospirose (Weils sygdom) og hepatitis. Selv om disse sygdomme indberettes til HSE, kan der være tale om en betydelig underrapportering, da man ofte ikke anerkender forbindelsen mellem sygdom og arbejde.

I henhold til national lovgivning i denHealth and Safety at Work etc. Act 1974er arbejdsgiverne ansvarlige for at sikre sikkerheden for deres ansatte og andre. Dette ansvar styrkes af bestemmelser.

Forskrifter om afgrænsede rum fra 1997finder anvendelse, når vurderingen viser, at der er risiko for alvorlige skader ved arbejde i lukkede rum. Disse bestemmelser indeholder følgende hovedforpligtelser:

  • Undgå at komme ind i lukkede rum, f.eks. ved at udføre arbejdet udefra.
  • Hvis det er uundgåeligt at komme ind i et lukket rum, skal du følge et sikkert arbejdssystem.
  • Indfør passende nødforanstaltninger, inden arbejdet påbegyndes.

Forordningerne om arbejdsmiljøledelse og sikkerhed på arbejdspladsen fra 1999kræver, at arbejdsgivere og selvstændige erhvervsdrivende skal foretage en passende og tilstrækkelig vurdering af risiciene ved alle arbejdsaktiviteter med henblik på at beslutte, hvilke foranstaltninger der er nødvendige for sikkerheden. For arbejde i lukkede rum betyder dette, at man skal identificere de tilstedeværende farer, vurdere risiciene og bestemme, hvilke forholdsregler der skal træffes.

Vores løsninger

Det er stort set umuligt at eliminere disse gasfarer, så faste medarbejdere og entreprenører må stole på pålideligt gasdetekteringsudstyr for at beskytte dem. Gasdetektering kan leveres i bådefastogbærbarformer. Vores bærbare gasdetektorer beskytter mod en lang række gasfarer, bl.a.T4x,Clip SGD,Gasman,Tetra 3,Gas-Pro,T4ogDetective+. Vores faste gasdetektorer bruges i mange applikationer, hvor pålidelighed, driftssikkerhed og mangel på falske alarmer er afgørende for effektiv gasdetektering, herunderXgard,Xgard BrightogIRmax. Kombineret med en række af vores faste detektorer tilbyder vores kontrolpaneler til gasdetektering et fleksibelt udvalg af løsninger, der måler brændbare, giftige og iltgasser, rapporterer deres tilstedeværelse og aktiverer alarmer eller tilhørende udstyr.Gasmaster.

Hvis du vil vide mere om gasfarer i spildevands- og vandbehandling, kan du besøge voresindustrisidefor yderligere oplysninger.

Byggeri og centrale gasudfordringer

Arbejdstagere i bygge- og anlægsbranchen er udsat for en lang række farlige gasser, herunder kulilte (CO), klordioxid (CLO2), metan (CH4), ilt (O2), svovlbrinte (H2S) og flygtige organiske forbindelser (VOC'er).

Gennem brugen af særligt udstyr, transport og sektorspecifikke aktiviteter bidrager byggeriet i høj grad til udledningen af giftige gasser til atmosfæren, hvilket også betyder, at byggepersonalet er mere udsat for risiko for at indtage disse giftige forurenende stoffer.

Gasudfordringer kan findes i en række forskellige applikationer, herunder opbevaring af byggematerialer, lukkede rum, svejsning, gravearbejde, rydning og nedrivning. Det er meget vigtigt at sikre beskyttelsen af arbejdstagerne i byggebranchen mod de mange farer, de kan støde på. Der er særlig fokus på at beskytte teams mod skader fra eller forbrug af giftige, brændbare og giftige gasser.

Udfordringer i forbindelse med gas

Indtrængen i lukkede rum

Arbejdstagere er mere udsat for farlige gasser og dampe, når de arbejder i lukkede rum. Personer, der kommer ind i disse rum, skal beskyttes mod tilstedeværelsen af brændbare og/eller giftige gasser som f.eks. flygtige organiske forbindelser (ppm VOC), kulilte (ppm CO) og kvælstofdioxid (ppm NO2). For at sikre sikkerheden, inden en arbejdstager træder ind i rummet, er det af afgørende betydning, at der foretages målinger af afstanden og sikkerhedskontrol før indtrængen. I lukkede rum skal der løbende bæres gasdetektionsudstyr i tilfælde af miljømæssige ændringer, som gør rummet ikke længere sikkert at arbejde i, f.eks. på grund af en lækage, og det er nødvendigt at evakuere rummet.

