Molecular Property Spectrometer™ Sensoren für brennbare Gase

Die von NevadaNano entwickelten Molecular Property Spectrometer™ (MPS™) Sensoren stellen die nächste Generation von Detektoren für brennbare Gase. MPS™ kann schnell mehr als 15 charakteristische brennbare Gase auf einmal erkennen. Bis vor kurzem musste jeder, der brennbare Gase überwachen wollte, entweder einen herkömmlichen Detektor für brennbare Gase wählen, der einen für ein bestimmtes Gas kalibrierten Pellistor-Sensor enthielt, oder einen Infrarotsensor (IR), dessen Leistung ebenfalls je nach dem gemessenen brennbaren Gas variiert und der daher für jedes Gas kalibriert werden muss. Diese Lösungen sind zwar vorteilhaft, aber nicht immer ideal. So müssen beispielsweise beide Sensortypen regelmäßig kalibriert werden, und die katalytischen Pellistor-Sensoren müssen außerdem häufig überprüft werden, um sicherzustellen, dass sie nicht durch Verunreinigungen (so genannte "Sensorvergiftungen") oder durch raue Bedingungen beschädigt wurden. In manchen Umgebungen müssen die Sensoren häufig ausgetauscht werden, was sowohl in Bezug auf die Kosten als auch auf die Ausfallzeiten oder die Produktverfügbarkeit kostspielig ist. Die IR-Technologie kann Wasserstoff nicht erkennen, da dieser keine IR-Signatur hat, und sowohl IR- als auch Pellistor-Detektoren erkennen manchmal zufällig andere (d. h. nicht kalibrierte) Gase, was zu ungenauen Messwerten führt, die falsche Alarme auslösen oder das Personal beunruhigen können.

Aufbauend auf mehr als 50 Jahren Erfahrung im Gasbereich leistet Crowcon Pionierarbeit in der fortschrittlichen MPS™-Sensortechnologie die über 15 verschiedene brennbare Gase in einem Gerät erkennt und genau identifiziert. Jetzt erhältlich in Crowcons Flaggschiff Xgard Bright stationären Detektoren und tragbaren Detektoren Gasman und T4x.

Vorteile der Molecular Property Spectrometer™ Sensoren für brennbare Gase

Der MPS™-Sensor bietet wichtige Funktionen, die dem Bediener und damit auch den Mitarbeitern in der Praxis greifbare Vorteile bringen. Dazu gehören:

Keine Kalibrierung

Bei der Implementierung eines Systems, das einen fest installierten Detektor enthält, ist es üblich, die Wartung nach einem vom Hersteller empfohlenen Zeitplan durchzuführen. Dies ist mit laufenden Kosten verbunden und kann zu einer Unterbrechung der Produktion oder des Prozesses führen, um den Detektor oder mehrere Detektoren zu warten oder sogar Zugang zu ihnen zu erhalten. Es kann auch ein Risiko für das Personal bestehen, wenn die Melder in besonders gefährlichen Umgebungen montiert sind. Die Interaktion mit einem MPS-Sensor ist weniger streng, da es keine unentdeckten Fehlermodi gibt, sofern Luft vorhanden ist. Es wäre falsch zu sagen, dass es keine Kalibrierungsanforderungen gibt. Eine Werkskalibrierung, gefolgt von einer Gasprüfung bei der Inbetriebnahme, ist ausreichend, da während der gesamten Lebensdauer des Sensors alle 2 Sekunden eine interne automatische Kalibrierung durchgeführt wird. Was wirklich gemeint ist, ist - keine Kundenkalibrierung.

Multispezies-Gas - 'True LEL'™

In vielen Branchen und Anwendungen werden mehrere Gase in derselben Umgebung verwendet oder entstehen als Nebenprodukt. Dies kann eine Herausforderung für herkömmliche Sensortechnologien darstellen, die nur ein einziges Gas, für das sie kalibriert wurden, in der richtigen Konzentration erkennen können, was zu ungenauen Messwerten und sogar Fehlalarmen führen kann, die den Prozess oder die Produktion unterbrechen können, wenn ein anderer brennbarer Gastyp vorhanden ist. Das fehlende oder übermäßige Ansprechen, das in Umgebungen mit mehreren Gasen häufig auftritt, kann frustrierend und kontraproduktiv sein und die Sicherheit der besten Benutzerpraktiken gefährden. Der MPS™-Sensor kann mehrere Gase auf einmal erkennen und den Gastyp sofort identifizieren. Darüber hinaus verfügt der MPS™ Sensor über eine integrierte Umgebungskompensation und benötigt keinen extern angewendeten Korrekturfaktor. Ungenaue Messwerte und Fehlalarme gehören damit der Vergangenheit an.

Keine Sensorvergiftung

In bestimmten Umgebungen besteht für herkömmliche Sensortypen die Gefahr der Vergiftung. Extremer Druck, hohe Temperaturen und hohe Luftfeuchtigkeit können die Sensoren beschädigen, während Umweltgifte und Verunreinigungen die Sensoren "vergiften" können, was zu erheblichen Leistungseinbußen führt. In Umgebungen, in denen Gifte oder Inhibitoren auftreten können, ist eine regelmäßige und häufige Prüfung die einzige Möglichkeit, um sicherzustellen, dass die Leistung nicht beeinträchtigt wird. Sensorausfälle aufgrund von Vergiftungen können sehr kostspielig sein. Die Technologie des MPS™-Sensors wird durch Verunreinigungen in der Umgebung nicht beeinträchtigt. Für Prozesse, die mit Verunreinigungen belastet sind, steht nun eine Lösung zur Verfügung, die zuverlässig arbeitet und den Bediener durch ein ausfallsicheres Design warnt, so dass Mitarbeiter und Anlagen in gefährlichen Umgebungen beruhigt sein können. Außerdem wird der MPS-Sensor nicht durch erhöhte Konzentrationen brennbarer Gase beeinträchtigt, die beispielsweise bei herkömmlichen katalytischen Sensortypen zu Rissen führen können. Der MPS-Sensor arbeitet weiter.

Wasserstoff (H2)

Die Verwendung von Wasserstoff in industriellen Prozessen nimmt zu, da man eine saubere Alternative zur Verwendung von Erdgas anstrebt. Die Erkennung von Wasserstoff ist derzeit auf Pellistor-, Metalloxid-Halbleiter-, elektrochemische und weniger genaue Wärmeleitfähigkeitssensoren beschränkt, da Infrarotsensoren Wasserstoff nicht erkennen können. Angesichts der oben genannten Probleme mit Vergiftungen oder Fehlalarmen kann die derzeitige Lösung dazu führen, dass der Betreiber zusätzlich zu den Fehlalarmen auch noch häufige Stoßprüfungen und Wartungsarbeiten durchführen muss. Der MPS™-Sensor bietet eine weitaus bessere Lösung für die Erkennung von Wasserstoff und beseitigt die mit der herkömmlichen Sensortechnologie verbundenen Probleme. Ein langlebiger, relativ schnell ansprechender Wasserstoffsensor, der während der gesamten Lebensdauer des Sensors keine Kalibrierung erfordert, ohne das Risiko von Vergiftungen oder Fehlalarmen, kann zu erheblichen Einsparungen bei den Gesamtbetriebskosten führen und reduziert die Interaktion mit dem Gerät, was für die Betreiber, die die MPS™-Technologie nutzen, ein beruhigendes Gefühl und ein geringeres Risiko bedeutet. All dies ist dank der MPS™ Technologie möglich, die den größten Durchbruch in der Gasdetektion seit mehreren Jahrzehnten darstellt.

Wie funktioniert der Molecular Property Spectrometer™ Sensor für brennbare Gase?

Ein mikroelektromechanischer Wandler (MEMS) - bestehend aus einer inerten, mikrometergroßen Membran mit eingebettetem Heizelement und Thermometer - misst Veränderungen der thermischen Eigenschaften der Luft und der Gase in seiner Nähe. Mehrere Messungen, ähnlich einem thermischen "Spektrum", sowie Umgebungsdaten werden verarbeitet, um die Art und Konzentration der vorhandenen brennbaren Gase, einschließlich Gasgemische, zu klassifizieren. Dies wird als TrueLEL.

