The Importance of Early Gas Detection in Battery Storage

It’s not an exaggeration to say that the rise of lithium-ion batteries has revolutionised the energy landscape. These compact powerhouses have helped shift our society away from complete fossil fuel dependence, powering the rise of electric vehicles and enabling us to store renewable energy on a previously impossible scale. However, lithium-ion batteries are not an entirely risk-free energy source and can be volatile, which is a cause for concern for battery energy storage systems (BESS) who need to safeguard people – and their assets – from danger.

The Explosive Rise of Batteries

With the rise in lithium-ion batteries, has come a rise in high-profile cases of thermal runaway causing extraordinary damage through explosive fires, causing untold harm to the local environment, as well as eye-watering repair costs. Indeed, the widely-known risks of toxic thermal runaway has caused some pushback against the establishing of BESS sites, making it of paramount importance that battery energy supply can be made demonstrably safer.

Thermal runaway, characterised by uncontrolled heat generation and rapid battery failure, can lead to catastrophic consequences such as fires and explosions. What’s more, as heat can trigger thermal runaway in other batteries, the failure of one can lead to the failure of many, compounding the potential damage cost. While BESS insurers are well aware of such a risk, and have stipulations in place regarding fire, once fire has broken out the damage is already done. Prevention is always better than the cure, and so as suppliers and stakeholders in the lithium-ion battery industry, it’s imperative we address these risks head-on and prioritise safety measures to protect both assets and lives.

The Need for Early Gas Detection

Fortunately, FM Global and UL, two of the world’s largest public safety testing labs, have recognised the importance of gas detection in mitigating the risks associated with lithium-ion battery storage. Their documentation and standards serve as a testament to the critical role that early gas detection plays in ensuring the safety and reliability of energy storage systems. By adhering to these guidelines and implementing comprehensive gas detection strategies, suppliers can bolster their safety protocols and instil confidence in their products.

One of the key indicators of an impending thermal runaway event is the off-gassing from the compounds within the battery. As the internal components degrade or are subjected to extreme conditions, gases such as carbon dioxide, carbon monoxide, and hydrogen may be released, as well as other flammable gases ethylene and propylene. Detecting these gases early is critical, as it provides an opportunity to intervene before the situation escalates further, averting potential disasters. However, ensuring your gas detection system is able to recognise the wide variety of toxic and combustible gases accurately without getting poisoned is crucial. If it’s not accurate, it’s simply not effective and you’re putting your people and property at risk.

Cutting-Edge Gas Detection

While the importance of fire safety and suppression systems in mitigating the risks of lithium-ion battery fires is well-documented, the significance of gas detection systems is often overlooked. Unlike fires, which are often visible and generate smoke, gas emissions can go unnoticed until it’s too late. This gap in awareness underscores the need for robust gas detection solutions to complement existing safety protocols.

Crowcon’s patented MPS™ technology, specifically designed to fill the void left by other gas sensors, offers a reliable and effective solution for detecting gas emissions at the earliest stages of battery failure. The MPS sensor uses advanced micro-pellistor technology to detect a wide range of gases with unparalleled sensitivity and accuracy, able to detect gases at extremely low concentrations, allowing for early intervention and prevention of thermal runaway events. Furthermore, its compact design and ease of integration make it an ideal choice for both new installations and retrofitting existing systems. With Crowcon’s MPS sensor, suppliers can proactively monitor gas emissions and take prompt action to mitigate risks, ensuring the safety and integrity of their lithium-ion battery storage solutions.

Safeguarding a Battery-Powered Future

The importance of early gas detection in battery storage cannot be overstated. Not only can the cost of failing to detect the early warning signs be devastating to your business, but as suppliers and stakeholders in the energy industry, it is our collective responsibility to prioritise safety and implement robust measures to mitigate risks. The only way to do this is through an innovative and rigorous approach to gas detection. By investing in advanced gas detection technologies, you will not only be safeguarding your assets, but the very future of energy storage, helping pave the way for a more sustainable tomorrow.

Contact the Crowcon team today to learn more about how their innovative solutions can enhance the safety and reliability of your battery storage systems. Together, let’s build a brighter and safer battery-powered future.

Battery Safety: What is Off-Gassing and Why Does it Occur​?

Batteries have become an integral part of our daily lives, powering everything from smartphones to electric vehicles. But have you ever considered the potential risks associated with the batteries that enable the seamless functioning of these devices? While advancements in battery technology have revolutionised the way we live, it’s crucial to explore the potential hazards these power sources pose.

Lithium-ion batteries are combustible and hazardous, with the potential of dangerous and explosive thermal runaway – which can not only have devastating consequences for the environment and property but can threaten human life. Therefore, it is important to understand the first signs of a possible disaster – off-gassing.

Understand Off-gassing: The Silent Emission

Off-gassing refers to the release of gases from lithium-ion batteries often as a result of abuse or misuse. When a battery is subjected to conditions such as overcharging, over-discharging, or physical damage, it can lead to the breakdown of internal components, causing the release of gases. These gases typically include carbon dioxide, carbon monoxide, and other volatile organic compounds – which can be toxic for anyone who may come in contact with them.

Explaining Off-gassing Dynamics:

Off-gassing dynamics differ based on battery setups. In enclosed setups like racks or small housings, off-gassing can accumulate within the confined space, increasing the risk of pressure buildup and ignition. In open setups, such as outdoor installations, off-gassing may dissipate more easily, but still poses risks in poorly ventilated areas.

How Off-gassing Occurs and the Timeline:

Although not always a guaranteed precursor to thermal runaway in lithium-ion batteries, off-gassing events typically occur early in their failure. Thermal runaway occurs when a battery undergoes uncontrolled heating, leading to a rapid increase in temperature and pressure within the cell. This escalation can ultimately result in the battery catching fire or exploding, posing significant safety hazards.

The timeline for off-gassing can vary depending on the severity of the abuse and the type of battery. In some cases, off-gassing may occur gradually over time as the battery undergoes repeated stress, while in other instances, it may occur suddenly due to a single event, such as overcharging.

Factors in which Off-gassing can occur:

  • Physical Damage: Any damage to the battery, such as punctures or crushing, can cause internal components to degrade, leading to off-gassing.
  • Overcharging: Excessive charging can cause the decomposition of electrolytes within the battery, leading to gas generation.
  • Overheating: Like off-gassing, excessive heat can trigger thermal runaway by destabilising the battery’s internal chemistry.
  • Over-discharging: Discharging a battery beyond its recommended limit can also result in the release of gases.
  • Internal Short Circuits: Any malfunction that causes a short circuit within the battery can initiate thermal runaway.
  • Manufacturing Defects: Faulty manufacturing processes can introduce weaknesses in the battery structure, making it more susceptible to thermal runaway.

What are the dangers of Off-gassing buildup?

Off-gassing buildup can lead to the battery storage container turning into a pressure vessel that is just waiting for a spark to ignite. To mitigate this risk, it’s crucial to have a monitored ventilation system in place. Additionally, compliance with FM standards is essential, as BESS should maintain lower than 25% LFL or have a container that can open to vent gas, ensuring safety in case of off-gassing.

