Industrioversigt: Affald til energi

Affald til energiindustrien anvender flere forskellige affaldsbehandlingsmetoder. Kommunalt og industrielt fast affald omdannes til elektricitet og undertiden til varme til industriel forarbejdning og fjernvarmesystemer. Hovedprocessen er naturligvis forbrænding, men der anvendes undertiden mellemliggende trin som pyrolyse, forgasning og anaerob nedbrydning til at omdanne affaldet til nyttige biprodukter, som derefter anvendes til at generere strøm via turbiner eller andet udstyr. Denne teknologi vinder stor anerkendelse globalt set som en grønnere og renere form for energi end traditionel afbrænding af fossile brændstoffer og som et middel til at reducere affaldsproduktionen.

Typer af affald til energi

Forbrænding

Forbrænding er en affaldsbehandlingsproces, der indebærer forbrænding af energirige stoffer i affaldsmaterialer, typisk ved høje temperaturer på omkring 1000 grader C. Industrielle anlæg til affaldsforbrænding kaldes almindeligvis affaldsforbrændingsanlæg og er ofte store kraftværker i sig selv. Forbrænding og andre affaldsbehandlingssystemer med høj temperatur beskrives ofte som "termisk behandling". Under processen omdannes affaldet til varme og damp, som kan bruges til at drive en turbine til at generere elektricitet. Denne metode har i dag en effektivitet på ca. 15-29 %, men der er dog mulighed for forbedringer.

Pyrolyse

Pyrolyse er en anden affaldsbehandlingsproces, hvor nedbrydning af fast kulbrinteaffald, typisk plast, finder sted ved høje temperaturer uden ilt i en atmosfære af inerte gasser. Denne behandling foregår normalt ved eller over 500 °C, hvilket giver tilstrækkelig varme til at nedbryde de langkædede molekyler, herunder biopolymerer, til mere enkle kulbrinter med lavere masse.

Forgasning

Denne proces anvendes til at fremstille gasformigt brændstof fra tungere brændstoffer og fra affald, der indeholder brændbart materiale. Ved denne proces omdannes kulstofholdige stoffer ved høj temperatur til kuldioxid (CO2), kulilte (CO) og en lille mængde brint. Ved denne proces dannes der gas, som er en god kilde til brugbar energi. Denne gas kan derefter bruges til at producere elektricitet og varme.

Plasma lysbueforgasning

I denne proces bruges en plasmabrænder til at ionisere energirigt materiale. Der produceres syntesegas, som derefter kan bruges til at fremstille gødning eller til at generere elektricitet. Denne metode er mere en teknik til bortskaffelse af affald end et seriøst middel til at generere gas, idet den ofte bruger lige så meget energi som den gas, den producerer, kan levere.

Årsager til affald til energi

Da denne teknologi vinder stor anerkendelse globalt set med hensyn til affaldsproduktion og efterspørgslen efter ren energi.

  • Undgår metanemissioner fra deponeringsanlæg
  • Kompenserer for drivhusgasemissioner fra elproduktion med fossilt brændstof
  • Genvinder og genbruger værdifulde ressourcer, f.eks. metaller
  • Producerer ren, pålidelig grundbelastet energi og damp
  • Bruger mindre jord pr. megawatt end andre vedvarende energikilder
  • Bæredygtig og stabil vedvarende brændstofkilde (sammenlignet med vind og sol)
  • Destruerer kemisk affald
  • resulterer i lave emissionsniveauer, typisk langt under de tilladte niveauer
  • Katalytisk destruktion af nitrogenoxider (NOx), dioxiner og furaner ved hjælp af selektiv katalytisk reduktion (SCR)

Hvad er gasfarerne?

Der findes mange processer til at omdanne affald til energi, bl.a. biogasanlæg, affaldsudnyttelse, perkolatpulje, forbrænding og varmegenvinding. Alle disse processer udgør en gasfare for dem, der arbejder i disse miljøer.