  1. Das Gas entweicht schnell durch das Maschensieb des Sensors und gelangt in die Sensorkammer und damit in das MEMS-Sensormodul.
  2. Der Joule-Heizer heizt die Heizplatte schnell auf.
  3. Die Umgebungsbedingungen (Temperatur, Druck und Luftfeuchtigkeit) werden in Echtzeit vom integrierten Umgebungssensor gemessen.
  4. Die zur Erwärmung der Probe erforderliche Energie wird mit einem Widerstandsthermometer genau gemessen.
  5. Der für die Gasart und die Umgebungsbedingungen korrigierte Gaspegel wird berechnet und an das Gaswarngerät ausgegeben.

MPS in unseren Produkten

Xgard Bright

In vielen Branchen und Anwendungen werden mehrere Gase in derselben Umgebung verwendet oder entstehen als Nebenprodukt. Dies kann eine Herausforderung für die herkömmliche Sensortechnologie sein, die nur ein einziges Gas, für das sie kalibriert wurde, in der richtigen Konzentration erkennen kann, was zu ungenauen Messwerten führen kann. 

Xgard Bright mit MPS™-Sensortechnologie bietet einen'TrueLEL™'Messwert für alle brennbaren Gase in jeder Umgebung mit mehreren Gasspezies ohneKalibrierung erforderlichoderplanmäßige Wartungüber seineLebenszyklus von mehr als 5 JahrenDadurch werden Betriebsunterbrechungen reduziert und die Betriebszeit erhöht. Dies wiederum reduziert die Interaktion mit dem Detektor und führt zuniedrigeren Gesamtbetriebskostenüber den gesamten Lebenszyklus des Sensors sowie ein geringeres Risiko für das Personal und die Produktionsleistung bei der Durchführung regelmäßiger Wartungsarbeiten.Xgard Bright MPS™ istmaßgeschneidert für die WasserstoffdetektionMit dem MPS™-Sensor wird nur ein Gerät benötigt, das Platz spart, ohne dass die Sicherheit beeinträchtigt wird.

Gasman

Unsere MPS™-Sensortechnologie wurde für die heutigen Multigas-Umgebungen entwickelt, ist resistent gegen Verunreinigungen und verhindert Sensorvergiftungen. Geben Sie Ihren Teams die Gewissheit, dass ein speziell entwickeltes Gerät in jeder Umgebung eingesetzt werden kann. Die MPS-Technologie in unseren tragbaren Gaswarngeräten erkennt automatisch Wasserstoff und gängige Kohlenwasserstoffe in einem einzigen Sensor. Unser zuverlässiges und verlässliches Gasman mit branchenführender Sensortechnologie, die Ihre Anwendungen erfordern.

Gasman MPS™ bietet einen'TrueLEL™'Messwert für alle brennbaren Gase in jeder Umgebung mit mehreren Gasarten, ohneKalibrierung erforderlichoderplanmäßige Wartungüber seineLebenszyklus von mehr als 5 JahrenDadurch werden Betriebsunterbrechungen reduziert und die Betriebszeit erhöht.Alsgiftresistentund mitverdoppelter Batterielebensdauerist es wahrscheinlicher, dass die Bediener nie ohne ein Gerät sind.Gasman MPS™ ist ATEXZone 0 zugelassenDies ermöglicht es dem Bediener, einen Bereich zu betreten, in dem eine explosive Gasatmosphäre ständig oder für längere Zeit vorhanden ist, ohne befürchten zu müssen, dass sein Gasman die Umgebung entzündet.

T4x

T4xDa die Industrie ständig nach Verbesserungen bei der Sicherheit, geringeren Umweltauswirkungen und niedrigeren Betriebskosten verlangt, sind unsere zuverlässigen und verlässlichen tragbaren T4x Gasmonitor erfüllt diese Anforderungen mit seinen branchenführenden Sensortechnologien. Er ist speziell für die Anforderungen Ihrer Anwendungen konzipiert. 

T4x hilft den Betriebsteams, sich auf wertschöpfende Aufgaben zu konzentrieren, indemVerringerung der Anzahl von Sensoraustauschvorgängenum 75 % reduziert und die Zuverlässigkeit der Sensoren erhöht.

Durch die Gewährleistung der Konformität an allen Standorten hilft T4x den Verantwortlichen für Gesundheit und Sicherheit durchSie müssen nicht mehr sicherstellen, dass jedes Gerät kalibriert ist.für das jeweilige brennbare Gas kalibriert werden muss, da es mehr als 15 Gase auf einmal erkennt.Als giftresistentund mitverdoppelter Batterielebensdauerist es wahrscheinlicher, dass Bediener nie ohne ein Gerät sind.T4x reduziert die5-Jahres-Gesamtbetriebskostenum über 25% undspart 12 g Blei Blei pro DetektorDas macht das Recycling am Ende der Lebensdauer viel einfacher und ist besser für die Umwelt.

Mehr über Crowcon finden Sie unter https://www.crowcon.com oder für mehr über MPS besuchen Sie https://www.crowcon.com/mpsinfixed/

Die Vorteile von MPS-Sensoren 

Entwickelt vonNevadaNanoDie von NevadaNano entwickelten Molecular Property Spectrometer™ (MPS™) Sensoren stellen die neue Generation von Detektoren für brennbare Gase dar. MPS™ kann schnell mehr als 15 charakterisierte brennbare Gase auf einmal erkennen. Bis vor kurzem musste jeder, der brennbare Gase überwachen wollte, entweder einen herkömmlichen Detektor für brennbare Gase wählen, der einen Pellistor Sensor, der für ein bestimmtes Gas kalibriert ist, oder einen Infrarotsensor (IR)-Sensor, dessen Leistung ebenfalls je nach dem gemessenen brennbaren Gas variiert und der daher für jedes Gas kalibriert werden muss. Diese Lösungen sind zwar vorteilhaft, aber nicht immer ideal. So müssen beispielsweise beide Sensortypen regelmäßig kalibriert werden, und die katalytischen Pellistor-Sensoren müssen außerdem häufig überprüft werden, um sicherzustellen, dass sie nicht durch Verunreinigungen (so genannte "Sensorvergiftungen") oder durch raue Bedingungen beschädigt wurden. In manchen Umgebungen müssen die Sensoren häufig ausgetauscht werden, was sowohl in Bezug auf die Kosten als auch auf die Ausfallzeiten oder die Produktverfügbarkeit kostspielig ist. Die IR-Technologie kann Wasserstoff nicht erkennen, da dieser keine IR-Signatur hat, und sowohl IR- als auch Pellistor-Detektoren erkennen manchmal zufällig andere (d. h. nicht kalibrierte) Gase, was zu ungenauen Messwerten führt, die falsche Alarme auslösen oder das Personal beunruhigen können.

Die MPS™ Sensor bietet wichtige Funktionen, die dem Bediener und damit den Mitarbeitern in der Praxis greifbare Vorteile bringen. Dazu gehören:

Keine Kalibrierung

Bei der Implementierung eines Systems, das einen fest installierten Detektor enthält, ist es üblich, die Wartung nach einem vom Hersteller empfohlenen Zeitplan durchzuführen. Dies ist mit laufenden Kosten verbunden und kann zu einer Unterbrechung der Produktion oder des Prozesses führen, um den Detektor oder mehrere Detektoren zu warten oder sogar Zugang zu ihnen zu erhalten. Es kann auch ein Risiko für das Personal bestehen, wenn die Melder in besonders gefährlichen Umgebungen montiert sind. Die Interaktion mit einem MPS-Sensor ist weniger streng, da es keine unentdeckten Fehlermodi gibt, sofern Luft vorhanden ist. Es wäre falsch zu sagen, dass es keine Kalibrierungsanforderungen gibt. Eine Werkskalibrierung, gefolgt von einer Gasprüfung bei der Inbetriebnahme, ist ausreichend, da während der gesamten Lebensdauer des Sensors alle 2 Sekunden eine interne automatische Kalibrierung durchgeführt wird. Was wirklich gemeint ist, ist - keine Kundenkalibrierung.

Die Xgard Bright mit MPS™ Sensortechnologie ist keine Kalibrierung erforderlich. Dies wiederum reduziert die Interaktion mit dem Detektor, was zu niedrigeren Gesamtbetriebskosten über den Lebenszyklus des Sensors und zu einem geringeren Risiko für das Personal und die Produktionsleistung führt, um eine regelmäßige Wartung durchzuführen. Es ist dennoch ratsam, die Sauberkeit des Gasdetektors von Zeit zu Zeit zu überprüfen, da Gas nicht durch dicke Ablagerungen von Störstoffen hindurchgelangen kann und somit den Sensor nicht erreichen würde.