Gravearbejde og afstivning

Under udgravningsarbejde, f.eks. grave- og afstivningsarbejde, risikerer bygningsarbejdere at indånde skadelige gasser, der dannes af nedbrydelige materialer i visse jordtyper. Hvis de ikke opdages, kan de ud over at udgøre en risiko for byggepersonalet også migrere gennem undergrunden og revner ind i den færdige bygning og skade beboerne, hvis de ikke opdages. Grøfter kan også have nedsat iltindhold og indeholde giftige gasser og kemikalier. I disse tilfælde bør der udføres atmosfæriske test i udgravninger, der overstiger fire fod. Der er også risiko for at ramme forsyningsledninger, når der graves, hvilket kan forårsage naturgaslækager og føre til dødsfald blandt arbejdere.

Opbevaring af byggematerialer

Mange af de materialer, der anvendes i byggeriet, kan frigive giftige forbindelser (VOC'er). Disse kan dannes i forskellige former (faste eller flydende) og kommer fra materialer som f.eks. lim, natur- og krydsfiner, maling og skillevægge. Blandt de forurenende stoffer kan nævnes phenol, acetaldehyd og formaldehyd. Når de indtages, kan arbejdstagerne få kvalme, hovedpine, astma, kræft og endda dø. VOC'er er særligt farlige, når de indtages i lukkede rum på grund af risikoen for kvælning eller eksplosion.

Svejsning og skæring

Under svejse- og skæreprocessen dannes der gasser, herunder kuldioxid fra nedbrydning af flusmidler, kulilte fra nedbrydning af kuldioxidbeskyttelsesgas ved lysbuesvejsning samt ozon, nitrogenoxider, hydrogenklorid og fosgen fra andre processer. Røg dannes, når et metal opvarmes over kogepunktet, hvorefter dampene kondenserer til fine partikler, såkaldte faste partikler. Disse dampe udgør naturligvis en fare for dem, der arbejder i sektoren, og illustrerer vigtigheden af pålideligt gasdetekteringsudstyr for at reducere eksponeringen.

Sundheds- og sikkerhedsstandarder

Organisationer, der arbejder i byggesektoren, kan bevise deres troværdighed og sikkerhed ved at opnå ISO-certificering. ISO (Den internationale organisation for standardisering) certificering er opdelt i flere forskellige certifikater, som alle anerkender forskellige elementer af sikkerhed, effektivitet og kvalitet i en organisation. Standarderne dækker bedste praksis inden for sikkerhed, sundhedspleje, transport, miljøstyring og familie.

Selv om det ikke er et lovkrav, er ISO-standarder bredt anerkendt for at gøre byggebranchen til en mere sikker sektor ved at fastlægge globale design- og produktionsdefinitioner for næsten alle processer. De skitserer specifikationer for bedste praksis og sikkerhedskrav inden for byggebranchen fra bunden af.

I Storbritannien findes der andre anerkendte sikkerhedscertificeringer, bl.a. NEBOSH, IOSH og CIOB kurser, som alle tilbyder varieret sundheds- og sikkerhedsuddannelse for dem i sektoren for at øge deres forståelse for at arbejde sikkert inden for deres område.

Hvis du vil vide mere om udfordringerne med gas i byggeriet, kan du besøge voresindustrisidefor yderligere oplysninger.

Gasfare i spildevand

Vand er afgørende for vores dagligdag, både til personlig brug og husholdningsbrug og til industrielle/kommercielle anvendelser, hvilket gør, at der er mange og vidt udbredte vandområder. På trods af mængden og placeringen af vandområder er der kun to miljøer, der dominerer, og de er ret specifikke. Det drejer sig om rent vand og spildevand. I denne blog beskrives de gasrisici, der er forbundet med spildevandsanlæg, og hvordan de kan mindskes.

