Überblick über die Industrie: Abfall zu Energie

In der Abfallverwertungsindustrie werden verschiedene Abfallbehandlungsverfahren eingesetzt. Feste Siedlungs- und Industrieabfälle werden in Strom und manchmal auch in Wärme für die industrielle Verarbeitung und Fernwärmesysteme umgewandelt. Das Hauptverfahren ist natürlich die Verbrennung, aber auch Zwischenschritte wie Pyrolyse, Vergasung und anaerobe Vergärung werden manchmal eingesetzt, um den Abfall in nützliche Nebenprodukte umzuwandeln, die dann zur Stromerzeugung durch Turbinen oder andere Anlagen genutzt werden. Diese Technologie findet weltweit immer mehr Anerkennung als umweltfreundlichere und sauberere Energieform als die herkömmliche Verbrennung fossiler Brennstoffe und als Mittel zur Verringerung der Abfallproduktion.

Arten der Energiegewinnung aus Abfällen

Verbrennung

Die Verbrennung ist ein Abfallbehandlungsverfahren, bei dem energiereiche Stoffe, die in den Abfällen enthalten sind, verbrannt werden, und zwar in der Regel bei hohen Temperaturen um 1000 Grad C. Industrieanlagen für die Abfallverbrennung werden gemeinhin als Müllverbrennungsanlagen bezeichnet und sind oft selbst große Kraftwerke. Die Verbrennung und andere Hochtemperatur-Abfallbehandlungssysteme werden häufig als "thermische Behandlung" bezeichnet. Während des Prozesses wird der Abfall in Wärme und Dampf umgewandelt, die zum Antrieb einer Turbine verwendet werden können, um Strom zu erzeugen. Der Wirkungsgrad dieser Methode liegt derzeit bei etwa 15-29 %, ist aber noch ausbaufähig.

Pyrolyse

Die Pyrolyse ist ein anderes Abfallbehandlungsverfahren, bei dem die Zersetzung fester Kohlenwasserstoffabfälle, in der Regel Kunststoffe, bei hohen Temperaturen unter Ausschluss von Sauerstoff und in einer Atmosphäre aus Inertgasen erfolgt. Diese Behandlung wird in der Regel bei oder über 500 °C durchgeführt, wodurch genügend Wärme entsteht, um die langkettigen Moleküle, einschließlich der Biopolymere, in einfachere Kohlenwasserstoffe mit geringerer Masse zu zerlegen.

Vergasung

Dieses Verfahren wird eingesetzt, um aus schwereren Brennstoffen und aus brennbaren Abfällen gasförmige Brennstoffe herzustellen. Bei diesem Verfahren werden kohlenstoffhaltige Stoffe bei hoher Temperatur in Kohlendioxid (CO2), Kohlenmonoxid (CO) und eine geringe Menge Wasserstoff umgewandelt. Bei diesem Prozess entsteht ein Gas, das eine gute Quelle für nutzbare Energie ist. Dieses Gas kann dann zur Erzeugung von Strom und Wärme genutzt werden.

Plasma-Lichtbogenvergasung

Bei diesem Verfahren wird ein Plasmabrenner verwendet, um energiereiches Material zu ionisieren. Es entsteht ein Synthesegas, das zur Herstellung von Düngemitteln oder zur Stromerzeugung verwendet werden kann. Diese Methode ist eher ein Abfallbeseitigungsverfahren als ein ernsthaftes Mittel zur Gaserzeugung, denn sie verbraucht oft so viel Energie, wie das erzeugte Gas liefern kann.

Gründe für Waste to Energy

Da diese Technologie im Hinblick auf die Abfallproduktion und die Nachfrage nach sauberer Energie weltweit immer mehr Anerkennung findet.

  • Vermeidung von Methanemissionen aus Mülldeponien
  • Kompensiert Treibhausgasemissionen aus der Stromerzeugung mit fossilen Brennstoffen
  • Rückgewinnung und Wiederverwertung wertvoller Ressourcen, wie z. B. Metalle
  • Erzeugt saubere, zuverlässige, grundlastfähige Energie und Dampf
  • Verbraucht weniger Land pro Megawatt als andere erneuerbare Energiequellen
  • Nachhaltige und beständige erneuerbare Brennstoffquelle (im Vergleich zu Wind und Sonne)
  • Vernichtet chemische Abfälle
  • Führt zu niedrigen Emissionswerten, die in der Regel weit unter den zulässigen Werten liegen
  • Zerstört katalytisch Stickoxide (NOx), Dioxine und Furane mit Hilfe einer selektiven katalytischen Reduktion (SCR)

Was sind die Gasgefahren?

Es gibt viele Verfahren zur Umwandlung von Abfällen in Energie, darunter Biogasanlagen, Müllverwertung, Sickerwasserpools, Verbrennung und Wärmerückgewinnung. Alle diese Verfahren bergen Gasgefahren für diejenigen, die in diesen Umgebungen arbeiten.

In einer Biogasanlage wird Biogas erzeugt. Dieses entsteht, wenn organische Materialien wie landwirtschaftliche und Lebensmittelabfälle von Bakterien in einer sauerstoffarmen Umgebung abgebaut werden. Dieser Prozess wird anaerobe Vergärung genannt. Wenn das Biogas aufgefangen wurde, kann es zur Erzeugung von Wärme und Strom für Motoren, Mikroturbinen und Brennstoffzellen verwendet werden. Natürlich hat Biogas einen hohen Methangehalt und enthält auch viel Schwefelwasserstoff (H2S), was zu mehreren ernsthaften Gasgefahren führt. (In unserem Blog finden Sie weitere Informationen über Biogas). Es besteht jedoch ein erhöhtes Brand- und Explosionsrisiko, Gefahr in engen Räumen, Erstickungsgefahr, Sauerstoffmangel und Gasvergiftung, meist durchH2Soder Ammoniak (NH3). Arbeiter in einer Biogasanlage müssen über persönliche Gasdetektoren verfügen, die brennbare Gase, Sauerstoff und giftige Gase wieH2Sund CO erkennen und überwachen.

In einer Müllsammlung findet man häufig das brennbare Gas Methan (CH4) und die giftigen GaseH2S, CO und NH3. Das liegt daran, dass die Müllbunker mehrere Meter unter der Erde gebaut sind und die Gasdetektoren in der Regel hoch oben in den Bereichen angebracht sind, was die Wartung und Kalibrierung dieser Detektoren erschwert. In vielen Fällen ist ein Probenahmesystem eine praktische Lösung, da die Luftproben an einen geeigneten Ort gebracht und gemessen werden können.