Multispezies-Gas - 'True LEL'™

In vielen Branchen und Anwendungen werden mehrere Gase in derselben Umgebung verwendet oder entstehen als Nebenprodukt. Dies kann eine Herausforderung für herkömmliche Sensortechnologien darstellen, die nur ein einziges Gas, für das sie kalibriert wurden, in der richtigen Konzentration erkennen können, was zu ungenauen Messwerten und sogar Fehlalarmen führen kann, die den Prozess oder die Produktion unterbrechen können, wenn ein anderer brennbarer Gastyp vorhanden ist. Das fehlende oder übermäßige Ansprechen, das in Umgebungen mit mehreren Gasen häufig auftritt, kann frustrierend und kontraproduktiv sein und die Sicherheit der besten Benutzerpraktiken gefährden. Der MPS™-Sensor kann mehrere Gase auf einmal erkennen und den Gastyp sofort identifizieren. Darüber hinaus verfügt der MPS™-Sensor über eine integrierte Umgebungskompensation und benötigt keinen extern angewendeten Korrekturfaktor. Ungenaue Messwerte und Fehlalarme gehören damit der Vergangenheit an.

Keine Sensorvergiftung

In bestimmten Umgebungen besteht für herkömmliche Sensortypen die Gefahr der Vergiftung. Extremer Druck, Temperatur und Feuchtigkeit können die Sensoren beschädigen, während Umweltgifte und Verunreinigungen die Sensoren "vergiften" können, was zu erheblichen Leistungseinbußen führt. In Umgebungen, in denen Gifte oder Inhibitoren auftreten können, ist eine regelmäßige und häufige Prüfung die einzige Möglichkeit, um sicherzustellen, dass die Leistung nicht beeinträchtigt wird. Sensorausfälle aufgrund von Vergiftungen können eine kostspielige Erfahrung sein. Die Technologie des MPS™-Sensors wird durch Verunreinigungen in der Umgebung nicht beeinträchtigt. Für Prozesse, die mit Verunreinigungen belastet sind, steht nun eine Lösung zur Verfügung, die zuverlässig arbeitet und den Bediener durch ein ausfallsicheres Design warnt, so dass Mitarbeiter und Anlagen in gefährlichen Umgebungen beruhigt sein können. Außerdem wird der MPS-Sensor nicht durch erhöhte Konzentrationen brennbarer Gase beeinträchtigt, die beispielsweise bei herkömmlichen katalytischen Sensortypen zu Rissen führen können. Der MPS-Sensor arbeitet weiter.

Wasserstoff (H2)

Die Verwendung von Wasserstoff in industriellen Prozessen nimmt zu, da eine saubere Alternative zur Verwendung von Erdgas gesucht wird. Die Erkennung von Wasserstoff ist derzeit auf Pellistor-, Metalloxid-Halbleiter-, elektrochemische und weniger genaue Wärmeleitfähigkeitssensoren beschränkt, da Infrarotsensoren Wasserstoff nicht erkennen können. Angesichts der oben genannten Probleme mit Vergiftungen oder Fehlalarmen kann die derzeitige Lösung dazu führen, dass der Betreiber zusätzlich zu den Fehlalarmen auch noch häufige Stoßprüfungen und Wartungsarbeiten durchführen muss. Der MPS™-Sensor bietet eine weitaus bessere Lösung für die Erkennung von Wasserstoff und beseitigt die mit der herkömmlichen Sensortechnologie verbundenen Probleme. Ein langlebiger, relativ schnell ansprechender Wasserstoffsensor, der während der gesamten Lebensdauer des Sensors keine Kalibrierung erfordert, ohne das Risiko von Vergiftungen oder Fehlalarmen, kann zu erheblichen Einsparungen bei den Gesamtbetriebskosten führen und reduziert die Interaktion mit dem Gerät, was für die Betreiber, die die MPS™-Technologie nutzen, ein beruhigendes Gefühl und ein geringeres Risiko bedeutet. All dies ist dank der MPS™ Technologie möglich, die den größten Durchbruch in der Gasdetektion seit mehreren Jahrzehnten darstellt. Die Gasman mit MPS ist für Wasserstoff (H2) geeignet. Ein einziger MPS-Sensor detektiert Wasserstoff und gängige Kohlenwasserstoffe in einer ausfallsicheren, giftresistenten Lösung ohne Neukalibrierung.

Mehr über Crowcon finden Sie unter https://www.crowcon.com oder für mehr über MPSTM besuchen Sie https://www.crowcon.com/mpsinfixed/

Was ist IR-Technologie? 

Die Infrarotstrahler im Sensor erzeugen jeweils einen IR-Lichtstrahl. Jeder Strahl wird von einem Photoempfänger gemessen. Der "Messstrahl" mit einer Frequenz von etwa 3,3 μm wird von Kohlenwasserstoffgasmolekülen absorbiert, so dass die Strahlintensität verringert wird, wenn eine entsprechende Konzentration eines Gases mit C-H-Bindungen vorhanden ist. Der "Referenz"-Strahl (ca. 3,0μm) wird nicht von Gas absorbiert und erreicht den Empfänger mit voller Stärke. Der %LEL des vorhandenen Gases wird durch das Verhältnis der vom Photoempfänger gemessenen Strahlen bestimmt.

Vorteile der IR-Technologie

IR-Sensoren sind in einigen Umgebungen zuverlässig, in denen Sensoren auf Pellistorbasis nicht richtig funktionieren oder in einigen Fällen ausfallen können. In einigen industriellen Umgebungen besteht die Gefahr, dass Pellistoren vergiftet oder blockiert werden. Dadurch wäre ein Arbeiter während seiner Schicht ungeschützt. IR-Sensoren sind nicht anfällig für Katalysatorgifte und erhöhen somit die Sicherheit unter diesen Bedingungen erheblich.

Die Pellistor-Technologie Die Pellistortechnik ist wesentlich preiswerter als die IR-Technik, was auf die vergleichsweise einfache Detektionstechnik zurückzuführen ist. Die IR-Technologie hat jedoch mehrere Vorteile gegenüber Pellistoren. Dazu gehört, dass die IR-Technologie ausfallsichere Tests ermöglicht. Die Funktionsweise bedeutet, dass ein Ausfall des Infrarotstrahls als Fehler registriert würde. Bei normalem Pellistorbetrieb hingegen ist ein fehlender Ausgang normalerweise ein Hinweis darauf, dass kein brennbares Gas vorhanden ist, was aber auch das Ergebnis eines Fehlers sein kann. Pellistoren sind anfällig für Vergiftungen oder Hemmungen, was besonders in Umgebungen mit silizium-, blei-, schwefel- und phosphathaltigen Verbindungen, selbst in geringen Mengen, ein Problem darstellt. Die IR-Instrumente selbst interagieren nicht mit dem Gas. Nur der IR-Strahl interagiert mit den Gasmolekülen, so dass die IR-Technologie immun gegen Vergiftungen oder Hemmungen durch chemische Toxine ist. Bei hohen Konzentrationen brennbarer Gase können Pellistor-Sensoren durchbrennen. Wie bei Vergiftungen oder Hemmungen würde dies wahrscheinlich nur durch Tests festgestellt werden. Auch hier sind die IR-Sensoren von diesen Bedingungen nicht betroffen. Niedrige Sauerstoffkonzentrationen bedeuten, dass Pellistor-Sensoren nicht funktionieren. Dies kann in kürzlich gereinigten Tanks der Fall sein, aber auch in geschlossenen Räumen im Allgemeinen, wo Pellistoren unwirksam sein können. Die IR-Technologie ist in Bereichen wirksam, in denen der Sauerstoffgehalt reduziert oder nicht vorhanden ist.

Faktoren, die die IR-Technologie beeinflussen

Wenn Pellistoren hohen Mengen an entflammbaren Gasen ausgesetzt sind, können sie verrußen", was ihre Empfindlichkeit verringert und möglicherweise zu einem Ausfall führt. Pellistoren benötigen Sauerstoff, um zu funktionieren. IR-Sensoren können jedoch in Anwendungen wie Kraftstofflagertanks eingesetzt werden, in denen wenig oder gar kein Sauerstoff vorhanden ist, weil sie vor der Wartung mit Inertgas gespült werden, oder die noch hohe Mengen an Kraftstoffdämpfen enthalten. Die Ausfallsicherheit der IR-Sensoren, die Sie automatisch auf jeden Fehler aufmerksam machen, bietet eine zusätzliche Sicherheitsebene. Gas-Pro IR misst in %LEL und ist für den Einsatz in explosionsgefährdeten Bereichen gemäß ATEX/IECEx und UL zertifiziert.