I et biogasanlæg produceres der biogas. Denne dannes, når organiske materialer som f.eks. landbrugs- og madaffald nedbrydes af bakterier i et iltfattigt miljø. Det er en proces, der kaldes anaerob nedbrydning. Når biogassen er blevet opsamlet, kan den bruges til at producere varme og elektricitet til motorer, mikroturbiner og brændselsceller. Det er klart, at biogas har et højt indhold af metan samt et betydeligt indhold af svovlbrinte (H2S), og dette skaber flere alvorlige gasrisici. (Læs vores blog for at få flere oplysninger om biogas). Der er imidlertid en forhøjet risiko for brand og eksplosion, risiko for lukkede rum, kvælning, iltmangel og gasforgiftning, som regel fraH2Seller ammoniak (NH3). Arbejdstagere på et biogasanlæg skal have personlige gasdetektorer, der registrerer og overvåger brændbare gasser, ilt og giftige gasser somH2Sog CO.

I en affaldsindsamling er det almindeligt at finde den brandfarlige gas metan (CH4) og de giftige gasserH2S, CO og NH3. Det skyldes, at affaldsbunkerne er bygget flere meter under jorden, og at gasdetektorerne normalt er monteret højt oppe i områderne, hvilket gør det vanskeligt at servicere og kalibrere dem. I mange tilfælde er et prøvetagningssystem en praktisk løsning, da luftprøver kan bringes til et praktisk sted og måles.

Perkolat er en væske, der løber ud fra et område, hvor affaldet er indsamlet, og hvor perkolatpuljer udgør en række gasrisici. Disse risici omfatter risikoen for brandfarlig gas (eksplosionsrisiko),H2S(gift, korrosion), ammoniak (gift, korrosion), CO (gift) og ugunstige iltniveauer (kvælning). Pulje af perkolat og passager, der fører til puljen af perkolat, som kræver overvågning af CH4,H2S, CO, NH3, ilt (O2) ogCO2. Der bør placeres forskellige gasdetektorer langs vejene til perkolatbassinet med udgang til eksterne kontrolpaneler.

Forbrænding og varmegenvinding kræver detektion afO2 og de giftige gasser svovldioxid (SO2) og CO. Disse gasser udgør alle en trussel for dem, der arbejder i kedelhusområder.

En anden proces, der er klassificeret som en gasfare, er en luftskrubber. Processen er farlig, da røggassen fra forbrænding er meget giftig. Det skyldes, at den indeholder forurenende stoffer som f.eks. kvælstofdioxid (NO2), SO2, hydrogenklorid (HCL) og dioxin. NO2 og SO2 er vigtige drivhusgasser, mens HCL alle disse her nævnte gastyper er skadelige for menneskers sundhed.

Hvis du vil læse mere om affald til energiindustrien, kan du besøge vores brancheside.

Hvorfor er gasdetektion afgørende for drikkevareudskænkningssystemer

Udskænkningsgas, også kendt som ølgas, fadgas, kældergas eller pubgas, anvendes i barer og restauranter samt i fritids- og hotelbranchen. Det er almindelig praksis at anvende dispenseringsgas i forbindelse med udskænkning af øl og sodavand i hele verden. Kuldioxid (CO2) eller en blanding afCO2 og nitrogen (N2) anvendes til at levere en drik til "hanen".CO2 som fadgas er med til at holde indholdet sterilt og med den rette sammensætning, hvilket fremmer udleveringen.

Farer ved gas

Selv når drikkevarerne er klar til at blive leveret, er der stadig gasrelaterede risici. De opstår ved enhver aktivitet i lokaler, der indeholder trykgasflasker, på grund af risikoen for beskadigelse i forbindelse med flytning eller udskiftning af dem. Når de først er frigivet, er der desuden risiko for forhøjede kuldioxidniveauer eller forringede iltniveauer (på grund af højere niveauer af nitrogen eller kuldioxid).

CO2 forekommer naturligt i atmosfæren (0,04 %) og er farveløs og lugtfri. Det er tungere end luft, og hvis det slipper ud, vil det have tendens til at synke ned på gulvet.CO2 samler sig i kældre og i bunden af containere og lukkede rum som f.eks. tanke og siloer.CO2 dannes i store mængder under gæringen. Det sprøjtes også ind i drikkevarer under kulsyretilsætning - for at give bobler. De tidlige symptomer på udsættelse for høje kuldioxidniveauer omfatter svimmelhed, hovedpine og forvirring, efterfulgt af bevidstløshed. Ulykker og dødsfald kan forekomme i ekstreme tilfælde, hvor en betydelig mængde kuldioxid lækker ind i et lukket eller dårligt ventileret rum. Hvis der ikke er indført ordentlige detektionsmetoder og -processer, kan alle, der kommer ind i det pågældende volumen, være i fare. Desuden kan personalet i de omkringliggende volumener lide af de tidlige symptomer, der er anført ovenfor.