Spildevandsindustrien er altid våd, med temperaturer mellem 4 og 20oc nær vandet og sjældent langt fra dette begrænsede temperaturområde, selv uden for spildevandets umiddelbare omgivelser. 90%+ relativ luftfugtighed, 12 +/- 8oc, atmosfærisk tryk, med mange giftige og brandfarlige gasser og risiko for iltmangel. Gasdetektorer skal vælges til at passe til det specifikke miljø, de arbejder i, og selv om høj luftfugtighed generelt er en udfordring for alle instrumenter, er det konstante tryk, de moderate temperaturer og det snævre temperaturområde en langt større fordel for sikkerhedsinstrumenter.

Gasfarer

De vigtigste gasser, der giver anledning til bekymring i spildevandsrensningsanlæg, er:

Svovlbrinte, metan og kuldioxid er biprodukter fra nedbrydning af organiske materialer, der findes i de affaldsstrømme, der forsyner anlægget. Ophobning af disse gasser kan føre til iltmangel eller i nogle tilfælde til eksplosion, når de er koblet til en antændelseskilde.

Svovlbrinte (H2S)

Svovlbrinte er et almindeligt produkt af den biologiske nedbrydning af organisk materiale; lommer afH2Skan ophobes i rådnende vegetation eller i selve spildevandet og frigives, når det forstyrres. Arbejdstagere i kloak- og spildevandsanlæg og rørledninger kan blive overvældet afH2Smed dødelige følger.H2S'høje toksicitet er den største fare vedH2S. Længerevarende udsættelse for 2-5 ppmH2Skan forårsage kvalme og hovedpine og give tårer i øjnene.H2Ser et bedøvelsesmiddel, og derfor kan symptomerne ved 20 ppm omfatte træthed, hovedpine, irritabilitet, svimmelhed, midlertidigt tab af lugtesansen og hukommelsestab. Symptomernes alvorlighed øges med koncentrationen, da nerverne lukker ned, gennem hoste, konjunktivitis, kollaps og hurtig bevidstløshed. Eksponering på højere niveauer kan medføre hurtig nedslagning og død. Langvarig eksponering for lave niveauer afH2Skan forårsage kronisk sygdom eller kan også være dødelig. Af denne grund har mange gasmonitorer både øjeblikkelig og øjeblikkelig TWA (tidsvægtet gennemsnit) alarmer.

Metan (CH4)

Metan er en farveløs, letantændelig gas, som er den primære bestanddel af naturgas, også kaldet biogas. Den kan opbevares og/eller transporteres under tryk som en flydende gas. CH4 er en drivhusgas, som også forekommer under normale atmosfæriske forhold i en mængde på ca. 2 ppm (parts per million). En høj eksponering kan føre til sløret tale, synsproblemer og hukommelsestab.

Oxygen (O2)

Den normale koncentration af ilt i atmosfæren er ca. 20,9 volumenprocent. Hvis der ikke er tilstrækkelig ventilation, vil niveauet af ilt kan reduceres overraskende hurtigt ved vejrtrækning og forbrændingsprocesser. O2 niveauet kan også blive reduceret på grund af fortynding med andre gasser som kuldioxid (også en giftig gas), nitrogen eller helium og kemisk absorption ved korrosionsprocesser og lignende reaktioner. Iltsensorer bør anvendes i miljøer, hvor en af disse potentielle risici er til stede. Ved placering af iltsensorer skal der tages hensyn til den fortyndende gassens tæthed og "åndedrætszonen" (næseniveau).

Overvejelser om sikkerhed

Risikovurdering

Risikovurdering er afgørende, da du skal være opmærksom på det miljø, som du kommer ind i og dermed arbejder i. Derfor er det vigtigt at forstå anvendelserne og identificere risiciene i forbindelse med alle sikkerhedsaspekter. Med fokus på gasovervågning skal du som en del af risikovurderingen være klar over, hvilke gasser der kan være til stede.

Egnet til formålet

Der er en række forskellige anvendelser inden for vandbehandlingsprocessen, hvilket giver behov for at overvåge flere gasser, herunder kuldioxid, svovlbrinte, klor, metan, ilt, ozon og klordioxid. Gasdetektorer fås til overvågning af en eller flere gasser, hvilket gør dem praktiske til forskellige anvendelser og sikrer, at hvis forholdene ændres (f.eks. hvis slammet omrøres, hvilket medfører en pludselig stigning i niveauet af svovlbrinte og brændbare gasser), er arbejdstageren stadig beskyttet.