Sickerwasser ist eine Flüssigkeit, die aus einem Gebiet, in dem Abfälle gesammelt werden, abfließt (auslaugt), wobei Sickerwasserpools eine Reihe von Gasgefahren darstellen. Dazu gehören die Gefahr von brennbarem Gas (Explosionsgefahr),H2S(Gift, Korrosion), Ammoniak (Gift, Korrosion), CO (Gift) und ungünstige Sauerstoffwerte (Erstickungsgefahr). Das Sickerwasserbecken und die zum Sickerwasserbecken führenden Gänge müssen auf CH4,H2S, CO, NH3, Sauerstoff (O2) undCO2 überwacht werden. Entlang der Wege zum Sickerwasserbecken sollten verschiedene Gasdetektoren angebracht werden, deren Ausgänge mit externen Kontrolltafeln verbunden sind.

Bei der Verbrennung und Wärmerückgewinnung müssenO2 und die giftigen Gase Schwefeldioxid (SO2) und CO nachgewiesen werden. Diese Gase stellen eine Gefahr für alle dar, die in Kesselhäusern arbeiten.

Ein weiterer Prozess, der als gasgefährdend eingestuft wird, ist ein Abluftwäscher. Das Verfahren ist gefährlich, da die Rauchgase aus der Verbrennung hochgiftig sind. Das liegt daran, dass es Schadstoffe wie Stickstoffdioxid (NO2), SO2, Chlorwasserstoff (HCL) und Dioxin enthält. NO2 und SO2 sind wichtige Treibhausgase, während HCL alle hier erwähnten Gasarten für die menschliche Gesundheit schädlich sind.

Wenn Sie mehr über die Abfallverwertungsindustrie erfahren möchten, besuchen Sie unsere Branchenseite.

Warum wird bei der Zementherstellung Gas freigesetzt?

Wie wird Zement hergestellt?

Beton ist einer der wichtigsten und am häufigsten verwendeten Baustoffe im weltweiten Bauwesen. Beton wird in großem Umfang für den Bau von Wohn- und Geschäftshäusern, Brücken, Straßen und vielem mehr verwendet.

Der wichtigste Bestandteil von Beton ist Zement, ein Bindemittel, das alle anderen Bestandteile des Betons (im Allgemeinen Kies und Sand) miteinander verbindet. Jedes Jahr werden weltweit mehr als 4 Milliarden Tonnen Zement verbrauchtverbraucht, was das enorme Ausmaß der globalen Bauindustrie verdeutlicht.

Die Herstellung von Zement ist ein komplexer Prozess, der mit Rohstoffen wie Kalkstein und Ton beginnt, die in großen Öfen von bis zu 120 m Länge auf bis zu 1.500 °C erhitzt werden. Bei solch hohen Temperaturen kommt es durch chemische Reaktionen zu einer Verbindung dieser Rohstoffe, wodurch Zement entsteht.

Wie viele industrielle Prozesse ist auch die Zementherstellung nicht ohne Gefahren. Bei der Herstellung von Zement können Gase freigesetzt werden, die für Arbeitnehmer, örtliche Gemeinschaften und die Umwelt schädlich sind.

Welche Gasgefahren gibt es bei der Zementherstellung?

Die in Zementwerken im Allgemeinen emittierten Gase sind Kohlendioxid (CO2), Stickstoffoxide (NOx) und Schwefeldioxid (SO2), wobeiCO2 den größten Teil der Emissionen ausmacht.

Das in Zementwerken vorhandene Schwefeldioxid stammt in der Regel aus den Rohstoffen, die im Zementherstellungsprozess verwendet werden. Die größte Gefahr geht von Kohlendioxid aus, denn die Zementindustrie ist für einen Anteil von 8 % der weltweitenCO2 Emissionen.

Der Großteil der Kohlendioxidemissionen entsteht durch einen chemischen Prozess namens Kalzinierung. Dies geschieht, wenn Kalkstein in den Öfen erhitzt wird, wodurch er sich inCO2 und Kalziumoxid zerfällt. Die andere Hauptquelle vonCO2 ist die Verbrennung von fossilen Brennstoffen. Die bei der Zementherstellung verwendeten Öfen werden in der Regel mit Erdgas oder Kohle beheizt, wodurch eine weitere Quelle von Kohlendioxid zusätzlich zu dem durch die Kalzinierung erzeugten entsteht.

Gasdetektion bei der Zementherstellung

In einer Industrie, die in großem Umfang gefährliche Gase produziert, ist die Detektion der Schlüssel. Crowcon bietet eine breite Palette von stationären und mobilen Detektionslösungen an.

Xgard Bright ist unser adressierbarer Festpunkt-Gasdetektor mit Display, der einfache Bedienung und reduzierte Installationskosten bietet. Xgard Bright bietet Optionen für die Detektion von Kohlendioxid und Schwefeldioxydden Gasen, die beim Mischen von Zement am meisten Probleme bereiten.

Für die tragbare Gasdetektion ist das GasmanDas robuste, tragbare und leichte Design macht es zur perfekten Ein-Gas-Lösung für die Zementproduktion. Es ist in einerCO2-Version für den sicheren Bereich erhältlich, die 0-5% Kohlendioxid misst.

Für einen verbesserten Schutz kann das Gas-Pro Multigasdetektor kann mit bis zu 5 Sensoren ausgestattet werden, darunter alle in der Zementherstellung gebräuchlichen Sensoren, CO2, SO2 und NO2.

Die Bedeutung der Gasdetektion im Medizin- und Gesundheitssektor

Der Bedarf an Gasdetektion im Medizin- und Gesundheitssektor mag außerhalb der Branche weniger bekannt sein, aber die Notwendigkeit ist dennoch gegeben. Da Patienten in verschiedenen Bereichen eine Vielzahl von Behandlungen und medizinischen Therapien erhalten, bei denen Chemikalien zum Einsatz kommen, ist die genaue Überwachung der verwendeten oder freigesetzten Gase in diesem Prozess sehr wichtig, um eine sichere Behandlung zu gewährleisten. Um sowohl die Patienten als auch das medizinische Fachpersonal selbst zu schützen, ist der Einsatz von genauen und zuverlässigen Überwachungsgeräten ein Muss.