Kvælstof (N2) anvendes ofte til udskænkning af øl, især stouts, pale ales og porters, og det forhindrer også oxidation eller forurening af øl med skarpe smagsstoffer. Nitrogen hjælper med at skubbe væsken fra en tank til en anden og kan også anvendes til at injicere den i fade eller tønder og sætte dem under tryk, så de er klar til opbevaring og forsendelse. Denne gas er ikke giftig, men fortrænger ilten i atmosfæren, hvilket kan være en fare, hvis der opstår en gaslækage, og derfor er nøjagtig gasdetektion afgørende.

Da kvælstof kan nedbryde iltniveauet, bør iltsensorer anvendes i miljøer, hvor der er en af disse potentielle risici. Ved placering af iltsensorer skal der tages hensyn til den fortyndende gassens tæthed og "åndedrætszonen" (næseniveau). Ventilationsmønstre skal også tages i betragtning ved placeringen af sensorerne. Hvis den fortyndende gas f.eks. er nitrogen, er det rimeligt at placere detektoren i skulderhøjde, men hvis den fortyndende gas er kuldioxid, bør detektorerne placeres i knæhøjde.

Betydningen af gasdetektion i drikkevaredispenseringssystemer

Desværre sker der ulykker og dødsfald i drikkevareindustrien på grund af gasrisici. Derfor har Health and Safety Executive (HSE ) i Det Forenede Kongerige kodificeret grænseværdier for sikker eksponering på arbejdspladsen i dokumentationen for Control of Substances Hazardous to Health (COSHH). Kuldioxid har en 8-timers eksponeringsgrænse på 0,5 % og en 15-minutters eksponeringsgrænse på 1,5 volumenprocent. Gasdetektionssystemer hjælper med at mindske gasrisici og gør det muligt for drikkevareproducenter, aftapningsanlæg og ejere af bar- og pubkældre at sikre personalets sikkerhed og påvise overholdelse af lovbestemte grænser eller godkendte praksiskoder.

Iltsvind

Den normale koncentration af ilt i atmosfæren er ca. 20,9 volumenprocent. Iltindholdet kan være farligt, hvis det er for lavt (iltmangel). Hvis der ikke er tilstrækkelig ventilation, kan iltniveauet reduceres overraskende hurtigt ved vejrtrækning og forbrændingsprocesser.

Iltindholdet kan også blive reduceret på grund af fortynding med andre gasser som kuldioxid (også en giftig gas), nitrogen eller helium og kemisk absorption ved korrosionsprocesser og lignende reaktioner. Iltsensorer bør anvendes i miljøer, hvor en af disse potentielle risici er til stede. Ved placering af iltsensorer skal der tages hensyn til den fortyndende gassens tæthed og "åndedrætszonen" (næseniveau). Iltmonitorer giver normalt en alarm på første niveau, når iltkoncentrationen er faldet til 19 % volumenprocent. De fleste mennesker vil begynde at opføre sig unormalt, når niveauet når 17 %, og derfor indstilles der normalt en anden alarm ved denne tærskel. Udsættelse for atmosfærer med et iltindhold på mellem 10 % og 13 % kan meget hurtigt medføre bevidstløshed; døden indtræffer meget hurtigt, hvis iltindholdet falder til under 6 % volumen.