Erkennen, wann die Technologie versagt hat

IR-Sensoren sind in Umgebungen zuverlässig, in denen Sensoren auf Pellistor-Basis fehlerhaft funktionieren oder in einigen Fällen ausfallen können. In einigen industriellen Umgebungen besteht die Gefahr, dass Pellistoren vergiftet oder blockiert werden. Dies führt dazu, dass die Arbeiter während ihrer Schicht ungeschützt sind. IR-Sensoren sind für diese Bedingungen nicht anfällig, was die Sicherheit erheblich erhöht.

Probleme mit IR-Sensoren

IR-Sensoren messen keinen Wasserstoff und in der Regel auch kein Acetylen, Ammoniak oder einige komplexe Lösungsmittel, außer bei einigen speziellen Sensortypen.

Wenn nichts dagegen unternommen wird, kann sich im Inneren der IR-Sensoren an der Optik Feuchtigkeit ansammeln, die das IR-Licht streut und einen Fehler verursacht.

Die Ausfallsicherheit von IR-Sensoren, die Sie automatisch auf jeden Fehler aufmerksam machen, bietet eine zusätzliche Sicherheitsebene, und dies führt zu einem Fehler, wenn nicht genügend Licht durch das System gelangt, z. B. wenn das Licht vom Strahl gestreut wird.

IR-Sensoren sind sehr widerstandsfähig gegenüber Störungen oder Hemmungen durch andere Gase und eignen sich sowohl für hohe Gaskonzentrationen als auch für den Einsatz in inerten (sauerstofffreien) Umgebungen, in denen katalytische Pellistor-Sensoren schlecht abschneiden würden.

Produkte

Unser tragbaren Produkte wie zum Beispiel Unser Gas-Pro IR und Triple Plus+ helfen unseren Kunden bei der Erkennung potenziell explosiver Gase, wo herkömmliche "Pellistor"-Katalysatorsensoren Schwierigkeiten haben - insbesondere in sauerstoffarmen oder "vergiftenden" Umgebungen. Und sie ermöglichen die Messung von Kohlenwasserstoffen sowohl im UEG- als auch im Volumenprozentbereich, was dieses Gerät ideal für Tank- und Leitungsspülungen macht.

Um mehr zu erfahren, besuchen Sie unsere technische Seite für weitere Informationen.

Weltwasserstoffgipfel 2022

Crowcon stellte auf dem World Hydrogen Summit & Exhibition 2022 vom 9. bis 11. Mai 2022 im Rahmen der Veranstaltung aus, die die Entwicklung im Wasserstoffsektor vorantreiben soll. Die in Rotterdam stattfindende und vom Sustainable Energy Council (SEC) organisierte Ausstellung war die erste, an der Crowcon teilgenommen hat. Wir haben uns sehr gefreut, Teil einer Veranstaltung zu sein, die Verbindungen und Zusammenarbeit zwischen den führenden Köpfen der Schwerindustrie fördert und den Wasserstoffsektor vorantreibt.

Unsere Teamvertreter trafen sich mit verschiedenen Branchenkollegen und präsentierten unsere Wasserstofflösungen für die Gasdetektion. Unser MPS-Sensor bietet einen höheren Standard für die Erkennung brennbarer Gase dank seiner bahnbrechenden fortschrittlichen Molekular-Eigenschafts-Spektrometer (MPS™)-Technologie, die über 15 verschiedene brennbare Gase erkennen und genau identifizieren kann. Dies stellt eine ideale Lösung für die Erkennung von Wasserstoff dar, da Wasserstoff Eigenschaften besitzt, die eine leichte Entzündung und eine höhere Verbrennungsintensität im Vergleich zu Benzin oder Diesel ermöglichen und somit ein echtes Explosionsrisiko darstellen. Lesen Sie unseren Blog, um mehr darüber zu erfahren.

Unsere MPS-Technologie war interessant, da sie während der gesamten Lebensdauer des Sensors keine Kalibrierung erfordert und brennbare Gase ohne das Risiko einer Vergiftung oder eines Fehlalarms erkennt.

Das Gipfeltreffen ermöglichte es uns, den aktuellen Stand des Wasserstoffmarktes zu verstehen, einschließlich der Hauptakteure und der aktuellen Projekte, was es uns ermöglichte, ein besseres Verständnis für unsere Produktanforderungen zu entwickeln, um eine wichtige Rolle in der Zukunft der Wasserstoffgasdetektion zu spielen.

Wir freuen uns auf die Teilnahme im nächsten Jahr!

T4x a Compliance 4-Gas-Monitor 

Es ist von größter Wichtigkeit, dass der von Ihnen eingesetzte Gassensor vollständig optimiert und zuverlässig bei der Erkennung und genauen Messung von brennbaren Gasen und Dämpfen ist, egal in welcher Umgebung oder an welchem Arbeitsplatz.

Feststehend oder tragbar?

Gaswarngeräte gibt es in verschiedenen Formen, am häufigsten sind sie bekannt als ortsfest, tragbar Diese Geräte sind so konzipiert, dass sie den Anforderungen des Benutzers und der Umgebung gerecht werden und gleichzeitig die Sicherheit der Personen, die sich darin aufhalten, gewährleisten.

Fest installierte Melder werden als permanente Vorrichtungen in einer Umgebung eingesetzt, um eine ständige Überwachung von Anlagen und Geräten zu gewährleisten. Gemäß den Leitlinien der Health and Safety Executive (HSE) sind diese Arten von Sensoren besonders hilfreich, wenn die Möglichkeit eines Lecks in einem geschlossenen oder teilweise geschlossenen Raum besteht, das zu einer Ansammlung brennbarer Gase führen könnte. Der Internationale Gastransporter-Kodex (IGC-Code) heißt es, dass Gaswarngeräte so installiert werden sollten, dass sie die Unversehrtheit der zu überwachenden Umgebung überwachen, und dass sie gemäß den anerkannten Normen geprüft werden sollten. Um sicherzustellen, dass das fest installierte Gaswarnsystem effektiv funktioniert, ist eine rechtzeitige und genaue Kalibrierung der Sensoren entscheidend.

Tragbare Detektoren sind in der Regel kleine, tragbare Geräte, die in kleineren Umgebungen eingesetzt werden können, beengte Räumeeingesetzt werden können, um Lecks aufzuspüren oder Frühwarnungen für das Vorhandensein von brennbaren Gasen und Dämpfen in Gefahrenbereichen zu geben. Transportable Detektoren werden nicht in der Hand gehalten, sondern können leicht von einem Ort zum anderen transportiert werden, um als "Ersatzmonitor" zu fungieren, während ein fest installierter Sensor gewartet wird.

Was ist ein 4-Gas-Überwachungsgerät?

Gassensoren werden in erster Linie durch Konstruktion oder Kalibrierung für die Erkennung bestimmter Gase oder Dämpfe optimiert. Es ist wünschenswert, dass ein Sensor für toxische Gase, z. B. ein Sensor für Kohlenmonoxid oder Schwefelwasserstoff, eine genaue Anzeige der Zielgaskonzentration liefert und nicht auf eine andere störende Verbindung reagiert. Persönliche Sicherheitsmonitore kombinieren oft mehrere Sensoren zum Schutz des Benutzers vor bestimmten Gasrisiken. Ein "Compliance 4-Gas-Monitor" umfasst jedoch Sensoren zur Messung der Konzentration von Kohlenmonoxid (CO), Schwefelwasserstoff (H2S), Sauerstoff (O2) und entflammbaren Gasen, normalerweise Methan (CH4) in einem Gerät.

Der T4x Monitor mit dem bahnbrechenden MPS™-Sensor ist in der Lage, Schutz vor CO, H2S, O2 Risiken durch genaue Messung mehrerer brennbarer Gase und Dämpfe unter Verwendung einer grundlegenden Methankalibrierung.

Besteht Bedarf an einem 4-Gas-Überwachungsgerät?