Anwendungen

Im Gesundheitswesen und in Krankenhäusern können aufgrund der verwendeten medizinischen Geräte und Apparate eine Reihe von potenziell gefährlichen Gasen auftreten. Schädliche Chemikalien werden auch zu Desinfektions- und Reinigungszwecken auf Arbeitsflächen in Krankenhäusern und bei der medizinischen Versorgung eingesetzt. Potenziell gefährliche Chemikalien wie Toluol, Xylol oder Formaldehyd können zum Beispiel als Konservierungsmittel für Gewebeproben verwendet werden. Die Anwendungen umfassen:

  • Atemgasüberwachung
  • Kühlräume
  • Stromerzeuger
  • Laboratorien
  • Lagerräume
  • Operationssäle
  • Rettung vor dem Krankenhaus
  • Positive Atemwegsdrucktherapie
  • Therapie mit Hochfluss-Nasenkanüle
  • Intensivpflegestationen
  • Postanästhesie-Station

Gaz-Gefahren

Sauerstoffanreicherung in Krankenhausabteilungen

In Anbetracht der weltweiten Pandemie COVID-19 haben Fachkräfte des Gesundheitswesens erkannt, dass aufgrund der steigenden Anzahl von Beatmungsgeräten mehr Sauerstoff auf den Krankenstationen benötigt wird. Sauerstoffsensoren sind insbesondere auf der Intensivstation von entscheidender Bedeutung, da sie den Arzt darüber informieren, wie viel Sauerstoff dem Patienten während der Beatmung zugeführt wird. Dadurch kann das Risiko einer Hypoxie, Hypoxämie oder Sauerstofftoxizität vermieden werden. Funktionieren die Sauerstoffsensoren nicht ordnungsgemäß, können sie regelmäßig Alarm schlagen, müssen ausgetauscht werden und führen leider sogar zu Todesfällen. Der verstärkte Einsatz von Beatmungsgeräten reichert die Luft mit Sauerstoff an und kann das Verbrennungsrisiko erhöhen. Es ist notwendig, den Sauerstoffgehalt in der Luft mit einem stationären Gasmesssystem zu messen, um unsichere Werte in der Luft zu vermeiden.

Kohlendioxid

Die Überwachung des Kohlendioxidgehalts ist auch im Gesundheitswesen erforderlich, um eine sichere Arbeitsumgebung für das Personal zu gewährleisten und die behandelten Patienten zu schützen. Kohlendioxid wird bei einer Vielzahl von medizinischen und pflegerischen Verfahren eingesetzt, von minimal-invasiven Operationen wie Endoskopie, Arthroskopie und Laparoskopie bis hin zu Kryotherapie und Anästhesie.CO2 wird auch in Inkubatoren und Labors verwendet und kann, da es ein giftiges Gas ist, zum Ersticken führen. Ein erhöhterCO2-Gehalt in der Luft, der von bestimmten Maschinen ausgestoßen wird, kann für die Menschen in der Umgebung schädlich sein und Krankheitserreger und Viren verbreiten.CO2-Detektoren in Gesundheitseinrichtungen können daher die Belüftung, den Luftstrom und das Wohlbefinden aller verbessern.

Flüchtige organische Verbindungen (VOCs)

Eine Reihe von flüchtigen organischen Verbindungen (VOC) kann in Krankenhäusern und im Gesundheitswesen vorkommen und den dort arbeitenden und behandelten Personen schaden. VOC wie aliphatische, aromatische und halogenierte Kohlenwasserstoffe, Aldehyde, Alkohole, Ketone, Ether und Terpene, um nur einige zu nennen, wurden in Krankenhausumgebungen gemessen und stammen aus einer Reihe spezifischer Bereiche wie Empfangshallen, Patientenzimmern, Pflegeeinrichtungen, Post-Anästhesie-Stationen, parasitologisch-mykologischen Labors und Desinfektionseinheiten. Obwohl die Forschung über die Verbreitung von VOC im Gesundheitswesen noch nicht abgeschlossen ist, steht fest, dass die Aufnahme von VOC negative Auswirkungen auf die menschliche Gesundheit hat, wie z. B. Reizungen der Augen, der Nase und des Rachens, Kopfschmerzen und Koordinationsverlust, Übelkeit und Schäden an Leber, Nieren oder dem zentralen Nervensystem. Einige VOCs, insbesondere Benzol, sind krebserregend. Der Einsatz von Gasdetektoren ist daher ein Muss, um jeden vor Schaden zu bewahren.

Gassensoren sollten daher in der PACU, der ICU, der EMS, der prähospitalen Rettung, der PAP-Therapie und der HFNC-Therapie eingesetzt werden, um die Gaswerte einer Reihe von Geräten wie Beatmungsgeräten, Sauerstoffkonzentratoren, Sauerstoffgeneratoren und Anästhesiegeräten zu überwachen.

Normen und Zertifizierungen

Die Care Quality Commission (CQC) ist die Organisation in England, die die Qualität und Sicherheit der Pflege in allen Einrichtungen des Gesundheitswesens, der medizinischen Versorgung, der Gesundheits- und Sozialfürsorge sowie der freiwilligen Pflege im ganzen Land überwacht. Die Kommission liefert Details zu bewährten Verfahren für die Verabreichung von Sauerstoff an Patienten und die ordnungsgemäße Messung und Aufzeichnung der Füllstände, die Lagerung und die Schulung für die Verwendung dieses und anderer medizinischer Gase.

Die britische Regulierungsbehörde für medizinische Gase ist die Medicines and Healthcare products Regulatory Agency (MHRA). Sie ist eine Exekutivagentur des Ministeriums für Gesundheit und Soziales (DHSC), die die Gesundheit und Sicherheit der Öffentlichkeit und der Patienten durch die Regulierung von Arzneimitteln, Gesundheitsprodukten und medizinischen Geräten in diesem Sektor gewährleistet. Sie legt angemessene Standards für Sicherheit, Qualität, Leistung und Wirksamkeit fest und sorgt dafür, dass alle Geräte sicher verwendet werden. Jedes Unternehmen, das medizinische Gase herstellt, benötigt eine von der MHRA ausgestellte Herstellerzulassung.

In den USA regelt die Food and Drug Association (FDA ) das Zertifizierungsverfahren für die Herstellung, den Verkauf und die Vermarktung von bestimmten medizinischen Gasen. Gemäß Abschnitt 575 stellt die FDA fest, dass jeder, der ein medizinisches Gas zur Verwendung als Arzneimittel für Menschen oder Tiere ohne einen genehmigten Antrag vermarktet, gegen bestimmte Richtlinien verstößt. Zu den medizinischen Gasen, die eine Zertifizierung erfordern, gehören Sauerstoff, Stickstoff, Distickstoffoxid, Kohlendioxid, Helium, Kohlenmonoxid und medizinische Luft.

Wenn Sie mehr über die Gefahren im Medizin- und Gesundheitssektor erfahren möchten, besuchen Sie unsere Branchenseite für weitere Informationen.

Warum ist die Gasdetektion für Getränkeschankanlagen so wichtig?

Schankgas, auch bekannt als Biergas, Fassgas, Kellergas oder Kneipengas, wird in Bars und Restaurants sowie im Freizeit- und Gaststättengewerbe verwendet. Die Verwendung von Zapfgas beim Ausschank von Bier und alkoholfreien Getränken ist weltweit üblich. Kohlendioxid (CO2) oder ein Gemisch ausCO2 und Stickstoff (N2) wird verwendet, um ein Getränk an den "Zapfhahn" zu bringen.CO2 als Keg-Gas trägt dazu bei, den Inhalt steril und in der richtigen Zusammensetzung zu halten, was den Zapfvorgang erleichtert.