Lovgivning

Europa-Kommissionens direktiv 2017/164 der blev udstedt i januar 2017, opstillede en ny liste over vejledende grænseværdier for erhvervsmæssig eksponering (IOELV'er). IOELV er sundhedsbaserede, ikke-bindende værdier, der er afledt af de seneste tilgængelige videnskabelige data og under hensyntagen til tilgængeligheden af pålidelige måleteknikker. Listen omfatter carbonmonoxid, nitrogenmonoxid, nitrogendioxid, svovldioxid, cyanbrinte, mangan, diacetyl og mange andre kemikalier. Listen er baseret på Rådets direktiv 98/24/EF der omhandler beskyttelse af arbejdstagernes sundhed og sikkerhed mod risici i forbindelse med kemiske agenser på arbejdspladsen. For alle kemiske agenser, for hvilke der er fastsat en IOELV på EU-plan, skal medlemsstaterne fastsætte en national grænseværdi for erhvervsmæssig eksponering. De skal også tage hensyn til EU-grænseværdien og fastlægge den nationale grænseværdi i overensstemmelse med national lovgivning og praksis. Medlemsstaterne vil kunne nyde godt af en overgangsperiode, der udløber senest den 21. august 2023.

Sundheds- og sikkerhedsstyrelsen (HSE) oplyser, at adskillige arbejdstagere hvert år vil blive ramt af mindst én arbejdsrelateret sygdom. Selv om de fleste sygdomme er relativt milde tilfælde af gastroenteritis, er der også risiko for potentielt dødelige sygdomme som leptospirose (Weils sygdom) og hepatitis. Selv om disse sygdomme indberettes til HSE, kan der være tale om en betydelig underrapportering, da man ofte ikke anerkender sammenhængen mellem sygdom og arbejde.

Vores løsninger

Det er stort set umuligt at eliminere disse gasfarer, så faste medarbejdere og entreprenører må stole på pålideligt gasdetekteringsudstyr for at beskytte dem. Gasdetektering kan leveres i både fast og bærbar former. Vores bærbare gasdetektorer beskytter mod en lang række gasfarer, bl.a. T4x, Clip SGD, Gasman, Tetra 3, Gas-Pro, T4 og Detective+. Vores fastmonterede gasdetektorer bruges, hvor pålidelighed, driftssikkerhed og mangel på falske alarmer er afgørende for effektiv gasdetektering. Xgard, Xgard Bright og IRmax. Kombineret med en række af vores faste detektorer tilbyder vores kontrolpaneler til gasdetektering et fleksibelt udvalg af løsninger, der måler brændbare, giftige og iltgasser, rapporterer deres tilstedeværelse og aktiverer alarmer eller tilhørende udstyr. Gasmaster.

Hvis du vil vide mere om gasfarer i spildevand, kan du besøge vores industriside for yderligere oplysninger.

Guldminedrift: Hvilken gasdetektion har jeg brug for? 

Hvordan udvindes guld?

Guld er et sjældent stof, der udgør 3 dele pr. milliard af jordens ydre lag, og det meste af verdens tilgængelige guld kommer fra Australien. Guld er ligesom jern, kobber og bly et metal. Der er to primære former for guldminedrift, herunder åben og underjordisk minedrift. Ved åben minedrift anvendes jordflytningsudstyr til at fjerne affaldsbjergarter fra malmkassen ovenover, hvorefter der foretages minedrift fra den resterende substans. Denne proces kræver, at affald og malm slås med store mængder for at bryde affaldet og malmen i størrelser, der er egnede til håndtering og transport til både affaldsdepoter og malmknusere. Den anden form for guldminedrift er den mere traditionelle underjordiske minedriftsmetode. Her transporterer lodrette skakte og spiraltunneler arbejdere og udstyr ind og ud af minen, hvor der sørges for ventilation og transport af affaldsbjergarter og malm til overfladen.

Gasdetektion i minedrift

I forbindelse med gasdetektion er processen med at sundhed og sikkerhed i minerne har udviklet sig betydeligt i løbet af det sidste århundrede, fra den grove brug af metanvagtvægstests, syngende kanariefugle og flammesikkerhed til de moderne gasdetektionsteknologier og -processer, som vi kender dem. Det sikres, at den korrekte type detektionsudstyr anvendes, uanset om fastmonteret eller bærbar, før man går ind i disse rum. Korrekt anvendelse af udstyret sikrer, at gasniveauerne overvåges nøjagtigt, og at arbejdstagerne advares om farlige koncentrationer i atmosfæren ved først givne lejlighed.