Viele der in herkömmlichen Überwachungsgeräten eingesetzten Sensoren für brennbare Gase sind durch Kalibrierung für die Erkennung eines bestimmten Gases oder Dampfes optimiert, sprechen aber auf viele andere Verbindungen an. Dies ist problematisch und potenziell gefährlich, da die vom Sensor angezeigte Gaskonzentration nicht genau ist und möglicherweise eine höhere (oder gefährlichere) und niedrigere Gas-/Dampfkonzentration anzeigt als vorhanden ist. Da die Arbeitnehmer an ihrem Arbeitsplatz häufig potenziell Risiken durch mehrere brennbare Gase und Dämpfe ausgesetzt sind, ist es äußerst wichtig, dass sie durch den Einsatz eines genauen und zuverlässigen Sensors geschützt werden.

Worin unterscheidet sich das tragbare 4-in-1-Gaswarngerät T4x ?

Um die kontinuierliche Zuverlässigkeit und Genauigkeit des T4x Detektors zu gewährleisten. Der Detektor nutzt die MPS™ (Molecular Property Spectrometry)-Sensorfunktionalität in seiner robusten Einheit, die eine Reihe von Funktionen zur Gewährleistung der Sicherheit bietet. Er bietet Schutz vor den vier häufigsten Gasgefahren: Kohlenmonoxid, Schwefelwasserstoff, brennbare Gase und Sauerstoffmangel. Der Multigasdetektor T4x verfügt jetzt über eine verbesserte Erkennung von Pentan, Hexan und anderen langkettigen Kohlenwasserstoffen. Das Gerät verfügt über eine große Taste und ein leicht verständliches Menüsystem, so dass es auch von Personen, die Handschuhe tragen und nur eine minimale Schulung absolviert haben, leicht zu bedienen ist. Der robuste und dennoch tragbare T4x Detektor verfügt über einen integrierten Gummistiefel und einen optionalen Clip-on-Filter, der bei Bedarf leicht entfernt und ausgetauscht werden kann. Dank dieser Merkmale bleiben die Sensoren auch in den schmutzigsten Umgebungen geschützt, um einen konstanten Betrieb zu gewährleisten.

Ein einzigartiger Vorteil des T4x Detektors besteht darin, dass er sicherstellt, dass die Exposition gegenüber toxischen Gasen während der gesamten Schicht genau berechnet wird, auch wenn er kurzzeitig, während einer Pause oder auf dem Weg zu einem anderen Standort ausgeschaltet wird. Die TWA-Funktion ermöglicht eine ununterbrochene und unterbrochene Überwachung. So beginnt der Detektor beim Einschalten wieder bei Null, als ob er eine neue Schicht beginnen würde, und ignoriert alle vorherigen Messungen. Unter T4x hat der Benutzer die Möglichkeit, frühere Messungen innerhalb des richtigen Zeitrahmens zu berücksichtigen. Der Detektor ist nicht nur in Bezug auf die genaue Erkennung und Messung von vier Gasen zuverlässig, sondern auch aufgrund seiner Batterielebensdauer. Der Akku hält 18 Stunden und ist für den Einsatz über mehrere oder längere Schichten hinweg geeignet, ohne dass er regelmäßig aufgeladen werden muss.

Während der Nutzung verfügt T4 über eine praktische "Ampel"-Anzeige, die eine ständige visuelle Sicherheit bietet, dass das Gerät einwandfrei funktioniert und den Richtlinien für die Stoßprüfung und Kalibrierung am Standort entspricht. Die hellen grünen und roten Sicherheits-LEDs sind für alle sichtbar und bieten somit eine schnelle, einfache und umfassende Anzeige des Überwachungsstatus für den Benutzer und andere Personen in seiner Umgebung.

T4x hilft den Betriebsteams, sich auf wertschöpfende Aufgaben zu konzentrieren, indem es die Anzahl der Sensorwechsel um 75 % reduziert und die Zuverlässigkeit der Sensoren erhöht. Durch die Sicherstellung der Konformität am gesamten Standort hilft T4x den Managern für Gesundheit und Sicherheit, da sie nicht mehr sicherstellen müssen, dass jedes Gerät für das entsprechende brennbare Gas kalibriert ist, da es genau 19 auf einmal erkennt. Da das Gerät giftresistent ist und die Batterielebensdauer verdoppelt wurde, ist es wahrscheinlicher, dass die Bediener nie ohne Gerät dastehen. T4x reduziert die 5-Jahres-Gesamtbetriebskosten um über 25 % und spart 12 g Blei pro Detektor ein, was das Recycling am Ende seiner Lebensdauer erheblich erleichtert.

Insgesamt wird durch die Kombination von drei Sensoren (darunter zwei neue Sensortechnologien MPS und Langlebige O2) in einem bereits beliebten tragbaren Multigasdetektor. Crowcon ermöglichte die Verbesserung der Sicherheit, Kosteneffizienz und Effizienz einzelner Geräte und ganzer Flotten. Das neue T4x bietet eine längere Lebensdauer und eine höhere Genauigkeit bei der Erkennung von Gasgefahren, während es gleichzeitig nachhaltiger als je zuvor gebaut ist.

Wie funktionieren elektrochemische Sensoren? 

Elektrochemische Sensoren werden meist im Diffusionsmodus verwendet, bei dem Gas aus der Umgebung durch ein Loch in der Oberfläche der Zelle eintritt. Einige Geräte verwenden eine Pumpe, um dem Sensor Luft oder Gasproben zuzuführen. Eine PTFE-Membran wird über der Öffnung angebracht, um das Eindringen von Wasser oder Ölen in die Zelle zu verhindern. Sensorbereiche und Empfindlichkeiten können durch die Verwendung unterschiedlich großer Löcher variiert werden. Größere Löcher bieten eine höhere Empfindlichkeit und Auflösung, während kleinere Löcher die Empfindlichkeit und Auflösung verringern, aber den Bereich vergrößern.

Vorteile

Elektrochemische Sensoren haben mehrere Vorteile.

  • Kann spezifisch für ein bestimmtes Gas oder einen Dampf im Promillebereich sein. Der Grad der Selektivität hängt jedoch von der Art des Sensors, dem Zielgas und der Gaskonzentration ab, für die der Sensor ausgelegt ist.
  • Hohe Wiederholbarkeit und Genauigkeit. Einmal auf eine bekannte Konzentration kalibriert, liefert der Sensor einen genauen Messwert für ein Zielgas, der wiederholbar ist.
  • Nicht anfällig für Vergiftungen durch andere Gase, wobei das Vorhandensein von anderen Umgebungsdämpfen die Lebensdauer des Sensors nicht verkürzt oder beeinträchtigt.
  • Günstiger als die meisten anderen Gasdetektionstechnologien, wie z. B. IR oder PID Technologien. Elektrochemische Sensoren sind auch wirtschaftlicher.

Probleme mit Querempfindlichkeiten

Querempfindlichkeit liegt vor, wenn ein anderes Gas als das zu überwachende/erfassende Gas den Messwert eines elektrochemischen Sensors beeinflussen kann. Dies führt dazu, dass die Elektrode im Sensor auch dann reagiert, wenn das Zielgas eigentlich nicht vorhanden ist, oder es führt zu einer ungenauen Anzeige und/oder einem Alarm für dieses Gas. Die Querempfindlichkeit kann bei elektrochemischen Gasdetektoren mehrere Arten von ungenauen Messwerten verursachen. Diese können positiv sein (Anzeige des Vorhandenseins eines Gases, obwohl es nicht vorhanden ist, oder Anzeige einer Konzentration des Gases, die über dem tatsächlichen Wert liegt), negativ (eine reduzierte Reaktion auf das Zielgas, die suggeriert, dass es nicht vorhanden ist, obwohl es vorhanden ist, oder eine Anzeige, die eine niedrigere Konzentration des Zielgases suggeriert, als tatsächlich vorhanden ist), oder das Störgas kann eine Hemmung verursachen.

Faktoren, die die Lebensdauer elektrochemischer Sensoren beeinflussen

Es gibt drei Hauptfaktoren, die sich auf die Lebensdauer des Sensors auswirken: Temperatur, extrem hohe Gaskonzentrationen und Feuchtigkeit. Weitere Faktoren sind die Sensorelektroden sowie extreme Vibrationen und mechanische Stöße.