Why Early Detection of Off-gassing is Critical:

Early detection plays a critical role in preventing catastrophic battery incidents. By identifying signs of off-gassing at the onset, operators can intervene before the situation escalates into thermal runaway. Here’s why early detection is crucial:

  1. Preventative Maintenance: Early detection allows for timely maintenance and corrective action to address battery issues before they worsen. Routine monitoring of off-gassing can help identify underlying problems in battery systems, such as overcharging or internal damage, enabling proactive maintenance to mitigate risks.
  2. Risk Mitigation: Off-gassing serves as an early warning sign of potential battery failures. By monitoring off-gassing levels, operators can implement risk mitigation measures, such as adjusting charging parameters or isolating malfunctioning batteries, to prevent thermal runaway and its associated hazards.
  3. Enhanced Safety: Timely detection of off-gassing enhances safety for both personnel and property. It provides an opportunity to evacuate affected areas, implement emergency protocols, and minimise the impact of battery-related incidents on surrounding environments. Additionally, early intervention reduces the likelihood of injuries and property damage resulting from thermal runaway events.
  4. Cost Savings: Detecting off-gassing early can help avoid costly repairs or replacements of damaged batteries and equipment. By addressing issues proactively, operators can extend the lifespan of batteries, optimise performance, and avoid unplanned downtime, resulting in significant cost savings over time.
  5. Regulatory Compliance: Many regulatory standards and guidelines mandate the monitoring of off-gassing as part of battery safety protocols. Early detection ensures compliance with regulatory requirements and demonstrates a commitment to maintaining safe battery operations in accordance with industry standards.

Incorporating robust gas detection systems and technologies for early detection of off-gassing is essential for proactive risk management and maintaining the integrity of battery systems. By prioritising early detection, stakeholders can safeguard against potential hazards, minimise disruptions, and promote the safe and sustainable use of battery technology across various applications.

Klicken Sie hier für sprechen Sie mit uns über Schutzing Ihr Unternehmen

Weitere Informationen zur Batteriesicherheit finden Sie in unserem eBook "Der Batterie-Boom: Der explosive Anstieg des thermischen Durchgehens und wie Sie es verhindern können".

Holen Sie sich Ihr KOSTENLOSES Exemplar des eBook 'The Battery Boom'.

Eine batteriebetriebene Zukunft: Der Aufstieg der Lithium-Ionen-Batterien und was das für die Nachhaltigkeit bedeutet

Während wir uns gemeinsam auf eine grünere Zukunft zubewegen, in der die Umstellung auf nachhaltige Energielösungen zu einem zentralen globalen gesellschaftspolitischen Thema geworden ist, sind Lithium-Ionen-Batterien als mögliche Lösung in den Mittelpunkt gerückt. Dank ihrer Fähigkeit, große Energiemengen in einer vergleichsweise leichten und kompakten Form zu speichern, haben sie alles revolutioniert, von tragbaren Geräten bis hin zu Elektrofahrzeugen. Aber inwieweit ist eine batteriebetriebene Zukunft wirklich die perfekte Energielösung, nach der wir gesucht haben?

Erleichterung umweltfreundlicherer Energiemöglichkeiten

Die zunehmende Verbreitung von Lithium-Ionen-Batterien bringt eine Fülle von Vorteilen mit sich, da wir uns von der Abhängigkeit von fossilen Brennstoffen lösen, Sie tragen zu einer erheblichen Verringerung der Treibhausgasemissionen und der Luftverschmutzung bei. Dies gilt insbesondere für die Elektrifizierung des Verkehrs durch Elektrofahrzeuge (EVs). Durch den Betrieb von Elektrofahrzeugen mit sauberem Strom, der in Batterien gespeichert wird, kann der Verkehrssektor seine Abhängigkeit von fossilen Brennstoffen verringern und den Ausstoß von Treibhausgasen und Schadstoffen reduzieren. Da der Sektor der Elektrofahrzeuge immer wettbewerbsfähiger wird und viele Regierungen Anreize für die Verbreitung von Elektrofahrzeugen schaffen, werden die Fortschritte in der Batterietechnologie die Reichweite, die Ladegeschwindigkeit und die Erschwinglichkeit von Elektrofahrzeugen weiter verbessern, was ihre Verbreitung beschleunigt und die Abhängigkeit von Fahrzeugen mit Verbrennungsmotoren weiter verringert.

Lithium-Ionen-Batterien spielen auch eine immer wichtigere Rolle bei der Stabilisierung der Stromnetze, da sie die Integration intermittierender erneuerbarer Energiequellen wie Sonnen- und Windenergie in das Stromnetz ermöglichen. Die Sonne scheint nicht immer, und es ist nicht immer windig - aber indem sie überschüssige Energie, die in Zeiten hoher Produktion erzeugt wird, speichern und bei Bedarf entladen, ermöglichen Batterien eine zuverlässige Versorgung mit sauberer Energie in einer zuverlässigen, stabilen Weise, die bisher nur schwer zu erreichen war. Durch die Optimierung des Energiemanagements und die Verringerung der mit herkömmlichen Energiesystemen verbundenen Verluste tragen Batterien zu einer effizienteren und nachhaltigeren Energienutzung in verschiedenen Sektoren bei.

Wie umweltfreundlich sind Lithium-Ionen-Batterien?

Die zunehmende Verbreitung von Batterien hat jedoch auch eine Reihe von Umweltauswirkungen mit sich gebracht. Die Gewinnung und Verarbeitung von Seltenerdmetallen wie Lithium und Kobalt erfolgt oft unter ausbeuterischen Bedingungen in Bergbauregionen, und der Gewinnungsprozess kann auch erhebliche Umweltauswirkungen haben, einschließlich der Zerstörung von Lebensräumen und der Wasserverschmutzung. Darüber hinaus wirft die Entsorgung von Lithium-Ionen-Batterien am Ende ihres Lebenszyklus auch Bedenken hinsichtlich des Recyclings und der Möglichkeit des Austretens gefährlicher Abfälle in die Umwelt auf.

Es gibt jedoch noch einen weiteren Bereich, der bei Lithium-Ionen-Batterien bedenklich ist und mit ihrer zunehmenden Verwendung zu einem Anstieg gefährlicher Zwischenfälle geführt hat: ihre flüchtige und brennbare Natur. Jeder, der das thermische Durchgehen von Lithium-Ionen-Batterien gesehen hat, kann das Risiko, das mit ihrer zunehmenden Verwendung verbunden ist, nicht übersehen. Selbst der Ausfall kleinerer Lithium-Ionen-Geräte der Unterhaltungselektronik kann zu tödlichen und verheerenden Explosionen und Bränden führen, so dass die Lagerung und Verwendung von Batterien in größerem Umfang robuster Sicherheitsmaßnahmen bedarf.

Risikomanagement bei Lithium-Ionen-Batterien

Glücklicherweise gibt es Möglichkeiten, das mit Lithium-Ionen-Batterien verbundene Risiko zu mindern. Üblicherweise werden Batteriemanagementsysteme (BMS) eingesetzt, um den Ladezustand, die Spannung, den Strom und die Temperatur der Batterie zu überwachen, was dazu beitragen kann, Probleme mit den Batterien zu erkennen. Es gibt jedoch eine effizientere und zuverlässigere Methode zur Erkennung eines thermischen Durchgehens: die Gasdetektion.

Vor dem thermischen Durchgehen durchlaufen die Batterien einen Prozess des "Ausgasens", bei dem erhöhte Mengen giftiger VOC freigesetzt werden. Durch die Überwachung der Gase in der Umgebung der Batterien können Anzeichen von Stress oder Schäden erkannt werden, bevor der thermische Durchbruch einsetzt.

Derzeit konzentrieren sich viele Versicherer auf das Brandrisiko und fordern Batteriespeichersysteme (Battery Energy Storage Systems, BESS) dazu auf, Prozesse einzurichten, die sicherstellen, dass Brände so schnell und effektiv wie möglich kontrolliert und bekämpft werden können. Da Lithium-Ionen-Batterien jedoch sehr temperaturempfindlich sind, ist es wahrscheinlich, dass, sobald ein Feuer in einer Batterie ausgebrochen ist, auch alle anderen Batterien in der Nähe unwiderruflich beschädigt werden - oder selbst einen thermischen Durchbruch erleiden. Die Lösung ist einfach: Erkennen Sie die Probleme so früh wie möglich durch Gasdetektion, und sorgen Sie dafür, dass Brände gar nicht erst entstehen können, um eine Katastrophe zu verhindern.