Gasgefahren

Auch wenn das Getränk zur Auslieferung bereit ist, bleiben gasbedingte Gefahren bestehen. Diese entstehen bei jeder Tätigkeit in Räumlichkeiten, die Druckgasflaschen enthalten, aufgrund des Risikos der Beschädigung beim Bewegen oder Auswechseln dieser Flaschen. Darüber hinaus besteht nach der Freisetzung die Gefahr eines erhöhten Kohlendioxidgehalts oder eines Sauerstoffmangels (aufgrund eines höheren Stickstoff- oder Kohlendioxidgehalts).

CO2 kommt natürlich in der Atmosphäre vor (0,04 %) und ist farb- und geruchlos. Es ist schwerer als Luft und sinkt, wenn es entweicht, auf den Boden.CO2 sammelt sich in Kellern, auf dem Boden von Behältern und in geschlossenen Räumen wie Tanks und Silos.CO2 entsteht in großen Mengen während der Gärung. Es wird auch während der Kohlensäurebildung in Getränke eingeleitet, um die Bläschen zu erzeugen. Zu den ersten Symptomen einer Exposition gegenüber hohen Kohlendioxidkonzentrationen gehören Schwindel, Kopfschmerzen und Verwirrung, gefolgt von Bewusstlosigkeit. Im Extremfall kann es zu Unfällen und Todesfällen kommen, wenn eine erhebliche Menge Kohlendioxid in ein geschlossenes oder schlecht belüftetes Volumen entweicht. Ohne geeignete Erkennungsmethoden und -verfahren könnte jeder, der diesen Raum betritt, gefährdet sein. Außerdem könnte das Personal in den umliegenden Räumen unter den oben genannten Frühsymptomen leiden.

Stickstoff (N2) wird häufig beim Ausschank von Bier, insbesondere von Stouts, Pale Ales und Porters, verwendet und verhindert die Oxidation oder Verunreinigung des Biers mit scharfen Aromen. Stickstoff hilft, die Flüssigkeit von einem Tank in einen anderen zu befördern, und kann auch in Fässer eingeleitet werden, um sie für die Lagerung und den Versand unter Druck zu setzen. Dieses Gas ist nicht giftig, verdrängt aber den Sauerstoff in der Atmosphäre, was bei einem Gasleck eine Gefahr darstellen kann, weshalb eine genaue Gasdetektion entscheidend ist.

Da Stickstoff den Sauerstoffgehalt verringern kann, sollten Sauerstoffsensoren in Umgebungen eingesetzt werden, in denen eines dieser potenziellen Risiken besteht. Bei der Platzierung von Sauerstoffsensoren muss die Dichte des Verdünnungsgases und der "Atembereich" (Nasenhöhe) berücksichtigt werden. Auch die Belüftungsmuster müssen bei der Platzierung der Sensoren berücksichtigt werden. Handelt es sich bei dem verdünnenden Gas beispielsweise um Stickstoff, ist es sinnvoll, die Sensoren in Schulterhöhe zu platzieren. Handelt es sich bei dem verdünnenden Gas jedoch um Kohlendioxid, sollten die Sensoren in Kniehöhe angebracht werden.

Die Bedeutung der Gasdetektion in Getränkeschankanlagen

Leider kommt es in der Getränkeindustrie immer wieder zu Unfällen und Todesfällen aufgrund von Gasgefahren. Daher sind im Vereinigten Königreich die Grenzwerte für die sichere Exposition am Arbeitsplatz von der Gesundheits- und Sicherheitsbehörde (Health and Safety Executive, HSE ) in der Dokumentation zur Kontrolle gesundheitsgefährdender Stoffe (Control of Substances Hazardous to Health, COSHH) kodifiziert. Für Kohlendioxid gilt ein 8-Stunden-Grenzwert von 0,5 % und ein 15-Minuten-Grenzwert von 1,5 Volumenprozent. Gaswarnsysteme tragen dazu bei, Gasrisiken zu mindern, und ermöglichen es Getränkeherstellern, Abfüllbetrieben und Betreibern von Bars und Kneipen, die Sicherheit des Personals zu gewährleisten und die Einhaltung gesetzlicher Grenzwerte oder genehmigter Verhaltensregeln nachzuweisen.

Sauerstoffverarmung

Die normale Sauerstoffkonzentration in der Atmosphäre beträgt etwa 20,9 % des Volumens. Ein zu niedriger Sauerstoffgehalt kann gefährlich sein (Sauerstoffmangel). Bei unzureichender Belüftung kann der Sauerstoffgehalt durch Atmung und Verbrennungsprozesse erstaunlich schnell sinken.

Der Sauerstoffgehalt kann auch durch die Verdünnung durch andere Gase wie Kohlendioxid (ebenfalls ein giftiges Gas), Stickstoff oder Helium sowie durch chemische Absorption bei Korrosionsprozessen und ähnlichen Reaktionen verringert werden. Sauerstoffsensoren sollten in Umgebungen eingesetzt werden, in denen eines dieser potenziellen Risiken besteht. Bei der Platzierung von Sauerstoffsensoren muss die Dichte des Verdünnungsgases und der "Atem"-Zone (Nasenhöhe) berücksichtigt werden. Sauerstoffmonitore lösen in der Regel einen Alarm der ersten Stufe aus, wenn die Sauerstoffkonzentration auf 19 % des Volumens gesunken ist. Die meisten Menschen beginnen, sich abnormal zu verhalten, wenn der Wert 17 % erreicht, daher wird bei diesem Schwellenwert in der Regel ein zweiter Alarm ausgelöst. In Atmosphären mit einem Sauerstoffgehalt zwischen 10 und 13 % kann es sehr schnell zu Bewusstlosigkeit kommen; der Tod tritt sehr schnell ein, wenn der Sauerstoffgehalt unter 6 % Volumen sinkt.

Unsere Lösung

Die Gasdetektion kann sowohl in Form von festen als auch von tragbaren Detektoren erfolgen. Die Installation eines ortsfesten Gaswarngeräts kann in größeren Räumen wie Kellern oder Werksräumen von Vorteil sein, um einen kontinuierlichen Schutz des Bereichs und des Personals 24 Stunden am Tag zu gewährleisten. Für die Sicherheit der Mitarbeiter in und um Flaschenlager und in Räumen, die als beengte Räume ausgewiesen sind, kann jedoch ein tragbarer Melder besser geeignet sein. Dies gilt insbesondere für Kneipen und Getränkemärkte, um die Sicherheit von Mitarbeitern und Personen zu gewährleisten, die sich in dieser Umgebung nicht auskennen, wie z. B. Lieferfahrer, Verkaufsteams oder Techniker. Das tragbare Gerät kann einfach an der Kleidung befestigt werden und erkenntCO2-Taschen durch Alarme und visuelle Signale, die darauf hinweisen, dass der Benutzer den Bereich sofort verlassen sollte.