Vores løsning

Gasdetektion kan leveres i form af både faste og bærbare detektorer. Installation af en fastmonteret gasdetektor kan være en fordel i større rum som f.eks. kældre eller fabrikslokaler og sikre kontinuerlig beskyttelse af området og personalet 24 timer i døgnet. Men for arbejdernes sikkerhed i og omkring et flaskeopbevaringsområde og i rum, der er udpeget som lukkede rum, kan en bærbar detektor være mere velegnet. Dette gælder især for pubber og udskænkningssteder for drikkevarer af hensyn til sikkerheden for ansatte og dem, der ikke er fortrolige med miljøet, f.eks. leveringschauffører, salgsteam eller teknikere. Den bærbare enhed kan let fastgøres på tøjet og registrererCO2-lommer ved hjælp af alarmer og visuelle signaler, der angiver, at brugeren straks skal forlade området.

Kontakt vores team for at få flere oplysninger om gasdetektering i drikkevaredispenseringssystemer.

Risici ved iltudtømning fra kvælstof i farmaceutisk behandling

I luften er den normale koncentration af ilt 21 %, mens kvælstof udgør 78 % af resten af atmosfæren sammen med nogle sporgasser. Inerte gasser som nitrogen, argon og helium er ganske vist ikke giftige, men de er ikke med til at støtte menneskers vejrtrækning. De er lugt-, farve- og smagsløse og kan derfor ikke spores. En forøgelse af mængden af andre gasser, som ikke er ilt, kan føre til en situation, hvor personer kan risikere at blive kvalt, hvilket kan medføre alvorlige kvæstelser eller endog døden. Denne fjernelse af iltgas i den luft, vi indånder, gør det ikke blot nyttigt at have en iltmangel-sensor, men afgørende for at opretholde livet.

Hvordan bruges kvælstof til at kontrollere iltniveauet?

Nitrogen (N2) kan bruges til at kontrollere iltniveauet i et laboratorium. Kvælstof anvendes ved udførelse af opgaver inden for medicinalindustrien, ved overførsel af produkter eller ved emballeringsprocessen. Nitrogen bruges til at fjerne ilt fra emballagen, før den forsegles, for at sikre, at produktet bevares. Som følge heraf er behovet for en iltmangelmåler meget vigtigt. Faste eller bærbare enheder har mulighed for at registrere iltniveauer i et laboratorium, anlæg eller brugsrum. Faste gasdetektorsystemer er velegnede til overvågning af et område eller rum, mens en bærbar gasdetektor er beregnet til at blive båret på personen inden for dit åndedrætsområde.

Hvad er risiciene ved iltmangel?

Der er tre hovedårsager til, at der er brug for monitorer; det er vigtigt at opdage iltmangel eller iltberigelse, da for lidt ilt kan forhindre den menneskelige krop i at fungere, hvilket kan føre til, at arbejdstageren mister bevidstheden. Medmindre iltniveauet kan genoprettes til et normalt niveau, er arbejdstageren i fare for at dø. En atmosfære er mangelfuld, når koncentrationen af O2 er mindre end 19,5 %. Følgelig er et miljø med for meget ilt lige så farligt, da det udgør en stærkt forøget risiko for brand og eksplosion, hvilket er tilfældet, når koncentrationen af O2 er over 23,5 %.

Hvis der ikke er tilstrækkelig ventilation, kan iltniveauet reduceres overraskende hurtigt ved vejrtrækning og forbrændingsprocesser. Iltniveauet kan også blive reduceret som følge af fortynding med andre gasser som kuldioxid (også en giftig gas), nitrogen eller helium og kemisk absorption ved korrosionsprocesser og lignende reaktioner. Iltsensorer bør anvendes i miljøer, hvor en af disse potentielle risici er til stede. Ved placering af iltsensorer skal der tages hensyn til den fortyndende gassens tæthed og "åndedrætszonen" (næseniveau). Helium er f.eks. lettere end luft og vil fortrænge ilten fra loftet og nedad, mens kuldioxid, der er tungere end luft, fortrænger ilten overvejende under åndedrætszonen. Ventilationsmønstre skal også tages i betragtning ved placeringen af sensorer.

Oxygenmonitorer giver normalt en alarm på første niveau, når iltkoncentrationen er faldet til 19 % volumen. De fleste mennesker begynder at opføre sig unormalt, når niveauet når 17 %, og derfor indstilles der normalt en anden alarm ved denne tærskel. Udsættelse for atmosfærer med et iltindhold på mellem 10 % og 13 % kan meget hurtigt medføre bevidstløshed; døden indtræffer meget hurtigt, hvis iltindholdet falder til under 6 % volumen. Iltsensorer installeres ofte i laboratorier, hvor inerte gasser (f.eks. nitrogen) opbevares i lukkede rum.