Sicherheit ist unbezahlbar

Die Kosten für die Investition in eine hochentwickelte Gasdetektion sind im Gegensatz zu den Kosten für einen Brand vernachlässigbar - sie betragen etwa 0,01 % der Kosten eines neuen Projekts - und machen sie zu einer offensichtlichen Wahl für diejenigen, die das Risiko bei der Herstellung, Lagerung und Verwendung von Lithium-Ionen-Batterien mindern wollen. Die Schäden am Eigentum, die Kosten für die menschliche Gesundheit (und sogar für das Leben) sowie die Schäden für die natürliche Umwelt durch potenzielle Kontaminationsprobleme nach einem Batterieausfall sind allesamt umfangreich und erheblich. In Verbindung mit der Bedrohung der Aufrechterhaltung des Geschäftsbetriebs und der erforderlichen Schadensbegrenzung ist die Vermeidung komplizierter und teurer Sanierungsmaßnahmen von größter Bedeutung. Das ist etwas, was das Crowcon-Team besser als jeder andere versteht.

Crowcon arbeitet eng mit Ihnen zusammen, um zu gewährleisten, dass Ihr Unternehmen und Ihre Mitarbeiter durch modernste Gaserkennungstechnologie wie den MPS™-Sensor so sicher wie möglich sind. Unsere Molecular Property Spectrometer™ (MPS™)-Technologie erkennt mehr als 15 gefährliche Gase in einem Gerät und ermöglicht so einen höheren Standard bei der Erkennung brennbarer Gase und ein größeres Vertrauen in die Sicherheit Ihrer Batterien.

Klicken Sie hier für sprechen Sie mit uns über Schutzing Ihr Unternehmen

Auch wenn die Ausschöpfung des vollen Potenzials der Lithium-Ionen-Technologie noch die Bewältigung der ökologischen und sozialen Herausforderungen erfordert, die mit ihrer Herstellung, Wartung und Entsorgung verbunden sind, stellt die zunehmende Verbreitung von Lithium-Ionen-Batterien einen wichtigen Schritt in Richtung einer nachhaltigeren und saubereren Energiezukunft dar. Innovationen bei der Wartung und Effizienzsteigerung von Technologien für erneuerbare Energien, wie z. B. wiederaufladbare Batterien, sind ein entscheidender Schritt, um die Gesellschaft von der Abhängigkeit von fossilen Brennstoffen zu lösen. Lithium-Ionen-Batterien stehen an der Spitze der Nachhaltigkeitsrevolution - von der Stromversorgung unserer Alltagsgeräte bis hin zur Umstellung auf elektrische Verkehrsmittel und erneuerbare Energien - und das Crowcon-Team steht bereit, um eine grünere und sicherere Zukunft für künftige Generationen zu schaffen.

Weitere Informationen zur Batteriesicherheit finden Sie in unserem eBook "Der Batterie-Boom: Der explosive Anstieg des thermischen Durchgehens und wie Sie es verhindern können".

Holen Sie sich Ihr KOSTENLOSES Exemplar des eBook 'The Battery Boom'.

Möchten Sie mehr darüber erfahren, wie Crowcon mit erstklassigen Gaswarnsystemen zur Zukunftssicherung Ihres Unternehmens beitragen kann? Klicken Sie hier um ein unverbindliches Gespräch mit einem Mitglied unseres Teams zu führen.

Wasseraufbereitung: Die Notwendigkeit der Gasdetektion beim Nachweis von Chlor

Wasserversorgungsunternehmen sorgen für sauberes Wasser zum Trinken, Baden und für industrielle und gewerbliche Zwecke. Kläranlagen und Abwassersysteme tragen dazu bei, unsere Wasserwege sauber und hygienisch zu halten. In der gesamten Wasserwirtschaft besteht ein erhebliches Risiko der Gasexposition und der mit Gasen zusammenhängenden Gefahren. Schädliche Gase können in Wassertanks, Versorgungsbehältern, Pumpbrunnen, Aufbereitungsanlagen, Bereichen zur Lagerung und Handhabung von Chemikalien, Schächten, Abwasserkanälen, Überläufen, Bohrlöchern und Schächten vorkommen.

Was ist Chlor und warum ist es gefährlich?

Chlorgas (Cl2) hat eine gelbgrüne Farbe und wird zur Entkeimung von Trinkwasser verwendet. Der größte Teil des Chlors wird jedoch in der chemischen Industrie verwendet, wo es typischerweise in der Wasseraufbereitung sowie in Kunststoffen und Reinigungsmitteln eingesetzt wird. Chlorgas ist an seinem stechenden, irritierenden Geruch zu erkennen, der dem Geruch von Bleichmittel ähnelt. Der starke Geruch kann eine ausreichende Warnung für Personen sein, die dem Gas ausgesetzt sind. Cl2 selbst ist nicht brennbar, aber es kann explosiv reagieren oder mit anderen Chemikalien wie Terpentin und Ammoniak brennbare Verbindungen bilden.

Chlorgas ist an seinem stechenden, reizenden Geruch zu erkennen, der dem Geruch von Bleichmittel ähnelt. Der starke Geruch kann eine ausreichende Warnung für Personen sein, die dem Gas ausgesetzt sind. Chlor ist giftig und kann, wenn es in konzentrierten Mengen eingeatmet oder getrunken wird, tödlich sein. Wenn Chlorgas in die Luft freigesetzt wird, können Menschen über die Haut, die Augen oder durch Einatmen dem Gas ausgesetzt sein. Chlor ist nicht brennbar, kann jedoch mit den meisten brennbaren Stoffen reagieren, was ein Brand- und Explosionsrisiko darstellt. Es reagiert auch heftig mit organischen Verbindungen wie Ammoniak und Wasserstoff, was zu Bränden und Explosionen führen kann.

Wofür wird Chlor verwendet?

Die Chlorierung von Wasser begann im18. Jahrhundert in Schweden mit dem Ziel, Gerüche aus dem Wasser zu entfernen. Diese Methode wurde bis 1890 ausschließlich zur Beseitigung von Gerüchen aus dem Wasser verwendet, als Chlor als wirksame Substanz für Desinfektionszwecke erkannt wurde. Anfang 1900 wurde Chlor erstmals in Großbritannien zu Desinfektionszwecken eingesetzt. Im Laufe des nächsten Jahrhunderts wurde die Chlorierung zur bevorzugten Methode der Wasseraufbereitung und wird heute in den meisten Ländern der Welt zur Wasseraufbereitung eingesetzt.

Die Chlorung ist eine Methode zur Desinfektion von Wasser mit einem hohen Gehalt an Mikroorganismen, bei der entweder Chlor oder chlorhaltige Stoffe zur Oxidation und Desinfektion des Wassers verwendet werden. Es können verschiedene Verfahren eingesetzt werden, um einen sicheren Chlorgehalt im Trinkwasser zu erreichen und so wasserbedingten Krankheiten vorzubeugen.

Warum brauche ich einen Chlornachweis?

Da Chlor dichter als Luft ist, neigt es dazu, sich in schlecht belüfteten oder stagnierenden Bereichen in tief liegenden Zonen zu verteilen. Obwohl Chlor an sich nicht brennbar ist, kann es in Verbindung mit Stoffen wie Ammoniak, Wasserstoff, Erdgas und Terpentin explosiv werden.