Für weitere Informationen über die Gaserkennung in Getränkeschankanlagen wenden Sie sich bitte an unser Team.

Überblick über die Industrie: Lebensmittel und Getränke 

Die Lebensmittel- und Getränkeindustrie (F&B) umfasst alle Unternehmen, die sich mit der Verarbeitung von Lebensmittelrohstoffen sowie mit deren Verpackung und Vertrieb befassen. Dazu gehören frische, zubereitete und verpackte Lebensmittel sowie alkoholische und nichtalkoholische Getränke.

Die Lebensmittel- und Getränkeindustrie gliedert sich in zwei große Segmente, nämlich die Produktion und den Vertrieb von Lebensmitteln. Die erste Gruppe, die Produktion, umfasst die Verarbeitung von Fleisch und Käse sowie die Herstellung von Erfrischungsgetränken, alkoholischen Getränken, verpackten Lebensmitteln und anderen veränderten Lebensmitteln. Alle Produkte, die für den menschlichen Verzehr bestimmt sind, mit Ausnahme von Arzneimitteln, fallen in diesen Sektor. Die Produktion umfasst auch die Verarbeitung von Fleisch, Käse und verpackten Lebensmitteln, Molkereiprodukten und alkoholischen Getränken. Nicht zum Produktionssektor gehören Lebensmittel und Frischwaren, die direkt in der Landwirtschaft erzeugt werden, da diese unter die Landwirtschaft fallen.

Die Herstellung und Verarbeitung von Lebensmitteln und Getränken birgt ein erhebliches Risiko für Brände und die Exposition gegenüber toxischen Gasen. Beim Backen, Verarbeiten und Kühlen von Lebensmitteln werden viele Gase verwendet. Diese Gase können sehr gefährlich sein - entweder giftig, entflammbar oder beides.

Gasgefahren

Lebensmittelverarbeitung

Zu den sekundären Lebensmittelverarbeitungsmethoden gehören Fermentierung, Erhitzung, Kühlung, Dehydrierung oder Kochen in irgendeiner Form. Viele Arten der kommerziellen Lebensmittelverarbeitung bestehen aus dem Kochen, insbesondere in industriellen Dampfkesseln. Dampfkessel werden in der Regel mit Gas (Erdgas oder Flüssiggas) oder mit einer Kombination aus Gas und Heizöl befeuert. Bei gasbefeuerten Dampfkesseln besteht Erdgas hauptsächlich aus Methan (CH4), einem leicht brennbaren Gas, das leichter ist als Luft, und das direkt in die Kessel geleitet wird. Im Gegensatz dazu besteht Flüssiggas hauptsächlich aus Propan (C3H8) und erfordert in der Regel einen Lagertank vor Ort. Wenn brennbare Gase vor Ort verwendet werden, muss in den Lagerbereichen eine mechanische Zwangsbelüftung für den Fall eines Lecks vorgesehen werden. Diese Belüftung wird in der Regel durch Gasdetektoren ausgelöst, die in der Nähe von Heizkesseln und in Lagerräumen installiert sind.

Chemische Desinfektion

Die F&B-Branche nimmt die Hygiene sehr ernst, da die geringste Verunreinigung von Oberflächen und Geräten einen idealen Nährboden für alle Arten von Keimen bieten kann. Der F&B-Sektor verlangt daher eine rigorose Reinigung und Desinfektion, die den Branchenstandards entsprechen muss.

Es gibt drei in der Gastronomie übliche Desinfektionsmethoden: thermische, strahlende und chemische. Die chemische Desinfektion mit Verbindungen auf Chlorbasis ist bei weitem die gebräuchlichste und wirksamste Methode zur Desinfektion von Geräten und anderen Oberflächen. Der Grund dafür ist, dass Chlorverbindungen preiswert, schnell wirksam und gegen eine Vielzahl von Mikroorganismen wirksam sind. Üblicherweise werden mehrere verschiedene Chlorverbindungen verwendet, darunter Hypochlorit, organische und anorganische Chloramine und Chlordioxid. Natriumhypochloritlösung (NaOCl) wird in Tanks gelagert, während Chlordioxid (ClO2) in der Regel vor Ort erzeugt wird.

In jeder Kombination sind Chlorverbindungen gefährlich, und die Exposition gegenüber hohen Chlorkonzentrationen kann zu schweren gesundheitlichen Problemen führen. Chlorgase werden in der Regel vor Ort gelagert, und es sollte ein Gaswarnsystem installiert werden, das über einen Relaisausgang verfügt, um die Lüftungsventilatoren auszulösen, sobald eine hohe Chlorkonzentration festgestellt wird.

Lebensmittelverpackungen

Lebensmittelverpackungen dienen vielen Zwecken: Sie ermöglichen den sicheren Transport und die Lagerung von Lebensmitteln, schützen sie, geben die Portionsgrößen an und liefern Informationen über das Produkt. Um Lebensmittel lange haltbar zu machen, muss der Sauerstoff aus dem Behälter entfernt werden, da es sonst zu einer Oxidation kommt, wenn die Lebensmittel mit Sauerstoff in Berührung kommen. Das Vorhandensein von Sauerstoff fördert auch das Wachstum von Bakterien, die beim Verzehr schädlich sind. Wird die Verpackung jedoch mit Stickstoff gespült, kann die Haltbarkeit der verpackten Lebensmittel verlängert werden.

Verpackungsunternehmen verwenden häufig Stickstoff (N2) für die Konservierung und Lagerung ihrer Produkte. Stickstoff ist ein nicht reaktives Gas, geruchsneutral und ungiftig. Es verhindert die Oxidation frischer Lebensmittel mit Zucker oder Fetten, stoppt das Wachstum gefährlicher Bakterien und hemmt den Verderb. Und schließlich verhindert es das Zusammenfallen von Verpackungen, indem es eine Atmosphäre unter Druck schafft. Stickstoff kann vor Ort mit Generatoren erzeugt oder in Flaschen geliefert werden. Gasgeneratoren sind kostengünstig und sorgen für eine ununterbrochene Versorgung mit Gas. Stickstoff ist ein Erstickungsmittel, das den Sauerstoff in der Luft verdrängen kann. Da er geruchlos und ungiftig ist, bemerken die Arbeiter einen Sauerstoffmangel möglicherweise erst, wenn es zu spät ist.

Ein Sauerstoffgehalt von weniger als 19 % führt zu Schwindelgefühlen und Bewusstlosigkeit. Um dies zu verhindern, sollte der Sauerstoffgehalt mit einem elektrochemischen Sensor überwacht werden. Die Installation von Sauerstoffdetektoren in Verpackungsbereichen gewährleistet die Sicherheit der Arbeitnehmer und die frühzeitige Erkennung von Leckagen.