Hvad er gasfarerne, og hvad er farerne?

Farerne De, der arbejder i mineindustrien, står over for adskillige potentielle arbejdsrisici og sygdomme og muligheden for dødelig skade. Derfor er det vigtigt at forstå de miljøer og farer, som de kan blive udsat for.

Ilt (O2)

Ilt (O2), der normalt er til stede i luften med 20,9 %, er afgørende for menneskelivet. Der er tre hovedårsager til, at ilt udgør en trussel mod arbejdstagere i mineindustrien. Disse omfatter iltmangel eller iltberigelse, da for lidt ilt kan forhindre den menneskelige krop i at fungere, hvilket kan føre til, at arbejdstageren mister bevidstheden. Medmindre iltniveauet kan genoprettes til et gennemsnitligt niveau, risikerer arbejdstageren at dø. En atmosfære er mangelfuld, når koncentrationen af O2 er mindre end 19,5 %. Derfor er et miljø med for meget ilt lige så farligt, da det udgør en stærkt forøget risiko for brand og eksplosion. Dette anses for at være tilfældet, når koncentrationen af O2 er over 23,5 %.

Kulilte (CO)

I nogle tilfælde kan der være høje koncentrationer af kulilte (CO). Dette kan forekomme i forbindelse med husbrande, og brandvæsenet risikerer derfor at blive udsat for CO-forgiftning. I dette miljø kan der være op til 12,5 % CO i luften, som når kulilte stiger til loftet sammen med andre forbrændingsprodukter, og når koncentrationen når op på 12,5 volumenprocent, vil det kun føre til én ting, nemlig en flashover. Det er, når det hele antændes som et brændstof. Bortset fra de genstande, der falder ned på brandvæsenet, er dette en af de mest ekstreme farer, de står over for, når de arbejder inde i en brændende bygning. Da CO er så svært at identificere, dvs. en farveløs, lugtløs, smagløs og giftig gas, kan det tage tid, før man opdager, at man har fået en CO-forgiftning. Virkningerne af CO kan være farlige, fordi CO forhindrer blodsystemet i effektivt at transportere ilt rundt i kroppen, især til vitale organer som hjerte og hjerne. Høje doser af CO kan derfor forårsage døden som følge af kvælning eller mangel på ilt til hjernen. Ifølge statistikker fra sundhedsministeriet er det mest almindelige tegn på CO-forgiftning hovedpine, idet 90 % af patienterne rapporterer dette som symptom, mens 50 % rapporterer kvalme og opkastninger samt svimmelhed. Forvirring/ændringer i bevidstheden og svaghed tegner sig for henholdsvis 30 % og 20 % af rapporterne.

Hydrogensulfid (H2S)

Svovlbrinte (H2S) er en farveløs, brandfarlig gas med en karakteristisk lugt af rådne æg. Der kan forekomme hud- og øjenkontakt. Nervesystemet og det kardiovaskulære system påvirkes dog mest af svovlbrinte, hvilket kan føre til en række symptomer. Enkeltstående eksponering for høje koncentrationer kan hurtigt medføre åndedrætsbesvær og død.

Svovldioxid (SO2)

Svovldioxid (SO2) kan forårsage en række skadelige virkninger på åndedrætsorganerne, især lungerne. Det kan også forårsage hudirritation. Hudkontakt med (SO2) forårsager stikkende smerter, rødme af huden og blærer. Hudkontakt med komprimeret gas eller væske kan forårsage forfrysninger. Øjenkontakt medfører rindende øjne, og i alvorlige tilfælde kan der opstå blindhed.

Metan (KAP4)

Metan (CH4) er en farveløs, letantændelig gas, som primært består af naturgas. Høje niveauer af (CH4) kan reducere mængden af ilt i luften, hvilket kan resultere i humørsvingninger, sløret tale, synsproblemer, hukommelsestab, kvalme, opkastning, rødme i ansigtet og hovedpine. I alvorlige tilfælde kan der forekomme ændringer i vejrtrækning og hjertefrekvens, balanceproblemer, følelsesløshed og bevidstløshed. Selv om eksponering i en længere periode kan medføre dødelig udgang, hvis eksponeringen er af længere varighed.