Die Reaktion des menschlichen Körpers auf Chlor hängt von mehreren Faktoren ab: der Chlorkonzentration in der Luft, der Dauer und Häufigkeit der Exposition. Die Auswirkungen hängen auch von der Gesundheit des Einzelnen und den Umweltbedingungen während der Exposition ab. So kann beispielsweise das Einatmen geringer Mengen Chlor über kurze Zeiträume das Atmungssystem beeinträchtigen. Andere Auswirkungen reichen von Husten und Schmerzen in der Brust bis hin zu Flüssigkeitsansammlungen in der Lunge sowie Haut- und Augenreizungen. Diese Wirkungen treten jedoch nicht unter natürlichen Bedingungen auf.

Unsere Lösung

Der Einsatz eines Chlorgaswarngerätes ermöglicht die Erkennung und Messung dieses Stoffes in der Luft, um Unfälle zu vermeiden. Ausgestattet mit einem elektrochemischen Chlorsensor überwacht ein stationärer oder tragbarer Cl2-Detektor für ein oder mehrere Gase die Chlorkonzentration in der Umgebungsluft. Wir verfügen über eine breite Palette von Gasmessgeräten, die Ihnen helfen, die Anforderungen der Wasseraufbereitungsindustrie zu erfüllen.

Fest installierte Gasdetektoren sind ideal für die Überwachung von Wasseraufbereitungsanlagen und die Warnung der Arbeiter vor allen wichtigen Gasgefahren. Die ortsfesten Gasdetektoren können dauerhaft in Wassertanks, Abwassersystemen und allen anderen Bereichen, die ein hohes Risiko der Gasaussetzung darstellen, angebracht werden.

Tragbare Gasdetektoren sind leichte und robuste, tragbare Gasdetektionsgeräte. Die tragbaren Gasdetektoren geben ein akustisches Signal ab und alarmieren die Arbeiter, wenn die Gaskonzentration gefährliche Werte erreicht, so dass Maßnahmen ergriffen werden können. Unser Gasmanund Gas-Pro verfügen über zuverlässige Chlorsensoren für die Überwachung von Einzelgasen und für die Überwachung mehrerer Gase.

Schalttafeln können zur Koordinierung zahlreicher ortsfester Gaswarngeräte eingesetzt werden und als Auslöser für Alarmsysteme dienen.

Wenn Sie weitere Informationen über die Gasdetektion im Bereich Wasser und Wasseraufbereitung wünschen oder mehr über das Gasdetektionssortiment von Crowcon erfahren möchten, nehmen Sie bitte Kontakt mit uns auf.

Gasgefahren in Batteriespeichern

Batterien sind ein wirksames Mittel zur Verringerung von Stromausfällen, da sie auch überschüssige Energie aus dem herkömmlichen Netz speichern können. Die in den Batterien gespeicherte Energie kann immer dann freigesetzt werden, wenn eine große Menge an Strom benötigt wird, z. B. bei einem Stromausfall in einem Rechenzentrum, um Datenverluste zu verhindern, oder als Reservestromversorgung für ein Krankenhaus oder eine militärische Anwendung, um die Kontinuität lebenswichtiger Dienste sicherzustellen. Großbatterien können auch eingesetzt werden, um kurzfristige Bedarfslücken im Netz zu schließen. Diese Batteriezusammensetzungen können auch in kleineren Größen für den Antrieb von Elektroautos verwendet werden und können weiter verkleinert werden, um kommerzielle Produkte wie Telefone, Tablets, Laptops, Lautsprecher und - natürlich - persönliche Gasdetektoren zu betreiben.

Gasgefahren

Das Hauptgasrisiko bei Batterien, insbesondere bei Bleibatterien, ist Wasserstoff. Während des Ladevorgangs können sowohl Wasserstoff als auch Sauerstoff freigesetzt werden. Eine Bleibatterie verfügt jedoch wahrscheinlich über interne katalytische Rekombinationsteile, so dass Sauerstoff ein geringeres Risiko darstellt. Wasserstoff ist immer ein Grund zur Sorge, da er sich ansammeln und aufbauen kann. Eine Situation, die sich natürlich noch verschlimmert, wenn sie in einem Raum mit schlechter Luftzirkulation aufgeladen werden.

Beim Laden bestehen Blei-Säure-Batterien aus Blei und Oxid am positiven Pol und aus schwammigem Blei an der negativen Anode, wobei konzentrierte Schwefelsäure als Elektrolyt verwendet wird. Das Vorhandensein von Schwefelsäure ist ein weiterer Grund zur Besorgnis, wenn die Batterie ausläuft oder jemals beschädigt wird, da konzentrierte Säuren Menschen, Metalle und die Umwelt schädigen.

Beim Aufladen geben die Batterien aufgrund des Elektrolyseprozesses auch Sauerstoff und Wasserstoff ab. Die Menge des erzeugten Wasserstoffs steigt an, wenn eine Bleibatteriezelle "durchbrennt" oder nicht mehr richtig geladen werden kann. Die Menge des Gases ist von Bedeutung, da Wasserstoff in großen Mengen hochexplosiv ist, obwohl er nicht giftig ist. Wasserstoff hat eine untere Explosionsgrenze von 100 % des Volumens von 4,0 %; bei diesem Wert würde eine Zündquelle Brände oder - bei Wasserstoff - Explosionen verursachen. Brände und Explosionen sind nicht nur ein Problem für die Arbeiter im Raum, sondern auch für die umliegenden Geräte und die Infrastruktur.

Die Bedeutung der Gasmesstechnik

Die Gasdetektion ist eine unschätzbare Sicherheitstechnik, die häufig in Batterieladeräumen eingesetzt wird. Auch eine Belüftung wird empfohlen, die zwar hilfreich, aber nicht narrensicher ist, da Lüftermotoren ausfallen können und nicht als einzige Sicherheitsmaßnahme für Batterieladebereiche eingesetzt werden sollten. Ventilatoren maskieren das Problem, während Gasdetektoren das Personal benachrichtigen, damit es handeln kann, bevor die Probleme eskalieren. Gaswarnsysteme sind entscheidend, wenn es darum geht, das Personal über zunehmende Gaslecks zu informieren, bevor sie gefährlich werden. Gaswarnanlagen entsprechen den örtlichen Bauvorschriften und NFPA 111, der Norm der National Fire Protection Association für Not- und Reservestromsysteme für gespeicherte elektrische Energie. Sie enthalten Bestimmungen zu Wartung, Betrieb, Installation und Prüfung der Systemleistung. Neben stationären Gaswarnsystemen sind auch tragbare Geräte erhältlich. Die Benchmark-Produkte werden von Crowcon angeboten und sind unten aufgeführt.

Tragbare Gasdetektoren

Die tragbaren Gasdetektoren von Crowcon (Gasman, Gas-Pro, T4x, Tetra 3 und T4) schützen vor einer Vielzahl von industriellen Gasgefahren, wobei sowohl Einzelgas- als auch Mehrgasmessgeräte erhältlich sind. Mit einem breiten Spektrum an Größen und Komplexität finden Sie die richtige tragbare Gasdetektionslösung für die Anzahl und den Typ der Gassensoren, die Sie benötigen, sowie für Ihre Anzeige- und Zertifizierungsanforderungen.

Fest installierte Gasdetektoren

Die ortsfesten Gaswarnsysteme von Crowcon bieten eine flexible Palette von Lösungen, mit denen brennbare, toxische und sauerstoffhaltige Gase gemessen, ihr Vorhandensein gemeldet und Alarme oder zugehörige Geräte aktiviert werden können. Die stationären Gasüberwachungssysteme von Crowcon(Xgard, Xgard Bright und XgardIQ) sind so konzipiert, dass sie mit Handfeuermeldern, Brand- und Gasmeldern und verteilten Steuerungssystemen (DCS) verbunden werden können.