Kältetechnische Einrichtungen

Kühlanlagen in der F&B-Industrie werden eingesetzt, um Lebensmittel über lange Zeiträume kühl zu halten. In großen Lebensmittellagern werden häufig Kühlsysteme auf der Basis von Ammoniak (> 50% NH3), da diese effizient und wirtschaftlich sind. Ammoniak ist jedoch sowohl giftig als auch brennbar; außerdem ist es leichter als Luft und füllt geschlossene Räume schnell aus. Ammoniak kann entflammbar werden, wenn es in einem geschlossenen Raum freigesetzt wird, in dem eine Zündquelle vorhanden ist, oder wenn ein Behälter mit wasserfreiem Ammoniak einem Feuer ausgesetzt wird.

Ammoniak wird mit elektrochemischer (toxisch) und katalytischer (entflammbar) Sensortechnologie nachgewiesen. Tragbare Detektoren, einschließlich Ein- oder Mehrgasdetektoren, können die unmittelbare und die TWA-Belastung durch toxische Werte von NH3. Mehrgas-Personenmonitore verbessern nachweislich die Sicherheit der Arbeiter, wenn ein niedriger ppm-Bereich für Routineuntersuchungen des Systems und ein entflammbarer Bereich für die Wartung des Systems verwendet wird. Fest installierte Detektionssysteme umfassen eine Kombination aus Detektoren für toxische und brennbare Gase, die an lokale Schalttafeln angeschlossen sind - diese werden normalerweise als Teil eines Kühlsystems geliefert. Fest installierte Systeme können auch für Prozessüberwachungen und Lüftungssteuerung verwendet werden.

Brauerei- und Getränkeindustrie

Das Risiko bei der Herstellung von Alkohol besteht in der Verwendung von großen Produktionsanlagen, die sowohl im Betrieb als auch aufgrund der Dämpfe und Abgase, die in die Atmosphäre gelangen und die Umwelt belasten können, potenziell schädlich sein können. Ethanol ist die Hauptbrennstoffgefahr, die in Brennereien und Brauereien besteht, und zwar wegen der von Ethanol erzeugten Dämpfe und Abgase. Ethanoldämpfe können aus undichten Stellen in Tanks, Fässern, Umfüllpumpen, Rohren und flexiblen Schläuchen austreten und stellen eine sehr reale Brand- und Explosionsgefahr für die Beschäftigten in der Brennereiindustrie dar. Sobald die Gase und Dämpfe in die Atmosphäre entweichen, können sie sich schnell aufbauen und eine Gefahr für die Gesundheit der Arbeiter darstellen. Dabei ist jedoch zu beachten, dass die Konzentration, die erforderlich ist, um die Gesundheit der Arbeitnehmer zu schädigen, sehr hoch sein muss. Die größere Gefahr, die von Ethanol in der Luft ausgeht, ist daher die Gefahr einer Explosion. Diese Tatsache unterstreicht die Bedeutung von Gaswarngeräten, um eventuelle Leckagen sofort zu erkennen und zu beheben, um katastrophale Folgen zu vermeiden.

Verpackung, Transport und Abgabe

Sobald der Wein in Flaschen abgefüllt und das Bier verpackt ist, müssen sie an die entsprechenden Verkaufsstellen geliefert werden. Dazu gehören in der Regel Vertriebsunternehmen, Lagerhäuser und - im Falle von Brauereien - Fuhrleute. Bei Bier und alkoholfreien Getränken wird Kohlendioxid oder ein Gemisch aus Kohlendioxid und Stickstoff verwendet, um das Getränk an den "Zapfhahn" zu bringen. Diese Gase verleihen dem Bier auch einen länger anhaltenden Schaum und verbessern die Qualität und den Geschmack.

Auch wenn das Getränk zur Auslieferung bereit ist, bleiben gasbedingte Gefahren bestehen. Diese entstehen bei jeder Tätigkeit in Räumen, die Druckgasflaschen enthalten, aufgrund des Risikos eines erhöhten Kohlendioxidgehalts oder eines verminderten Sauerstoffgehalts (aufgrund eines hohen Stickstoffgehalts). Kohlendioxid (CO2) kommt in der Atmosphäre natürlich vor (0,04 %).CO2 ist farb- und geruchlos, schwerer als Luft und sinkt beim Entweichen auf den Boden.CO2 sammelt sich in Kellern und am Boden von Behältern und geschlossenen Räumen wie Tanks und Silos.CO2 wird in großen Mengen während der Gärung erzeugt. Außerdem wird es bei der Karbonisierung in Getränke eingeleitet.

Um mehr über die Gasgefahren in der Lebensmittel- und Getränkeherstellung zu erfahren, besuchen Sie unsereIndustrie-Seitefür weitere Informationen.

Die Gefahren von Gas in Landwirtschaft und Viehzucht 

Die Landwirtschaft ist ein riesiger Wirtschaftszweig auf der ganzen Welt und bietet mehr als 44 Millionen Arbeitsplätze in der EU und macht über 10 % der Gesamtbeschäftigung in den USA.

Da in diesem Sektor eine Vielzahl von Prozessen abläuft, gibt es zwangsläufig Gefahren, die berücksichtigt werden müssen. Dazu gehören Gasgefahren wie Methan, Schwefelwasserstoff, Ammoniak, Kohlendioxid und Distickstoffoxid.

Methan ist ein farb- und geruchloses Gas, das schädliche Auswirkungen auf den Menschen haben kann. Es führt zu undeutlicher Sprache, Sehstörungen, Gedächtnisverlust, Übelkeit und kann in extremen Fällen die Atmung und den Herzschlag beeinträchtigen, was zu Bewusstlosigkeit und sogar zum Tod führen kann. In der Landwirtschaft entsteht Methan durch die anaerobe Vergärung von organischem Material, wie z. B. Gülle. Die Menge des entstehenden Methans wird in schlecht belüfteten oder hochtemperierten Bereichen noch verstärkt, und in Bereichen mit besonders wenig Luftzufuhr kann sich das Gas ansammeln, eingeschlossen werden und Explosionen verursachen.

Kohlendioxid (CO2) ist ein Gas, das auf natürliche Weise in der Atmosphäre entsteht und dessen Gehalt durch landwirtschaftliche Prozesse erhöht werden kann.CO2 kann durch eine Reihe von landwirtschaftlichen Prozessen freigesetzt werden, einschließlich der Pflanzen- und Tierproduktion, und wird auch von einigen Geräten emittiert, die in der Landwirtschaft eingesetzt werden. Lagerräume für Abfälle und Getreide sowie versiegelte Silos sind besonders besorgniserregend, da sich dortCO2 anreichern und den Sauerstoff verdrängen kann, wodurch sich das Erstickungsrisiko für Tiere und Menschen erhöht.