Brint (H2)

Brintgas er en farveløs, lugtfri og smagløs gas, som er lettere end luft. Da den er lettere end luft, betyder det, at den svæver højere end vores atmosfære, hvilket betyder, at den ikke findes naturligt, men i stedet skal skabes. Brint udgør en brand- eller eksplosionsrisiko samt en risiko for indånding. Høje koncentrationer af denne gas kan forårsage et iltfattigt miljø. Personer, der indånder en sådan atmosfære, kan opleve symptomer som hovedpine, ringen i ørerne, svimmelhed, døsighed, bevidstløshed, kvalme, opkastning og depression af alle sanser.

Ammoniak (NH3)

Ammoniak (NH3) er et af de mest anvendte kemikalier globalt set, som produceres både i menneskekroppen og i naturen. Selv om det dannes naturligt (NH3) er ætsende, hvilket udgør et sundhedsproblem. Høj eksponering i luften kan medføre øjeblikkelig forbrænding af øjne, næse, hals og luftveje. I alvorlige tilfælde kan det føre til blindhed.

Andre gasrisici

Selv om hydrogencyanid (HCN) ikke er persistent i miljøet, kan forkert opbevaring, håndtering og affaldshåndtering udgøre en alvorlig risiko for menneskers sundhed og påvirke miljøet. Cyanid forstyrrer den menneskelige vejrtrækning på celleniveau, hvilket kan forårsage akutte virkninger, herunder hurtig vejrtrækning, rysten og kvælning.

Eksponering for dieselpartikler kan forekomme i underjordiske miner som følge af dieseldrevet mobilt udstyr, der anvendes til boring og transport. Selv om kontrolforanstaltningerne omfatter brug af dieselbrændstof med lavt svovlindhold, vedligeholdelse af motorer og ventilation, omfatter de sundhedsmæssige konsekvenser en øget risiko for lungekræft.

Produkter, der kan hjælpe dig med at beskytte dig selv

Crowcon leverer en række gasdetekteringsudstyr, herunder både bærbare og faste produkter, som alle er velegnede til gasdetektering i mineindustrien.

Hvis du vil vide mere, kan du besøge vores brancheside her.

Elektrolyse af brint

I øjeblikket er den mest kommercielt udviklede teknologi til fremstilling af brint elektrolyse. Elektrolyse er en optimistisk fremgangsmåde til kulstoffri brintproduktion fra vedvarende og nukleare ressourcer. Vandelektrolyse er nedbrydning af vand (H2O) til dets grundbestanddele, brint (H2) og ilt (O2), ved hjælp af elektrisk strøm. Vand er en fuldstændig kilde til produktion af brint, og det eneste biprodukt, der frigives under processen, er ilt. Denne proces bruger elektrisk energi, som kan lagres som kemisk energi i form af brint.

Hvad er processen?

For at fremstille brint konverterer elektrolyse elektrisk energi til kemisk energi ved at lagre elektroner i stabile kemiske bindinger. Ligesom brændselsceller består elektrolysatorer af en anode og en katode, der er adskilt af en vandig elektrolyt, alt efter hvilken type elektrolytmateriale der er tale om, og hvilke ioniske arter der ledes. Elektrolytten er en obligatorisk del, da rent vand ikke har evnen til at bære tilstrækkelig meget ladning, da det mangler ioner. Ved anoden oxideres vandet til iltgas og brint-ioner. Ved katoden reduceres vandet til brintgas og hydroxidioner. På nuværende tidspunkt er der tre førende elektrolyseteknologier.

Alkaline elektrolysatorer (AEL)

Denne teknologi har været anvendt i industriel skala i over 100 år. Alkaline elektrolysatorer fungerer ved at transportere hydroxidioner (OH-) gennem elektrolytten fra katoden til anoden, idet der dannes brint på katodens side. Elektrolysatorer, der arbejder ved 100-150 °C, anvender en flydende alkalisk opløsning af natrium- eller kaliumhydroxid (KOH) som elektrolyt. I denne proces er anode og katode adskilt ved hjælp af et membran, der forhindrer genblanding. Ved katoden spaltes vand tilH2 og frigiver hydroxid-anioner, som passerer gennem membranen og rekombineres ved anoden, hvor der dannes ilt. Da der er tale om en veletableret teknologi, er produktionsomkostningerne relativt lave, og den er stabil i lang tid. Den har dog en overgangsfase i gasser, hvilket kan gå ud over dens renhedsgrad, og den kræver brug af en korrosiv flydende elektrolyt.