Schalttafeln

Die Gaswarnzentralen von Crowcon bieten eine flexible Palette von Lösungen, mit denen brennbare, toxische und sauerstoffhaltige Gase gemessen, ihr Vorhandensein gemeldet und Alarme oder zugehörige Geräte aktiviert werden können. Fest installierte Crowcon-Gasmessgeräte (Vortex, GM Addressable Controllers, Gasmaster) Überwachungssysteme sind so konzipiert, dass sie mit Handfeuermeldern, Brand- und Gasmeldern und verteilten Steuerungssystemen (DCS) verbunden werden können. Darüber hinaus kann jedes System für die Ansteuerung von Fernmeldern und Blindschalttafeln ausgelegt werden. Crowcon hat ein Gasdetektionsprodukt, das für Ihre Anwendung geeignet ist, unabhängig von Ihrem Betrieb.

Messung der Temperatur

Crowcon verfügt über umfangreiche Erfahrungen mit Temperaturmessungen. Es gibt mehrere Modelle zur Temperaturmessung, von Taschenthermometern bis hin zu industriellen Kits, die von -99,9 bis 299,9 °C mit Sonden und Klemmen reichen. Das Unternehmen erweitert seine stationären Erkennungsmöglichkeiten um die elektrochemische Hochtemperatur-Schwefeldioxid-Erkennung für die Batterieherstellung und Ladestationen. Dies ist während der ersten Ladung einer Batterie von entscheidender Bedeutung, da zu diesem Zeitpunkt ein Fehler am wahrscheinlichsten ist. Ihre schnell reagierenden Systeme erkennen die Vorläufer eines thermischen Durchgehens und schalten die Stromzufuhr zu den Batterien schnell ab, um Schäden zu vermeiden.

Wenn Sie mehr über die Gefahren von Gas in Batterien erfahren möchten, besuchen Sie unsereBranchenseitefür weitere Informationen.

Die Bedeutung der Gasdetektion in der Sicherheits-, Regierungs- und Verteidigungsindustrie

Diejenigen, die in unserem öffentlichen Sektor an vorderster Front arbeiten, riskieren jeden Tag ihr Leben, um den Gemeinschaften, aus denen sie kommen und in denen sie arbeiten, zu dienen und sie zu schützen. Feuerwehrleute, Polizisten und medizinische Ersthelferteams, die in unbeständigen Konfliktgebieten arbeiten, müssen angemessen geschützt und ausgerüstet sein, um ihre lebensrettende Arbeit leisten zu können. Für die verschiedenen Einsatzbereiche wird eine Reihe von Geräten benötigt, von fest installierten Detektoren über tragbare Geräte bis hin zu Plattformen zur Prüfung der Luftqualität. In jedem Fall unterstützt eine robuste Detektion die zuverlässige Erbringung von Dienstleistungen in feindlichen Bereichen auf der ganzen Welt.

In den wichtigen Bereichen Sicherheit, Verteidigung und Regierung ist der Bedarf an geeigneten Gaswarngeräten sehr groß. Von den Streitkräften eines Landes bis hin zu einer Vielzahl von Regierungsbehörden - die unterschiedlichen Anwendungen in jedem Bereich führen dazu, dass die dort Beschäftigten mit vielen verschiedenen Gefahrstoffen, insbesondere giftigen und brennbaren Gasen, in Berührung kommen.

Gasgefahren in der Sicherheits-, Regierungs- und Verteidigungsindustrie

Teams, die im Verteidigungssektor tätig sind, darunter die Royal Navy, die British Army, die Royal Air Force und das Strategic Command, arbeiten in gefährlichen, oft lebensbedrohlichen Umgebungen. Ob in einer Kampfsituation oder in einer Trainingsumgebung - die Wahrscheinlichkeit, auf gefährliche Gase und Materialien zu stoßen, ist in diesen Bereichen besonders hoch. Teams, die in engen Räumen arbeiten, wie z. B. U-Boot-Besatzungen, sind beispielsweise durch die Ansammlung giftiger Gase, einen reduzierten Luftstrom und eingeschränkte Überwachungs- und Wartungszeiten gefährdet. Ob auf See, in der Luft oder an Land - der Einsatz vorbildlicher Gasdetektionsgeräte ist von vorrangiger Bedeutung, damit sich die Teams auf die jeweilige Mission konzentrieren können und sich aller chemischen, biologischen oder radiologischen Gefahren bewusst bleiben.

Verdeckte und enge Räume

In verborgenen und engen Räumen, wie z. B. auf U-Booten, sind die Besatzungen stärker durch gefährliche Gasansammlungen gefährdet. Da die Besatzungen bis zu drei Monate lang unter diesen Bedingungen leben und arbeiten, können falsche Gasmesswerte und Alarme katastrophale Folgen haben. Die Atmosphären müssen mit äußerster Vorsicht verwaltet und überwacht werden, um sicherzustellen, dass die Schiffe lebensfähig sind, und um alle potenziell lebensgefährlichen Substanzen zu überwachen.

Kohlenmonoxid und flüchtige organische Verbindungen (VOCs)

Wer mit Feuer zu tun hat, sei es als Brandermittler, Feuerwehrmann oder Polizeibeamter, läuft Gefahr, Kohlenmonoxid und flüchtige organische Verbindungen (VOC) zu konsumieren. Die Verwendung geeigneter Gasdetektionsgeräte in diesen Umgebungen kann eine Möglichkeit bieten, die Beweise zu analysieren und zu beurteilen, welche Verbindungen oder Gase in der Atmosphäre als Folge eines Brandes, einer Verbrennung oder einer Explosion vorhanden sind. VOCs und Kohlenmonoxid können bei Verschlucken die menschliche Gesundheit schädigen. Zu den Nebenwirkungen gehören Reizungen von Augen, Nase und Rachen, Kurzatmigkeit, Kopfschmerzen, Müdigkeit, Brustschmerzen, Übelkeit, Schwindel und Hautprobleme. In höheren Konzentrationen können die Gase Schäden an Lunge, Nieren, Leber und zentralem Nervensystem verursachen.

Dekontamination und Infektionskontrolle

Bei potenziellen biologischen, chemischen, radiologischen und nuklearen Zwischenfällen, insbesondere bei einer Kontamination von Opfern, kann die Überwachung der vorhandenen Gase und schädlichen Elemente lebensrettend sein. Bei Dekontaminationsprozessen können die Arbeiter mit einer Reihe von schädlichen Gasen wie Wasserstoffperoxid, Chlor, Ethylenoxid, Formaldehyd, Ammoniak, Chlordioxid und Ozon in Kontakt kommen. Aufgrund der Gefahren, die von jedem dieser Gase ausgehen, sollten die Bereiche in allen Phasen des Dekontaminationsprozesses wirksam überwacht werden, auch bevor das Personal den Bereich wieder betritt, während der Dekontamination und wenn das Personal die PSA ablegt. In den Bereichen, in denen Dekontaminationschemikalien gelagert werden, können fest installierte Gasdetektoren die Teams auf eventuelle Lecks aufmerksam machen, bevor die Mitarbeiter den Lagerbereich betreten.