Ähnlich wie Methan entsteht Schwefelwasserstoff bei der anaeroben Zersetzung von organischem Material und kann auch in einer Reihe von landwirtschaftlichen Prozessen im Zusammenhang mit der Erzeugung und dem Verbrauch von Biogas vorkommen.H2S verhindert, dass Sauerstoff zu unseren lebenswichtigen Organen transportiert wird, und in Bereichen, in denen es sich ansammelt, ist die Sauerstoffkonzentration oft reduziert, was die Gefahr des Erstickens bei hohenH2S-Wertenerhöht. Zwar könnte man meinen, dass H2S aufgrund seines ausgeprägten Geruchs nach faulen Eiern" leichter zu erkennen ist, doch nimmt die Intensität des Geruchs bei höheren Konzentrationen und längerer Exposition ab. Bei hohen Konzentrationen kannH2Szu schweren Reizungen und Flüssigkeitsansammlungen in der Lunge führen und das Nervensystem beeinträchtigen.

Ammoniak (NH3) ist ein Gas, das in tierischen Abfällen vorkommt, die dann oft durch die Ausbringung von Gülle auf landwirtschaftlichen Flächen weiter verbreitet und emittiert werden. Wie bei vielen der behandelten Gase werden die Auswirkungen von Ammoniak durch mangelnde Belüftung noch verstärkt. Es ist schädlich für das Wohlbefinden von Vieh und Mensch und verursacht bei Tieren Atemwegserkrankungen, während hohe Konzentrationen beim Menschen zu Verbrennungen und Schwellungen der Atemwege sowie Lungenschäden führen und tödlich sein können.

Stickstoffoxid (NO2) ist ein weiteres Gas, das in der Landwirtschaft und der Agrarindustrie zu beachten ist. Es ist in synthetischen Düngemitteln enthalten, die häufig bei intensiveren landwirtschaftlichen Praktiken verwendet werden, um höhere Ernteerträge zu erzielen. Zu den möglichen negativen gesundheitlichen Auswirkungen von NO2 beim Menschen sind unter anderem eine eingeschränkte Lungenfunktion, innere Blutungen und anhaltende Atemprobleme.

Die Arbeiter in dieser Branche sind häufig unterwegs, und für diesen speziellen Zweck bietet Crowcon eine breite Palette von stationären und tragbaren Gasdetektoren an, um die Sicherheit der Arbeiter zu gewährleisten. Das tragbare Sortiment von Crowcon umfasst T4, Gas-Pro, Clip SGD und Gasman die alle zuverlässige, transportable Detektionskapazitäten für eine Vielzahl von Gasen bieten. Unsere ortsfesten Gasdetektoren werden dort eingesetzt, wo Zuverlässigkeit, Verlässlichkeit und das Ausbleiben von Fehlalarmen für einen effizienten und effektiven Schutz von Vermögenswerten und Bereichen von entscheidender Bedeutung sind. Dazu gehören der Xgard und Xgard Bright. In Kombination mit einer Vielzahl unserer ortsfesten Gasdetektoren bieten unsere Gaswarnzentralen eine flexible Palette von Lösungen, die brennbare, toxische und sauerstoffhaltige Gase messen, deren Vorhandensein melden und Alarme oder zugehörige Geräte aktivieren. Für die Landwirtschaft empfehlen wir häufig unsere Gasmaster, Vortex und adressierbare Steuerungen.

Wenn Sie mehr über die Gasgefahren in der Landwirtschaft erfahren möchten, besuchen Sie unsere Branchenseite.

Die Gefahren der Gasexposition in Weinkellereien

Weinkellereien stehen vor besonderen Herausforderungen, wenn es darum geht, ihre Mitarbeiter vor den möglichen Schäden durch gefährliche Gase zu schützen. Eine Gasexposition kann in jeder Phase des Weinherstellungsprozesses auftreten, von der Ankunft der Trauben in der Weinkellerei bis hin zur Gärung und Abfüllung. In jeder Phase muss darauf geachtet werden, dass die Arbeitnehmer nicht unnötigen Risiken ausgesetzt werden. In der Weinkellerei gibt es mehrere spezifische Bereiche, in denen die Gefahr von Gasleckagen und -exposition besteht, darunter Gärräume, Gruben, Fasskeller, Auffangbecken, Lagertanks und Abfüllräume. Die wichtigsten Gasgefahren, die bei der Weinherstellung auftreten, sind Kohlendioxid und Sauerstoffverdrängung, aber auch Schwefelwasserstoff, Schwefeldioxid, Ethylalkohol und Kohlenmonoxid.

Was sind die Gasgefahren?

Schwefelwasserstoff (H2S)

Schwefelwasserstoff ist ein Gas, das während des Gärungsprozesses entstehen kann. Es tritt häufiger unter feuchten Bedingungen auf, wenn Bakterien auf natürliche Öle eingewirkt haben. Es bleibt in stehendem Wasser gelöst, bis es gestört wird. Am gefährlichsten ist es bei der Reinigung eines geschlossenen Raums, z. B. eines Tanks, wo freigesetzte Gase nicht leicht entweichen können. Bei einer Überprüfung vor dem Betreten des Raums wird kein Wasser gefunden, und das stehende Wasser wird beim Betreten des Raums gestört. Die mitH2Sverbundenen Risiken bestehen darin, dass es potenziell gesundheitsgefährdend ist und die Atmung stört. Schwefelwasserstoff stellt selbst bei einer relativ geringen Konzentration in der Luft eine ernsthafte Gefahr für die Atemwege dar. Das Gas wird sehr leicht und schnell über das Lungengewebe in den Blutkreislauf aufgenommen, so dass es sich sehr schnell im ganzen Körper verteilt.

Schwefeldioxid (SO2)

Schwefeldioxid ist ein natürliches Nebenprodukt der Gärung, wird aber auch häufig als Zusatzstoff bei der ökologischen Weinherstellung verwendet. Bei der Weinherstellung wird zusätzliches SO2 zugesetzt, um das Wachstum von unerwünschten Hefen und Mikroben im Wein zu verhindern. Schwefeldioxid kann sehr gesundheitsschädlich sein und ist ein hochgiftiges Gas, das bei Kontakt mit dem Körper zahlreiche Reizungen verursacht. Schwefeldioxid ist ein Gas, das Reizungen der Atemwege, der Nase und des Rachens verursachen kann. Bei Arbeitnehmern, die hohen Schwefeldioxidkonzentrationen ausgesetzt sind, kann es zu Erbrechen, Übelkeit, Magenkrämpfen und Reizungen oder ätzenden Schäden an den Lungen und Atemwegen kommen.