Polymerelektrolytmembranelektrolysatorer (PEM)

Polymerelektrolytmembraner er den nyeste teknologi, der anvendes kommercielt til fremstilling af brint. I en PEM-elektrolyser er elektrolytten et fast specialplastmateriale. PEM-elektrolyserne fungerer ved 70°-90°C. I denne proces reagerer vandet ved anoden for at danne ilt og positivt ladede brintioner (protoner). Elektronerne strømmer gennem et eksternt kredsløb, og hydrogenionerne bevæger sig selektivt gennem PEM til katoden. Ved katoden kombineres hydrogenionerne med elektroner fra det eksterne kredsløb for at danne brintgas. Sammenlignet med AEL er der flere fordele: produktgassens renhed er høj i delbelastningsdrift, systemdesignet er kompakt og har en hurtig systemrespons. Komponentomkostningerne er imidlertid høje, og holdbarheden er lav.

Elektrolysatorer med fast oxid (SOE)

AEL- og PEM-elektrolysatorer er kendt som lavtemperaturelektrolysatorer (LTE). Fastoxidelektrolyser (SOE) er imidlertid kendt som højtemperaturelektrolyser (HTE). Denne teknologi er stadig på udviklingsstadiet. I SOE anvendes fast keramisk materiale som elektrolyt, der leder negativt ladede ilt-ioner (O2-) ved forhøjede temperaturer og genererer brint på en lidt anderledes måde. Ved en temperatur på ca. 700-800 °C kombineres damp ved katoden med elektroner fra det eksterne kredsløb til brintgas og negativt ladede ilt-ioner. Oxygenionerne passerer gennem den faste keramiske membran og reagerer ved anoden for at danne iltgas og generere elektroner til det eksterne kredsløb. Fordelene ved denne teknologi er, at den kombinerer høj varme- og elvirkningsgrad og producerer lave emissioner til en relativt lav pris. På grund af den høje varme- og strømforbrug tager det dog længere tid at starte op på grund af den høje varme- og strømforbrug.

Hvorfor overvejer man at bruge brint som et alternativt brændstof?

Brint betragtes som et alternativt brændstof i henhold til Energy Policy Act fra 1992. Brint fremstillet ved hjælp af elektrolyse kan bidrage med nul drivhusgasemissioner, afhængigt af kilden til den anvendte elektricitet. Denne teknologi er ved at blive udviklet til at fungere sammen med vedvarende energi (vind, sol, vandkraft, geotermisk energi) og kerneenergi for at opnå næsten ingen drivhusgas- og andre forurenende emissioner. Denne type produktion vil dog kræve, at omkostningerne skal sænkes betydeligt for at være konkurrencedygtig med mere modne kulstofbaserede metoder som f.eks. reforming af naturgas. Der er potentiale for synergi med elproduktion på grundlag af vedvarende energi. Brintbrændstof- og elproduktion kan distribueres og placeres i vindmølleparker, hvilket giver fleksibilitet til at flytte produktionen for at tilpasse ressourcetilgængeligheden bedst muligt til systemets driftsbehov og markedsfaktorer.

Safirjægere reddet!

Minejægerne leder efter safirer. I denne episode tager de til det sydvestlige Madagaskar, til et af de få steder i verden, hvor en enkelt mine kan producere safirer af enhver regnbuefarve.

Efter et vægkollaps er iltudtømning den største fare, de står over for i disse farlige miljøer - tunneler, der er blevet forseglet i nogen tid, er lange, smalle og går dybt under jorden.

Desværre løber minearbejderen Fred tør for ilt, mens han inspicerer den første mudrede mine. Hans Tetra 3 gasdetektor går i alarm, så hans venner kan trække ham ud hurtigt og sikkert. Selvom teamet her har et stramt budget, er det klart, at de ikke kan undvære et stykke udstyr - en livreddende gasdetektor!

Se videoen her

Læs mere om Mine Hunters serien og se andre episoder.

Find ud af mere om Tetra 3 Gasdetektor og andre interessante anvendelser som f.eks. vulkanforskning.