Extreme Temperaturen können die Lebensdauer des Sensors beeinträchtigen. Der Hersteller gibt einen Betriebstemperaturbereich für das Gerät an: in der Regel -30˚C bis +50˚C. Qualitativ hochwertige Sensoren sind jedoch in der Lage, kurzzeitige Überschreitungen dieser Grenzwerte zu verkraften. Kurze (1-2 Stunden) Exposition gegenüber 60-65˚C für H2S- oder CO-Sensoren (zum Beispiel) ist akzeptabel, aber wiederholte Vorfälle führen zur Verdampfung des Elektrolyts und zu Verschiebungen der Basislinie (Null) und zu einer langsameren Reaktion.

Auch extrem hohe Gaskonzentrationen können die Sensorleistung beeinträchtigen. Elektrochemische Sensoren werden in der Regel bis zum Zehnfachen ihres Auslegungsgrenzwertes getestet. Sensoren, die aus hochwertigem Katalysatormaterial hergestellt werden, sollten solchen Belastungen standhalten können, ohne dass es zu chemischen Veränderungen oder langfristigen Leistungseinbußen kommt. Sensoren mit geringerer Katalysatorbelastung können Schaden nehmen.

Den größten Einfluss auf die Lebensdauer der Sensoren hat die Luftfeuchtigkeit. Die ideale Umgebungsbedingung für elektrochemische Sensoren ist 20˚Celsius und 60 % RH (relative Luftfeuchtigkeit). Steigt die Luftfeuchtigkeit über 60 % RH, wird Wasser in den Elektrolyten absorbiert, was zu einer Verdünnung führt. In extremen Fällen kann der Flüssigkeitsgehalt um das 2-3-fache ansteigen, was zu Leckagen am Sensorgehäuse und dann an den Stiften führen kann. Unter 60 % r.F. beginnt das Wasser im Elektrolyt zu dehydrieren. Die Ansprechzeit kann sich durch das Austrocknen des Elektrolyten erheblich verlängern. Sensorelektroden können unter ungewöhnlichen Bedingungen durch störende Gase vergiftet werden, die am Katalysator adsorbieren oder mit ihm reagieren und Nebenprodukte erzeugen, die den Katalysator hemmen.

Extreme Vibrationen und mechanische Stöße können die Sensoren ebenfalls beschädigen, da die Schweißnähte, die die Platinelektroden, die Verbindungsstreifen (oder Drähte bei einigen Sensoren) und die Stifte miteinander verbinden, brechen.

Normale" Lebenserwartung eines elektrochemischen Sensors

Elektrochemische Sensoren für gängige Gase wie Kohlenmonoxid oder Schwefelwasserstoff haben eine Betriebsdauer die üblicherweise mit 2-3 Jahren angegeben wird. Exotischere Gassensoren wie z. B. Fluorwasserstoff haben eine Lebensdauer von nur 12-18 Monaten. Unter idealen Bedingungen (stabile Temperatur und Luftfeuchtigkeit im Bereich von 20 °C und 60 % relative Luftfeuchtigkeit) und ohne das Auftreten von Verunreinigungen sind elektrochemische Sensoren für eine Betriebsdauer von mehr als 4000 Tagen (11 Jahren) bekannt. Die regelmäßige Einwirkung des Zielgases schränkt die Lebensdauer dieser winzigen Brennstoffzellen nicht ein: Hochwertige Sensoren verfügen über eine große Menge an Katalysatormaterial und robuste Leiter, die durch die Reaktion nicht erschöpft werden.

Produkte

Da elektrochemische Sensoren wirtschaftlicher, Wir haben eine Reihe von tragbaren Produkten und stationären Produkten die diesen Sensortyp zum Aufspüren von Gasen verwenden.

Um mehr zu erfahren, besuchen Sie unsere technische Seite für weitere Informationen.

Was ist ein Pellistor (katalytische Perlen)? 

Pellistor-Sensoren bestehen aus zwei aufeinander abgestimmten Drahtspulen, die jeweils in eine Keramikperle eingebettet sind. Durch die Spulen fließt Strom, der die Perlen auf etwa 230˚C erhitzt. Die Perle wird durch die Verbrennung heiß, was zu einem Temperaturunterschied zwischen dieser aktiven und der anderen "Referenz"-Perle führt. Dadurch entsteht ein Widerstandsunterschied, der gemessen wird; die Menge des vorhandenen Gases ist direkt proportional zur Widerstandsänderung, so dass die Gaskonzentration in Prozent der unteren Explosionsgrenze (% UEG*) genau bestimmt werden kann. Das brennbare Gas verbrennt an der Perle, und die zusätzlich erzeugte Wärme führt zu einem Anstieg des Spulenwiderstands, der vom Gerät gemessen wird, um die Gaskonzentration anzuzeigen. Pellistor-Sensoren sind in der Industrie weit verbreitet, z. B. auf Bohrinseln, in Raffinerien und im Untertagebau, z. B. in Bergwerken und Tunneln.

Vorteile von Pellistor-Sensoren?

Pellistor-Sensoren sind aufgrund des unterschiedlichen Stands der Technik im Vergleich zu komplexeren Technologien wie IR-SensorenAllerdings müssen sie unter Umständen häufiger ausgetauscht werden. Mit einem linearen Ausgang, der der Gaskonzentration entspricht, können Korrekturfaktoren verwendet werden, um die ungefähre Reaktion von Pellistoren auf andere brennbare Gase zu berechnen, was Pellistoren zu einer guten Wahl machen kann, wenn mehrere brennbare Gase und Dämpfe vorhanden sind.

Beeinflussende Faktoren Pellistor-Sensor Lebensdauer

Zu den beiden Hauptfaktoren, die die Lebensdauer des Sensors verkürzen, gehören eine hohe Gaskonzentration und die Vergiftung oder Inhibierung des Sensors. Auch extreme mechanische Stöße oder Vibrationen können die Lebensdauer des Sensors beeinträchtigen.

Die Fähigkeit der Katalysatoroberfläche, das Gas zu oxidieren, nimmt ab, wenn sie vergiftet oder gehemmt wurde. In einigen Anwendungen, in denen keine hemmenden oder vergiftenden Verbindungen vorhanden sind, ist eine Sensorlebensdauer von bis zu zehn Jahren bekannt. Leistungsstärkere Pellistoren haben größere Kügelchen und damit mehr Katalysator, und diese größere katalytische Aktivität macht sie weniger anfällig für Vergiftungen. Porösere Kügelchen ermöglichen einen leichteren Zugang des Gases zu mehr Katalysator, so dass eine größere katalytische Aktivität von einem Oberflächenvolumen statt nur von einem Oberflächenbereich ausgeht. Ein geschickter Entwurf und ausgeklügelte Herstellungsverfahren gewährleisten eine maximale Porosität der Perlen.

Die Festigkeit des Wulstes ist ebenfalls von großer Bedeutung, da die Exposition gegenüber hohen Gaskonzentrationen (>100% UEG) die Integrität des Sensors beeinträchtigen und zu Rissen führen kann. Die Leistung wird beeinträchtigt, und häufig kommt es zu Verschiebungen im Null-/Basisliniensignal. Eine unvollständige Verbrennung führt zu Kohlenstoffablagerungen auf der Perle: Der Kohlenstoff "wächst" in den Poren und verursacht mechanische Schäden oder behindert einfach nur das Gas, das den Pellistor erreicht. Der Kohlenstoff kann jedoch mit der Zeit abgebrannt werden, um die katalytischen Stellen wieder freizulegen.

Extreme mechanische Stöße oder Vibrationen können in seltenen Fällen einen Bruch der Pellistorspulen verursachen. Dieses Problem tritt eher bei tragbaren als bei stationären Gasdetektoren auf, da diese eher fallen gelassen werden und die verwendeten Pellistoren weniger Strom verbrauchen (um die Batterielebensdauer zu maximieren) und daher empfindlichere, dünnere Drahtspulen verwenden.

Was passiert, wenn ein Pellistor vergiftet wird?

Ein vergifteter Pellistor bleibt zwar elektrisch funktionsfähig, reagiert aber möglicherweise nicht auf Gas, da er bei Kontakt mit entflammbaren Gasen keinen Ausgang erzeugt. Dies bedeutet, dass ein Melder keinen Alarm auslöst und den Eindruck erweckt, dass die Umgebung sicher ist.