Unsere Lösungen

Da es praktisch unmöglich ist, diese Gasgefahren zu beseitigen, müssen sich Arbeitnehmer und Auftragnehmer zu ihrem Schutz auf zuverlässige Gaswarngeräte verlassen. Gasdetektoren können sowohlstationärals auchmobileingesetzt werden. Unsere tragbaren Gasdetektoren schützen vor einer breiten Palette von Gasgefahren, darunterT4x,Gasman, Gas-Pro,T4undDetective+. Unsere ortsfesten Gasdetektoren werden in vielen Anwendungen eingesetzt, in denen Zuverlässigkeit, Verlässlichkeit und das Fehlen von Fehlalarmen entscheidend für eine effiziente und effektive Gasdetektion sind. Dazu gehörenXgard undXgard Bright. Kombiniert mit einer Vielzahl unserer ortsfesten Gasdetektoren bieten unsere Gaswarnzentralen ein flexibles Angebot an Lösungen, die brennbare, toxische und sauerstoffhaltige Gase messen, ihr Vorhandensein melden und Alarme oder zugehörige Geräte aktivieren, für die Energiewirtschaft umfassen unsere Zentralen Gasmaster.

Wenn Sie mehr über die Gasgefahren in der Energiebranche erfahren möchten, besuchen Sie unsereBranchenseite.

Die Bedeutung der Gasdetektion in der Energiewirtschaft

Die Energiewirtschaft ist das Rückgrat unserer industriellen und häuslichen Welt und versorgt Industrie, Gewerbe und Haushalte auf der ganzen Welt mit der notwendigen Energie. Mit den Bereichen fossile Brennstoffe (Erdöl, Kohle, Flüssigerdgas), Stromerzeugung, -verteilung und -vertrieb, Kernenergie und erneuerbare Energien ist der Energieerzeugungssektor von entscheidender Bedeutung für die Deckung des steigenden Energiebedarfs der Schwellenländer und der wachsenden Weltbevölkerung.

Gasgefahren im Energiesektor

In der Energiewirtschaft wurden in großem Umfang Gaswarnsysteme installiert, um mögliche Folgen durch die Erkennung von Gasexposition zu minimieren, da die Beschäftigten in dieser Branche einer Vielzahl von Gasgefahren in Kraftwerken ausgesetzt sind.

Kohlenmonoxyd

Der Transport und die Zerkleinerung von Kohle birgt ein hohes Verbrennungsrisiko. Feiner Kohlenstaub schwebt in der Luft und ist hochexplosiv. Der kleinste Funke, z. B. von einer Anlage, kann die Staubwolke entzünden und eine Explosion auslösen, die weiteren Staub aufwirbelt, der wiederum explodiert, und so weiter in einer Kettenreaktion. In Kohlekraftwerken ist jetzt neben der Zertifizierung für gefährliche Gase auch eine Zertifizierung für brennbare Stäube erforderlich.

Kohlekraftwerke erzeugen große Mengen an Kohlenmonoxid (CO), das sowohl hochgiftig als auch brennbar ist und genau überwacht werden muss. CO ist ein giftiger Bestandteil einer unvollständigen Verbrennung und entsteht durch undichte Kesselgehäuse und schwelende Kohle. Die Überwachung von CO in Kohletunneln, Bunkern, Trichtern und Kippräumen ist von entscheidender Bedeutung, ebenso wie die Infrarotdetektion brennbarer Gase zur Erkennung von Vorbränden.

Wasserstoff

Da Wasserstoff-Brennstoffzellen als Alternative zu fossilen Brennstoffen immer beliebter werden, ist es wichtig, sich der Gefahren von Wasserstoff bewusst zu sein. Wie alle Brennstoffe ist auch Wasserstoff leicht entzündlich, und wenn er ausläuft, besteht echte Brandgefahr. Wasserstoff brennt mit einer blassblauen, fast unsichtbaren Flamme, die schwere Verletzungen und schwere Schäden an der Ausrüstung verursachen kann. Daher muss Wasserstoff überwacht werden, um Brände im Dichtungsölsystem und ungeplante Abschaltungen zu verhindern und das Personal vor Feuer zu schützen.

Darüber hinaus müssen Kraftwerke über Pufferbatterien verfügen, um die Funktion kritischer Kontrollsysteme bei einem Stromausfall zu gewährleisten. In Batterieräumen entsteht viel Wasserstoff, und die Überwachung erfolgt oft in Verbindung mit der Belüftung. Herkömmliche Bleibatterien erzeugen Wasserstoff, wenn sie geladen werden. Diese Batterien werden in der Regel gemeinsam geladen, manchmal im selben Raum oder Bereich, was zu einer Explosionsgefahr führen kann, insbesondere wenn der Raum nicht richtig belüftet ist.

Betreten von engen Räumen

Das Betreten von geschlossenen Räumen (Confined Space Entry, CSE) wird oft als gefährliche Arbeit in der Energieerzeugung angesehen. Daher ist es wichtig, dass der Zutritt streng kontrolliert wird und detaillierte Vorsichtsmaßnahmen getroffen werden. Sauerstoffmangel, giftige und entflammbare Gase sind Risiken, die bei Arbeiten in engen Räumen auftreten können und die niemals als einfach oder routinemäßig angesehen werden sollten. Die Gefahren bei der Arbeit in engen Räumen können jedoch durch den Einsatz von tragbaren Gaswarngeräten vorhergesagt, überwacht und gemildert werden. Vorschriften für beengte Räume von 1997. Approved Code of Practice, Regulations and Guidance richtet sich an Arbeitnehmer, die in engen Räumen arbeiten, an diejenigen, die diese Personen beschäftigen oder ausbilden, und an diejenigen, die sie vertreten.

Unsere Lösungen

Da es praktisch unmöglich ist, diese Gasgefahren zu beseitigen, müssen sich Arbeitnehmer und Auftragnehmer zu ihrem Schutz auf zuverlässige Gaswarngeräte verlassen. Gasdetektoren können sowohlstationärals auchmobileingesetzt werden. Unsere tragbaren Gasdetektoren schützen vor einer breiten Palette von Gasgefahren, darunterT4x,Gasman,Tetra 3,Gas-Pro,T4, undDetective+. Unsere ortsfesten Gasdetektoren werden in vielen Anwendungen eingesetzt, bei denen Zuverlässigkeit, Verlässlichkeit und das Fehlen von Fehlalarmen entscheidend für eine effiziente und effektive Gasdetektion sind,Xgard Bright, XgardIQ und IRmax. In Kombination mit einer Vielzahl unserer stationären Detektoren bieten unsere Gaswarnzentralen eine flexible Palette von Lösungen, die brennbare, toxische und sauerstoffhaltige Gase messen, deren Vorhandensein melden und Alarme oder zugehörige Geräte aktivieren. Vortex und Gasmonitor.

Wenn Sie mehr über die Gasgefahren in der Energiebranche erfahren möchten, besuchen Sie unsereBranchenseite.

Überblick über die Industrie: Abfall zu Energie

In der Abfallverwertungsindustrie werden verschiedene Abfallbehandlungsverfahren eingesetzt. Feste Siedlungs- und Industrieabfälle werden in Strom und manchmal auch in Wärme für die industrielle Verarbeitung und Fernwärmesysteme umgewandelt. Das Hauptverfahren ist natürlich die Verbrennung, aber auch Zwischenschritte wie Pyrolyse, Vergasung und anaerobe Vergärung werden manchmal eingesetzt, um den Abfall in nützliche Nebenprodukte umzuwandeln, die dann zur Stromerzeugung durch Turbinen oder andere Anlagen genutzt werden. Diese Technologie findet weltweit immer mehr Anerkennung als umweltfreundlichere und sauberere Energieform als die herkömmliche Verbrennung fossiler Brennstoffe und als Mittel zur Verringerung der Abfallproduktion.