Hvordan registrerer faste eller bærbare enheder ilt?

Crowcon tilbyder en række bærbare monitorer; Gas-Pro Den bærbare multigasdetektor tilbyder detektering af op til 5 gasser i en kompakt og robust løsning. Den har et letlæseligt topmonteret display, der gør den nem at bruge og optimal til gasdetektering i lukkede rum. En valgfri intern pumpe, der aktiveres med flowpladen, gør det nemt at teste før indtrængen og gør det muligt at bruge Gas-Pro enten i pumpe- eller diffusionstilstand.

T4 bærbar 4-i-1 gasdetektor giver effektiv beskyttelse mod iltsvind. T4 multigasdetektor kommer nu med forbedret detektion af pentan, hexan og andre langkædede kulbrinter. Den giver dig compliance, robusthed og lave ejeromkostninger i en brugervenlig løsning. T4 indeholder en lang række effektive funktioner, der gør den daglige brug nemmere og mere sikker.

Crowcons fastmonterede detektor XgardIQ er en intelligent og alsidig fastmonteret detektor og transmitter, der er kompatibel med hele Crowcons udvalg af sensorteknologier. Fås monteret med en række forskellige sensorer til detektering af brandfarlige, giftige, ilt- eller H2S-gasser. Den leverer analoge 4-20 mA og RS-485 Modbus-signaler som standard, og XgardIQ kan som ekstraudstyr fås med alarm- og fejlrelæer og HART-kommunikation. 316 rustfrit stål fås med tre M20- eller 1/2"NPT-kabelindgange. Denne enhed er også (SIL-2) Safety integrity level 2 certificeret fast detektor.

Hvad er der så vigtigt ved mine skærmes måleområde?

Hvad er et måleområde for en monitor?

Gasovervågning måles normalt i PPM-området (dele pr. million), procentdel af LEL (nedre eksplosiv grænse), hvilket gør det muligt for sikkerhedschefer at sikre, at deres operatører ikke udsættes for potentielt skadelige niveauer af gasser eller kemikalier. Gasovervågning kan udføres eksternt for at sikre, at området er rent, før en arbejdstager kommer ind i området, samt overvåge gas gennem en permanent fast enhed eller kropsbåren bærbar enhed for at opdage eventuelle lækager eller farlige områder i løbet af arbejdsskiftet. 

Hvorfor er gasmonitorer vigtige, og hvad er intervallerne for mangler eller berigelser?

Der er tre hovedårsager til, at der er behov for monitorer; det er vigtigt at opdage iltmangel eller berigelse, da for lidt ilt kan forhindre menneskekroppen i at fungere, hvilket fører til, at arbejderen mister bevidstheden. Medmindre iltniveauet kan genoprettes til et normalt niveau, er arbejdstageren i risiko for potentiel død. En atmosfære anses for at være mangelfuld, når koncentrationen af O2 er mindre end 19,5%. Derfor er et miljø, der har for meget ilt i sig, lige så farligt, da dette udgør en stærkt øget risiko for brand og eksplosion, dette overvejes, når koncentrationsniveauet på O2 er over 23,5%. 

Monitorer er påkrævet, når giftige gasser er til stede, som kan forårsage betydelig skade på den menneskelige krop. Hydrogensulfid (H2S) er et klassisk eksempel på dette. H2S afgives af bakterier, når det nedbryder organisk materiale, fordi denne gas er tungere end luft, det kan fortrænge luft, der fører til potentiel skade på personer til stede og er også en bredspektret giftig gift. 

Derudover har gasmonitorer evnen til at detektere brændbare gasser. Farer, der kan forebygges ved hjælp af en gasmonitor, er ikke kun ved indånding, men de er en potentiel fare på grund af forbrænding. gasmonitorer med en LEL-afstandssensor registrerers og ersler mod brændbare gasser.  

Hvorfor er de vigtige, og hvordan fungerer de?