Silizium-, blei-, schwefel- und phosphathaltige Verbindungen können die Leistung von Pellistoren schon bei wenigen Teilen pro Million (ppm) beeinträchtigen. Egal, ob es sich um etwas in Ihrer allgemeinen Arbeitsumgebung handelt oder um etwas so Harmloses wie Reinigungsmittel oder Handcreme, wenn Sie es in die Nähe eines Pellistors bringen, könnten Sie die Wirksamkeit Ihres Sensors beeinträchtigen, ohne es zu merken.

Warum sind Silikone schlecht?

Silikone haben ihre Vorzüge, aber sie sind vielleicht häufiger anzutreffen, als Sie zunächst dachten. Einige Beispiele sind Dichtstoffe, Klebstoffe, Schmiermittel sowie thermische und elektrische Isolierung. Silikone können den Sensor eines Pellistors schon bei extrem niedrigen Konzentrationen vergiften, weil sie kumulativ wirken, d. h. Stück für Stück.

Produkte

Unser tragbaren Produkte verwenden alle tragbare Pellistor-Perlen mit geringem Stromverbrauch. Dies verlängert die Batterielebensdauer, macht sie aber anfällig für Vergiftungen. Deshalb bieten wir Alternativen an, die keine Vergiftung verursachen, wie z. B. die IR- und MPS-Sensoren. Unser stationären Produkte verwenden einen porösen, hochenergetischen festen Pellistor.

Um mehr zu erfahren, besuchen Sie unsere technische Seite für weitere Informationen.

Die Vorteile von 'Hot Swappable'-Sensoren

Was sind "Hot Swappable"-Sensoren?

Hot-Swap-fähige Sensoren ermöglichen den Austausch oder das Hinzufügen von Komponenten zu einem Gerät, ohne dass der Produktionsprozess angehalten, heruntergefahren oder neu gestartet werden muss, was eine hohe Produktivität und Effizienz ermöglicht.

Weitere Vorteile von "Hot Swap"-Sensoren

Ein weiterer Vorteil ist, dass keine Genehmigungen für Heißarbeiten erforderlich sind. Heißarbeiten werden regelmäßig im Rahmen von Bau- und Wartungsprojekten durchgeführt und stellen eine risikoreiche Tätigkeit dar, die ein sorgfältiges und aktives Risikomanagement erfordert. Diese Umgebungen stellen ein erhebliches Brand- und Sicherheitsrisiko dar. Hot-Swap-Sensoren sind so konzipiert, dass diese potenziellen Probleme vollständig vermieden werden.

Warum sind sie wichtig?

Einige Gaswarngeräte sind für den Einsatz in Bereichen vorgesehen, in denen sich brennbare (explosive) Gase befinden können. Wenn Sie daher in Umgebungen wie einer Raffinerie die normale Elektronik abtrennen, entsteht in der Regel ein kleiner Funke, der ein Risiko darstellt, da er zu einem Brand oder einer Explosion führen kann. Wenn die Elektronik jedoch so konstruiert ist, dass kein Funke entsteht, und von der Zertifizierungsbehörde als "nicht funkenbildend" zugelassen wurde, können diese Produkte auch in einer explosiven Atmosphäre ohne Funkenbildung getrennt und wieder angeschlossen werden, so dass die Sicherheit der Beschäftigten in diesen Umgebungen gewährleistet ist.

Es ist möglich, hot-swap-fähige Sensoren außerhalb eines Zonenbereichs zu kalibrieren und so einen schnellen Austausch anstelle eines weitaus längeren Kalibrierungsprozesses zu ermöglichen. Dadurch muss der Bediener nur einen Bruchteil der Zeit in der Zone verbringen, wodurch ein persönliches Risiko weitgehend vermieden wird.

Produkte mit 'Hot Swappable' Sensoren

XgardIQ ist ein ortsfester Detektor und Sender, der mit der gesamten Palette der Sensortechnologien von Crowcon kompatibel ist. Er ist mit einer Vielzahl von Sensoren für die stationäre Erkennung von brennbaren, toxischen, Sauerstoff- oder H2S-Gasen erhältlich. Er liefert standardmäßig analoge 4-20-mA- und RS-485-Modbus-Signale. XgardIQ ist optional mit Alarm- und Störungsrelais sowie HART-Kommunikation erhältlich. Der 316er Edelstahl ist mit drei M20- oder 1/2 "NPT-Kabeleinführungen erhältlich. (SIL-2) Sicherheitsintegritätsstufe 2 zertifizierter, feststehender Detektor.

Mehr erfahren

Was ist die Photo-Ionisations-Detektions-Technologie (PID)? 

Die Photoionisationsdetektion (PID) gilt allgemein als die Technologie der Wahl für die Überwachung der Exposition gegenüber toxischen VOC-Werten. Die Sensoren enthalten eine Lampe als Quelle für hochenergetisches ultraviolettes (UV) Licht. Die Lampe umschließt ein Edelgas, in der Regel Krypton, und Elektroden. Die Energie des UV-Lichts regt die neutral geladenen VOC-Moleküle (flüchtige organische Verbindungen) an, indem sie ihnen ein Elektron entzieht.

Die Energiemenge, die benötigt wird, um ein Elektron aus einem VOC-Molekül zu entfernen, wird als Ionisierungspotenzial (IP) bezeichnet. Je größer das Molekül ist oder je mehr Doppel- oder Dreifachbindungen das Molekül enthält, desto niedriger ist das IP. Je größer oder zerbrechlicher ein Molekül ist, desto leichter ist es zu erkennen.

Diese Technologie erfordert keine Sinterung, die verhindern könnte, dass das Gas den Sensor erreicht. Sie ist auch nicht anfällig für Vergiftungen durch Chemikalien in Reinigungsmitteln oder Silikon, obwohl einige Reinigungsmittel, die große zerbrechliche Moleküle enthalten, positive Messwerte verursachen können.

Vorteile der PID-Technologie

Eine große Anzahl von Lösungsmittelarten wird mit dieser Technologie erfasst. Es wurden Bücher geschrieben, in denen die Reaktionen der PID-Kreuzkalibrierung auf mehr als 750 Lösungsmittel- und Gasarten in ppm-Konzentrationen detailliert beschrieben werden. Das System benötigt keine Luft, um zu funktionieren, ist unempfindlich gegenüber Giften und zeigt bei moderaten Temperaturschwankungen nur geringe Abweichungen.

PID ist extrem empfindlich und reagiert auf viele verschiedene VOCs. Das Ausmaß der Reaktion ist direkt proportional zur Konzentration des Gases. 50 ppm eines Gases ergeben jedoch einen anderen Messwert als 50 ppm eines anderen Gases. Daher werden die Detektoren in der Regel auf Isobutylen kalibriert, und dann wird ein Korrekturfaktor verwendet, um genaue Messwerte für ein Zielgas zu erhalten. Jedes Gas hat einen anderen Korrekturfaktor. Daher muss das Gas bekannt sein, damit der richtige Korrekturfaktor angewendet werden kann.

Folglich können Pellistor-Sensoren und Photoionisationsdetektoren für viele Anwendungen als komplementäre Technologien betrachtet werden. Pellistoren eignen sich hervorragend für die Überwachung von Methan, Propan und anderen gängigen brennbaren Gasen im Bereich der unteren Explosionsgrenze (%LEL). Andererseits erkennt PID große VOC- und Kohlenwasserstoffmoleküle, die von Pellistorsensoren praktisch nicht erkannt werden können, zumindest nicht im Promillebereich, der für die Alarmierung bei toxischen Werten erforderlich ist. Daher ist in vielen Umgebungen ein Multisensorgerät mit beiden Technologien die beste Lösung.

Die PID-Sensorik ist sehr vielseitig und kann beispielsweise für Abstandsmessungen bei Stillständen in der chemischen und petrochemischen Industrie, für die Überwachung von Vorgängen in Schächten und geschlossenen Räumen, für die Erkennung von Leckagen und viele andere Anwendungen eingesetzt werden.

Faktoren, die die PID-Technologie beeinflussen und ihre Probleme

Mangelnde Spannung am Sensor beeinträchtigt die Funktion eines PID-Sensors, ebenso wie extrem hohe Luftfeuchtigkeit oder Partikeldichte. Außerdem halten die Lampen 2 Jahre, aber nicht 3 Jahre, so dass der Ausgang überwacht werden muss, um zu prüfen, ob er nicht in einen Fehlerzustand geraten ist.

Die Probleme mit diesem Sensor sind auf altersbedingte Probleme beschränkt.