Arten der Energiegewinnung aus Abfällen

Verbrennung

Die Verbrennung ist ein Abfallbehandlungsverfahren, bei dem energiereiche Stoffe, die in den Abfällen enthalten sind, verbrannt werden, und zwar in der Regel bei hohen Temperaturen um 1000 Grad C. Industrieanlagen für die Abfallverbrennung werden gemeinhin als Müllverbrennungsanlagen bezeichnet und sind oft selbst große Kraftwerke. Die Verbrennung und andere Hochtemperatur-Abfallbehandlungssysteme werden häufig als "thermische Behandlung" bezeichnet. Während des Prozesses wird der Abfall in Wärme und Dampf umgewandelt, die zum Antrieb einer Turbine verwendet werden können, um Strom zu erzeugen. Der Wirkungsgrad dieser Methode liegt derzeit bei etwa 15-29 %, ist aber noch ausbaufähig.

Pyrolyse

Die Pyrolyse ist ein anderes Abfallbehandlungsverfahren, bei dem die Zersetzung fester Kohlenwasserstoffabfälle, in der Regel Kunststoffe, bei hohen Temperaturen unter Ausschluss von Sauerstoff und in einer Atmosphäre aus Inertgasen erfolgt. Diese Behandlung wird in der Regel bei oder über 500 °C durchgeführt, wodurch genügend Wärme entsteht, um die langkettigen Moleküle, einschließlich der Biopolymere, in einfachere Kohlenwasserstoffe mit geringerer Masse zu zerlegen.

Vergasung

Dieses Verfahren wird eingesetzt, um aus schwereren Brennstoffen und aus brennbaren Abfällen gasförmige Brennstoffe herzustellen. Bei diesem Verfahren werden kohlenstoffhaltige Stoffe bei hoher Temperatur in Kohlendioxid (CO2), Kohlenmonoxid (CO) und eine geringe Menge Wasserstoff umgewandelt. Bei diesem Prozess entsteht ein Gas, das eine gute Quelle für nutzbare Energie ist. Dieses Gas kann dann zur Erzeugung von Strom und Wärme genutzt werden.

Plasma-Lichtbogenvergasung

Bei diesem Verfahren wird ein Plasmabrenner verwendet, um energiereiches Material zu ionisieren. Es entsteht ein Synthesegas, das zur Herstellung von Düngemitteln oder zur Stromerzeugung verwendet werden kann. Diese Methode ist eher ein Abfallbeseitigungsverfahren als ein ernsthaftes Mittel zur Gaserzeugung, denn sie verbraucht oft so viel Energie, wie das erzeugte Gas liefern kann.

Gründe für Waste to Energy

Da diese Technologie im Hinblick auf die Abfallproduktion und die Nachfrage nach sauberer Energie weltweit immer mehr Anerkennung findet.

  • Vermeidung von Methanemissionen aus Mülldeponien
  • Kompensiert Treibhausgasemissionen aus der Stromerzeugung mit fossilen Brennstoffen
  • Rückgewinnung und Wiederverwertung wertvoller Ressourcen, wie z. B. Metalle
  • Erzeugt saubere, zuverlässige, grundlastfähige Energie und Dampf
  • Verbraucht weniger Land pro Megawatt als andere erneuerbare Energiequellen
  • Nachhaltige und beständige erneuerbare Brennstoffquelle (im Vergleich zu Wind und Sonne)
  • Vernichtet chemische Abfälle
  • Führt zu niedrigen Emissionswerten, die in der Regel weit unter den zulässigen Werten liegen
  • Zerstört katalytisch Stickoxide (NOx), Dioxine und Furane mit Hilfe einer selektiven katalytischen Reduktion (SCR)

Was sind die Gasgefahren?

Es gibt viele Verfahren zur Umwandlung von Abfällen in Energie, darunter Biogasanlagen, Müllverwertung, Sickerwasserpools, Verbrennung und Wärmerückgewinnung. Alle diese Verfahren bergen Gasgefahren für diejenigen, die in diesen Umgebungen arbeiten.

In einer Biogasanlage wird Biogas erzeugt. Dieses entsteht, wenn organische Materialien wie landwirtschaftliche und Lebensmittelabfälle von Bakterien in einer sauerstoffarmen Umgebung abgebaut werden. Dieser Prozess wird anaerobe Vergärung genannt. Wenn das Biogas aufgefangen wurde, kann es zur Erzeugung von Wärme und Strom für Motoren, Mikroturbinen und Brennstoffzellen verwendet werden. Natürlich hat Biogas einen hohen Methangehalt und enthält auch viel Schwefelwasserstoff (H2S), was zu mehreren ernsthaften Gasgefahren führt. (In unserem Blog finden Sie weitere Informationen über Biogas). Es besteht jedoch ein erhöhtes Brand- und Explosionsrisiko, Gefahr in engen Räumen, Erstickungsgefahr, Sauerstoffmangel und Gasvergiftung, meist durchH2Soder Ammoniak (NH3). Arbeiter in einer Biogasanlage müssen über persönliche Gasdetektoren verfügen, die brennbare Gase, Sauerstoff und giftige Gase wieH2Sund CO erkennen und überwachen.

In einer Müllsammlung findet man häufig das brennbare Gas Methan (CH4) und die giftigen GaseH2S, CO und NH3. Das liegt daran, dass die Müllbunker mehrere Meter unter der Erde gebaut sind und die Gasdetektoren in der Regel hoch oben in den Bereichen angebracht sind, was die Wartung und Kalibrierung dieser Detektoren erschwert. In vielen Fällen ist ein Probenahmesystem eine praktische Lösung, da die Luftproben an einen geeigneten Ort gebracht und gemessen werden können.

Sickerwasser ist eine Flüssigkeit, die aus einem Gebiet, in dem Abfälle gesammelt werden, abfließt (auslaugt), wobei Sickerwasserpools eine Reihe von Gasgefahren darstellen. Dazu gehören die Gefahr von brennbarem Gas (Explosionsgefahr),H2S(Gift, Korrosion), Ammoniak (Gift, Korrosion), CO (Gift) und ungünstige Sauerstoffwerte (Erstickungsgefahr). Das Sickerwasserbecken und die zum Sickerwasserbecken führenden Gänge müssen auf CH4,H2S, CO, NH3, Sauerstoff (O2) undCO2 überwacht werden. Entlang der Wege zum Sickerwasserbecken sollten verschiedene Gasdetektoren angebracht werden, deren Ausgänge mit externen Kontrolltafeln verbunden sind.

Bei der Verbrennung und Wärmerückgewinnung müssenO2 und die giftigen Gase Schwefeldioxid (SO2) und CO nachgewiesen werden. Diese Gase stellen eine Gefahr für alle dar, die in Kesselhäusern arbeiten.

Ein weiterer Prozess, der als gasgefährdend eingestuft wird, ist ein Abluftwäscher. Das Verfahren ist gefährlich, da die Rauchgase aus der Verbrennung hochgiftig sind. Das liegt daran, dass es Schadstoffe wie Stickstoffdioxid (NO2), SO2, Chlorwasserstoff (HCL) und Dioxin enthält. NO2 und SO2 sind wichtige Treibhausgase, während HCL alle hier erwähnten Gasarten für die menschliche Gesundheit schädlich sind.

Wenn Sie mehr über die Abfallverwertungsindustrie erfahren möchten, besuchen Sie unsere Branchenseite.

Eine Einführung in die Öl- und Gasindustrie 

Die Öl- und Gasindustrie ist eine der größten Industrien der Welt und leistet einen bedeutenden Beitrag zur Weltwirtschaft. Dieser riesige Sektor wird häufig in drei Hauptbereiche unterteilt: Upstream, Midstream und Downstream. Jeder Sektor birgt seine eigenen, einzigartigen Gasgefahren.