Måling eller måleområde er det samlede område, som enheden kan måle under normale forhold. Udtrykket normal betyder ingen overtryksgrænser (OPL) og inden for maksimalt arbejdstryk (MWP).  Disse værdier findes normalt på produktets websted eller specifikationsdataark. Måleområdet kan også beregnes ved at identificere forskellen mellem URL'en (Upper Range Limit) og LRL (Lower Range Limit) på enheden. Når man forsøger at bestemme detektorens rækkevidde, identificerer den ikke det område af kvadratoptagelser eller inden for en fast radius af detektoren, men identificerer i stedet udbyttet eller diffusionen af det område, der overvåges. Processen sker, når sensorerne reagerer på de gasser, der trænger gennem skærmens membraner. Derfor har enhederne evnen til at opdage gas, der er i umiddelbar kontakt med skærmen. Dette understreger betydningen af at forstå måleområdet for gasdetektorer og fremhæve deres betydning for sikkerheden for de arbejdstagere, der er til stede i disse miljøer. 

Er der nogen produkter, der er tilgængelige?

Crowcon tilbyder en række bærbare monitorer. Gas-Pro Den bærbare multigasdetektor tilbyder detektering af op til 5 gasser i en kompakt og robust løsning. Den har et letlæseligt topmonteret display, der gør den nem at bruge og optimal til gasdetektering i lukkede rum. En valgfri intern pumpe, der aktiveres med flowpladen, gør det nemt at teste før indtrængen og gør det muligt at bruge Gas-Pro enten i pumpe- eller diffusionstilstand.

Den T4 bærbare 4-i-1-gasdetektor giver effektiv beskyttelse mod 4 almindelige gasfarer: kulilte, hydrogensulfid, brændbare gasser og iltsvind. Multigasdetektoren T4 kommer nu med forbedret detektion af pentan, hexan og andre langkædede kulbrinter. Den giver dig compliance, robusthed og lave ejeromkostninger i en brugervenlig løsning. T4 indeholder en lang række effektive funktioner, der gør den daglige brug nemmere og mere sikker.

Den Gasman bærbare enkeltgasdetektor er kompakt og let, men alligevel fuldt ud robust til de hårdeste industrielle miljøer. Den er enkel at betjene med en enkelt knap og har et stort, letlæseligt display for gaskoncentrationen samt akustiske, visuelle og vibrerende alarmer.

Crowcon tilbyder også et fleksibelt udvalg af faste gasdetekteringsprodukter, der kan detektere brandfarlige, giftige og iltgasser, rapportere deres tilstedeværelse og aktivere alarmer eller tilhørende udstyr. Vi bruger en række måle-, beskyttelses- og kommunikationsteknologier, og vores faste detektorer er blevet bevist i mange vanskelige miljøer, herunder olie- og gasefterforskning, vandbehandling, kemiske anlæg og stålværker. Disse faste gasdetektorer anvendes i mange applikationer, hvor pålidelighed, pålidelighed og mangel på falske alarmer er medvirkende til effektiv og effektiv gasdetektering. Disse omfatter inden for bilindustrien og luft- og rumfartssektoren, på videnskabelige og forskningsmæssige faciliteter og i medicinske, civile eller kommercielle anlæg med høj udnyttelse. 

Safirjægere reddet!

Minejægerne leder efter safirer. I denne episode tager de til det sydvestlige Madagaskar, til et af de få steder i verden, hvor en enkelt mine kan producere safirer af enhver regnbuefarve.

Efter et vægkollaps er iltudtømning den største fare, de står over for i disse farlige miljøer - tunneler, der er blevet forseglet i nogen tid, er lange, smalle og går dybt under jorden.

Desværre løber minearbejderen Fred tør for ilt, mens han inspicerer den første mudrede mine. Hans Tetra 3 gasdetektor går i alarm, så hans venner kan trække ham ud hurtigt og sikkert. Selvom teamet her har et stramt budget, er det klart, at de ikke kan undvære et stykke udstyr - en livreddende gasdetektor!

Se videoen her

Læs mere om Mine Hunters serien og se andre episoder.

Find ud af mere om Tetra 3 Gasdetektor og andre interessante anvendelser som f.eks. vulkanforskning.