  • Lampen altern, Spannungsstacks funktionieren weniger gut, wenn sie verstaubt sind
  • Einige gängige Gasarten reagieren nicht, z. B. Methan und Propan. In der Risikobewertung muss angegeben werden, bei welchen Gasarten mit einer Reaktion zu rechnen ist. Wenn diese Informationen für eine Gasart nicht bekannt sind, können unsere Website oder die Mitarbeiter des Kundensupports helfen.
  • PID-Sensoren sind die teuersten Sensoren, die wir in unseren Produkten verwenden. Sie sind gut, aber mit der Qualität kommen auch die Kosten.

Woran erkenne ich, dass die Technik versagt?

Die Ergebnisse weichen von dem von unseren PID-Lagerprodukten erfassten Sockelwert ab, was zu einer Störung unserer Messgeräte führt.

Produkte

Unser tragbare und feste Produkte sind mit PID-Sensoren ausgestattet, die große VOC- und Kohlenwasserstoffmoleküle aufspüren, die von Pellistor-Sensoren praktisch nicht aufgespürt werden können, und zwar in dem Bereich von Teilen pro Million, der für die Warnung vor toxischen Werten erforderlich ist.

Um mehr zu erfahren, besuchen Sie unsere technische Seite für weitere Informationen.

Machen Sie Ihr Unternehmen sicherer, ohne Ihre Budgets zu gefährden

Wenn Ihr Unternehmen nicht nur sehr wenige Mitarbeiter hat, die alle vor Ort arbeiten, haben Sie wahrscheinlich schon einmal Schwierigkeiten gehabt, die Daten von tragbaren Gaswarngeräten zu verfolgen, zu protokollieren, zusammenzufassen und zu nutzen. Bis vor kurzem war dies ein weit verbreitetes Problem.

Mit dem Aufkommen der vernetzten Sicherheit hat sich die Situation jedoch geändert - und für Unternehmen, die Gasgefahren erkennen, können vernetzte Gassicherheitsanwendungen (wie unser eigenes Crowcon Connect) automatisierte Aufzeichnungen über die Einhaltung von Vorschriften und Informationen zum Risikomanagement, einen 24/7-Überblick über den historischen und aktuellen Schulungsbedarf und die Gerätenutzung sowie zahlreiche Erkenntnisse zur Gassicherheit liefern, die (z. B. mit prädiktiver Analytik) genutzt werden können, um Ihre internen Prozesse und Geschäftsabläufe effizienter und effektiver zu gestalten.

Vernetzte Sicherheitslösungen können Ihnen auch helfen, die Kosten zu senken und einen besseren Gegenwert für Ihre Ausgaben zu erhalten.

Wir haben bereits einige Beiträge über Aspekte der vernetzten Sicherheit veröffentlicht: Sie können sie hier und hier lesen. In diesem Beitrag befassen wir uns mit den Möglichkeiten, wie eine vernetzte Sicherheitslösung und Einblicke in die Gassicherheit Ihr Unternehmen sicherer machen können (sowohl im Hinblick auf sichere Geschäftsdaten als auch auf bessere Gassicherheitsprotokolle), ohne dass dafür große Investitionen erforderlich sind.

Was ist eine vernetzte Gassicherheitslösung?

Wir haben diesen Begriff bereits in einem früheren Beitrag definiert, aber kurz gesagt, verbindet eine vernetzte Sicherheitsanwendung alle Ihre tragbaren Geräte mit einer cloudbasierten Softwareanwendung, die alle Daten von jedem Gerät herunterlädt und sie Ihnen auf flexible und benutzerfreundliche Weise präsentiert.

Ein entscheidender Vorteil ist, dass die vernetzte Sicherheits-App Ihre Daten sowohl für einzelne Vorgänge als auch über einen längeren Zeitraum hinweg aggregieren kann. Das bedeutet, dass Sie die qualitativ hochwertigen Daten erhalten, die Sie benötigen, um optimale, kosteneffiziente Entscheidungen zu treffen - und das alles in einem benutzerfreundlichen, intuitiven Format.

Crowcon Connect lädt zum Beispiel alle Daten von tragbaren Gaswarngeräten hoch, wenn diese am Ende einer Arbeitssitzung angedockt werden (dies kann über einen festen Andockpunkt und/oder über Bluetooth erfolgen, wenn das Gerät aufgeladen ist). Anschließend werden die Informationen (je nach Element(en) und Perspektive) in einem Dashboard dargestellt.

In unserer interaktiven Online-Demo können Sie dies in Aktion sehen.

Wie macht die vernetzte Sicherheit meine Organisation sicherer?

Eine vernetzte Sicherheitslösung schützt Ihr Unternehmen vor allem in zweierlei Hinsicht. Erstens liefert sie Ihnen den Nachweis, dass Ihre Gasschutzprotokolle korrekt verwendet werden und Sie alle einschlägigen Vorschriften einhalten. Zweitens speichert sie Ihre Gaswarndaten sicher und wahrt die Integrität dieser Daten.

Dieser letzte Punkt ist wichtig, denn die Qualität der von Ihnen erhobenen und analysierten Daten ist von entscheidender Bedeutung. Nur qualitativ hochwertige (aktuelle, genaue und korrekt aggregierte) Daten können als Nachweis für die Einhaltung der Vorschriften und für die Analysen verwendet werden, die zur Verbesserung der betrieblichen Effizienz und Produktivität erforderlich sind.

Sie sind wahrscheinlich mit der Notwendigkeit vertraut, Daten sicher aufzubewahren - Datenschutz ist seit Jahren ein Thema in der Debatte und in der Gesetzgebung -, aber Sie sind vielleicht weniger vertraut mit dem Ausmaß, in dem Daten beschädigt werden können, wenn sie gelesen, gespeichert, übertragen oder verarbeitet werden, wenn nicht die richtigen Schutzmaßnahmen getroffen werden.

Aus diesem Grund haben wir in unser Crowcon Connect-Produkt mehrere Sicherheitsebenen, Korruptionsprävention, Datensicherung und Prüfprotokolle integriert; weitere Einzelheiten finden Sie in unseren FAQs zur IT-Sicherheit, die Sie hier finden.

Durch die Übertragung Ihrer Daten in die Cloud (die in Ihrer eigenen privaten Cloud gehostet werden kann oder über eine maßgeschneiderte API-Lösung mit Ihren vorhandenen Berichterstattungsinstrumenten verknüpft werden kann) können Sie außerdem erhebliche Einsparungen bei den Speicherkosten erzielen und gleichzeitig den größtmöglichen Nutzen aus Ihren Daten ziehen (was zu weiteren Kosteneinsparungen führen kann), was wiederum weniger Zeit und Personal kostet. Durch die Nutzung der Cloud wird auch sichergestellt, dass das Portal sofort und automatisch aktualisiert wird, wenn neue Erkenntnisse und Funktionen verfügbar sind, so dass Sie immer die bestmögliche Erfahrung machen können.

Crowcon Connect verbessert die organisatorische und praktische Sicherheit

Mit einem Cloud-Datensystem wie Crowcon Connect können Sie Ihre Erkenntnisse über die Gassicherheit und Mitarbeiterinformationen nutzen, um die Einhaltung von Vorschriften und internen Protokollen zu überwachen und Wissens- und Schulungslücken zu erkennen. Diese können Sie dann beheben - zum Beispiel durch die Auffrischung von Sicherheitsschulungen, die Entwicklung maßgeschneiderter Programme oder die Erörterung von Problemen mit den Mitarbeitern - was eine Katastrophe verhindern und Leben retten kann.

Mit der Vogelperspektive, die Crowcon Connect bietet, können Sie klar erkennen, ob Ihre Melder einsatzbereit sind und ordnungsgemäß verwendet werden. Sie können auch Muster von Alarmereignissen oder Gasbelastungen erkennen und Maßnahmen ergreifen, um diese zu beheben, bevor sie größere Probleme verursachen.

Durch die Speicherung und Verarbeitung von Daten in der Cloud können Sie Datenprotokolle zeitnah überprüfen, Messungen und Reaktionszeiten bewerten und datengestützte Schulungen und Protokolle einführen. Dies kann Ihren Betrieb verändern und die Sicherheit erheblich verbessern.

Wenn Sie mehr über Crowcon Connect und Cloud-Storage erfahren möchten, werfen Sie einen Blick auf unser Whitepaper zu diesem Thema, das Sie hier abrufen können.