Upstream

Der vorgelagerte Sektor der Öl- und Gasindustrie, der manchmal auch als Exploration und Produktion (oder E&P) bezeichnet wird, befasst sich mit der Suche nach Standorten für die Öl- und Gasförderung und der anschließenden Bohrung, Förderung und Produktion von Erdöl und Erdgas. Die Öl- und Gasförderung ist eine äußerst kapitalintensive Branche, die den Einsatz teurer Maschinen und hochqualifizierter Arbeitskräfte erfordert. Der vorgelagerte Sektor ist sehr breit gefächert und umfasst sowohl Onshore- als auch Offshore-Bohrungen.

Die größte Gasgefahr in der vorgelagerten Öl- und Gasindustrie ist Schwefelwasserstoff (H2S), ein farbloses Gas, das durch seinen charakteristischen Geruch nach faulen Eiern bekannt ist.H2Sist ein hochgiftiges, entflammbares Gas, das gesundheitsschädliche Auswirkungen haben kann, die bei hohen Konzentrationen zu Bewusstlosigkeit und sogar zum Tod führen können.

Die Lösung von Crowcon für die Erkennung von Schwefelwasserstoff kommt in Form des XgardIQeinem intelligenten Gasdetektor, der die Sicherheit erhöht, indem er die Zeit, die das Bedienpersonal in gefährlichen Bereichen verbringen muss, minimiert. XgardIQ ist erhältlich mit Hochtemperatur-H2S-Sensorerhältlich, der speziell für die rauen Umgebungen des Nahen Ostens entwickelt wurde.

Midstream

Der Midstream-Sektor der Öl- und Gasindustrie umfasst die Lagerung, den Transport und die Verarbeitung von Rohöl und Erdgas. Der Transport von Erdöl und Erdgas erfolgt sowohl auf dem Land- als auch auf dem Seeweg, wobei große Mengen in Tankern und Seeschiffen befördert werden. An Land werden Tanker und Pipelines als Transportmittel eingesetzt. Zu den Herausforderungen im Midstream-Sektor gehören unter anderem die Aufrechterhaltung der Integrität von Lager- und Transportbehältern und der Schutz von Arbeitnehmern, die an Reinigungs-, Spül- und Abfüllarbeiten beteiligt sind.

Die Überwachung von Lagertanks ist unerlässlich, um die Sicherheit von Arbeitnehmern und Maschinen zu gewährleisten.

Nachgelagert

Der nachgelagerte Sektor umfasst die Raffination und Verarbeitung von Erdgas und Erdöl sowie den Vertrieb der Endprodukte. Dies ist die Phase des Prozesses, in der diese Rohstoffe in Produkte umgewandelt werden, die für eine Vielzahl von Zwecken wie das Betanken von Fahrzeugen und das Heizen von Häusern verwendet werden.

Der Raffinationsprozess für Rohöl wird im Allgemeinen in drei grundlegende Schritte unterteilt: Trennung, Umwandlung und Aufbereitung. Bei der Erdgasaufbereitung werden die verschiedenen Kohlenwasserstoffe und Flüssigkeiten getrennt, um Gas in "Pipelinequalität" zu erzeugen.

Zu den für den nachgelagerten Sektor typischen Gasgefahren gehören Schwefelwasserstoff, Schwefeldioxid, Wasserstoff und eine breite Palette toxischer Gase. Crowcon's Xgard und Xgard Bright fest installierte Detektoren bieten beide eine breite Palette von Sensoroptionen, um alle in dieser Branche vorkommenden Gasgefahren abzudecken. Xgard Bright ist auch mit der nächsten Generation MPS™-Sensorfür die Erkennung von über 15 brennbaren Gasen in einem Detektor. Außerdem sind sowohl Einzel- als auch Multigas-Personenmonitore erhältlich, um die Sicherheit der Mitarbeiter in diesen potenziell gefährlichen Umgebungen zu gewährleisten. Dazu gehören die Gas-Pro und T4xmit Gas-Pro , die 5 Gase in einer kompakten und robusten Lösung unterstützen.

Warum wird bei der Zementherstellung Gas freigesetzt?

Wie wird Zement hergestellt?

Beton ist einer der wichtigsten und am häufigsten verwendeten Baustoffe im weltweiten Bauwesen. Beton wird in großem Umfang für den Bau von Wohn- und Geschäftshäusern, Brücken, Straßen und vielem mehr verwendet.

Der wichtigste Bestandteil von Beton ist Zement, ein Bindemittel, das alle anderen Bestandteile des Betons (im Allgemeinen Kies und Sand) miteinander verbindet. Jedes Jahr werden weltweit mehr als 4 Milliarden Tonnen Zement verbrauchtverbraucht, was das enorme Ausmaß der globalen Bauindustrie verdeutlicht.

Die Herstellung von Zement ist ein komplexer Prozess, der mit Rohstoffen wie Kalkstein und Ton beginnt, die in großen Öfen von bis zu 120 m Länge auf bis zu 1.500 °C erhitzt werden. Bei solch hohen Temperaturen kommt es durch chemische Reaktionen zu einer Verbindung dieser Rohstoffe, wodurch Zement entsteht.

Wie viele industrielle Prozesse ist auch die Zementherstellung nicht ohne Gefahren. Bei der Herstellung von Zement können Gase freigesetzt werden, die für Arbeitnehmer, örtliche Gemeinschaften und die Umwelt schädlich sind.

Welche Gasgefahren gibt es bei der Zementherstellung?

Die in Zementwerken im Allgemeinen emittierten Gase sind Kohlendioxid (CO2), Stickstoffoxide (NOx) und Schwefeldioxid (SO2), wobeiCO2 den größten Teil der Emissionen ausmacht.

Das in Zementwerken vorhandene Schwefeldioxid stammt in der Regel aus den Rohstoffen, die im Zementherstellungsprozess verwendet werden. Die größte Gefahr geht von Kohlendioxid aus, denn die Zementindustrie ist für einen Anteil von 8 % der weltweitenCO2 Emissionen.

Der Großteil der Kohlendioxidemissionen entsteht durch einen chemischen Prozess namens Kalzinierung. Dies geschieht, wenn Kalkstein in den Öfen erhitzt wird, wodurch er sich inCO2 und Kalziumoxid zerfällt. Die andere Hauptquelle vonCO2 ist die Verbrennung von fossilen Brennstoffen. Die bei der Zementherstellung verwendeten Öfen werden in der Regel mit Erdgas oder Kohle beheizt, wodurch eine weitere Quelle von Kohlendioxid zusätzlich zu dem durch die Kalzinierung erzeugten entsteht.

Gasdetektion bei der Zementherstellung

In einer Industrie, die in großem Umfang gefährliche Gase produziert, ist die Detektion der Schlüssel. Crowcon bietet eine breite Palette von stationären und mobilen Detektionslösungen an.

Xgard Bright ist unser adressierbarer Festpunkt-Gasdetektor mit Display, der einfache Bedienung und reduzierte Installationskosten bietet. Xgard Bright bietet Optionen für die Detektion von Kohlendioxid und Schwefeldioxydden Gasen, die beim Mischen von Zement am meisten Probleme bereiten.

Für die tragbare Gasdetektion ist das GasmanDas robuste, tragbare und leichte Design macht es zur perfekten Ein-Gas-Lösung für die Zementproduktion. Es ist in einerCO2-Version für den sicheren Bereich erhältlich, die 0-5% Kohlendioxid misst.

Für einen verbesserten Schutz kann das Gas-Pro Multigasdetektor kann mit bis zu 5 Sensoren ausgestattet werden, darunter alle in der Zementherstellung gebräuchlichen Sensoren, CO2, SO2 und NO2.