Ethanol (Äthylalkohol)

Ethanol ist das wichtigste alkoholische Produkt der ökologischen Weingärung. Es trägt dazu bei, den Geschmack des Weins zu erhalten und stabilisiert den Alterungsprozess. Ethanol entsteht während der Gärung, wenn die Hefe den Zucker aus den Trauben umwandelt. Wein enthält in der Regel zwischen 7 und 15 % Ethanol, was dem Getränk seinen Alkoholgehalt (ABV) verleiht. Die tatsächlich produzierte Ethanolmenge hängt vom Zuckergehalt der Trauben, der Gärungstemperatur und der verwendeten Hefe ab. Ethanol ist eine farb- und geruchlose Flüssigkeit, die brennbare und potenziell gefährliche Dämpfe abgibt. Die Dämpfe von Ethanol oder Ethylalkohol können die Atemwege und die Lunge reizen, wenn sie eingeatmet werden, und es besteht die Möglichkeit eines starken Hustens und Erstickens.

Wo liegen die Gefahren?

Offene Gärungstanks

Jeder Arbeiter, der über einem offenen Gärbehälter oder -tank arbeitet, kann einem hohen Risiko der Gasexposition ausgesetzt sein, insbesondere demCO2 oder dem Sauerstoffmangel. Es hat sich gezeigt, dass ein Arbeiter, der sich bei voller Produktion über einen offenen Gärbehälter beugt, obwohl er sich bis zu zehn Meter über dem Boden befindet, potenziell 100 %CO2 ausgesetzt sein kann. Daher ist in diesen Bereichen besondere Vorsicht und Aufmerksamkeit bei der Gaserkennung geboten.

Exposition durch unzureichende Belüftung

Der Gärungsprozess muss in einer gut belüfteten Umgebung stattfinden, damit sich keine giftigen und erstickenden Gase bilden können. Gärräume, Tankräume und Keller sind alles Orte, die ein Risiko darstellen können. Bei kaltem Wetter oder in der Nacht kann es zu einer erhöhten Gaskonzentration kommen, da Türen und Fenster geschlossen sein können.

Beengte Räume

Enge Räume wie Gruben und Schächte sind oft problematisch und bekannt für die mögliche Ansammlung gefährlicher Gase. Die Definition eines engen Raums in einer Weinkellerei ist ein Raum, der eine gefährliche Atmosphäre enthält oder enthalten kann, in dem die Möglichkeit besteht, dass Material eingeschlossen wird oder ein Eindringling in die Umgebung eingeschlossen wird oder erstickt.

Triebzüge

Wenn eine Weinkellerei wächst und ihren Betrieb ausweitet, möchte sie möglicherweise neue Produktionseinheiten hinzufügen, um die Nachfrage zu decken. Es ist jedoch wichtig, daran zu denken, dass sich die potenziellen Gasrisiken je nach Umgebung unterscheiden, z. B. ist das Gasrisiko in einem Gärkeller nicht dasselbe wie in einem Fassraum. Daher können in verschiedenen Bereichen unterschiedliche Arten von Gaswarngeräten erforderlich sein.

Wenn Sie weitere Informationen über Gasdetektionslösungen für Weinkellereien wünschen oder weitere Fragen haben, nehmen Sie noch heute Kontakt mit uns auf.

Wussten Sie schon, dass es auf Sprint Proeinen Ambient Air Monitor gibt?

Sie wissen wahrscheinlich, dass die Sprint Pro über eine Vielzahl nützlicher Funktionen verfügt, aber haben Sie schon einmal durch das Menü Ihres Sprint Pro geblättert, den Umgebungsluftmonitor gefunden und sich gefragt, wie Sie ihn nutzen können?

Nun, Sie müssen sich nicht länger wundern - denn in diesem Beitrag werden wir uns den Sprint Pro Raumluftmonitor und seine Verwendungsmöglichkeiten ansehen.

Wer muss die Immissionsüberwachung durchführen?

Als Gasingenieur kann Ihr Bedarf an der Überwachung der Umgebungsluft je nach Art Ihrer Arbeit variieren, aber wenn Sie sich auf Kohlenmonoxid (CO)/Kohlendioxid (CO2) spezialisiert sind - zum Beispiel, wenn Sie eine CMDDA1-Zertifizierung für Wohngebäude haben oder COMCAT-Berichte (für die gewerbliche Gastronomie) in Großbritannien erstellen oder eine entsprechende CO/CO2) Zertifizierung in anderen Ländern haben, werden Sie diese Funktion wahrscheinlich sehr nützlich finden.

Wie funktioniert die Überwachung der Luftqualität?

Im Allgemeinen ist die Immissionsüberwachung einfach die Messung von Schadstoffen in der Atmosphäre, aber im Zusammenhang mit der Gasdetektion bezieht sie sich auf die Analyse des Kohlenmonoxidgehalts in der Luft.

In einigen Fällen wird auch derCO2-Gehalt ebenfalls gemessen. Die Geräte Sprint Pro 4 und Sprint Pro 6 sind beide mit einem direktenCO2 Infrarotsensor ausgestattet und können daher sowohl CO als auchCO2 messen.

Die Überwachung der Umgebungsluft kann überall dort erfolgen, wo CO und/oderCO2 ein Risiko darstellen. Zum Beispiel zur Erkennung von CO-Lecks in der Wohnung (z. B. in einem Heizkessel) oder zur Überwachung desCO2 Niveaus in gewerblichen Gastronomiebetrieben.

Mit dem Sprint Pro wird die Umgebungsluft über einen bestimmten Zeitraum überwacht, der von einigen Minuten bis zu mehreren Tagen reichen kann, wobei das Analysegerät in Intervallen zwischen einer und dreißig Minuten Proben aus der Umgebungsluft nimmt. Am Ende des Tests zeigt das Gerät die aktuellen, die Spitzen- und die Durchschnittswerte des gesamten Tests für CO undCO2 an. Sie können diese direkt in Ihrem Protokoll speichern und/oder als Papierbericht ausdrucken.

Sogar beim Ausdrucken von Berichten bietet Sprint Pro Optionen, so dass Sie so viel oder so wenig von den relevanten Informationen drucken können, wie Sie benötigen. Das kann sehr praktisch sein, wenn Sie gerade buchstäblich Hunderte von Proben über einen Zeitraum von 7 Tagen genommen haben!

Die Überwachung der Umgebungsluft auf CO ist verfügbarfür alle Sprint Pro Modelle

Warum benötige ich eine Funktion zur Überwachung der Luftqualität?

Unabhängig von der Fachzertifizierung ist die Fähigkeit zur Analyse der Umgebungsluft für HLK-Fachleute und Gasingenieure immer nützlicher. Dies gilt insbesondere vor dem Hintergrund der COVID-19-Pandemie, bei der die Vorteile von frischer Luft und guter Raumlüftung hervorgehoben wurden. Übermäßiges CO undCO2 stellen eine Bedrohung für die Gesundheit von Mensch und Umwelt dar, und mit dem wachsenden Bewusstsein dafür und der zunehmenden Bedeutung des Themas Nachhaltigkeit in Gesellschaft, Politik und Gesellschaft wird der Bedarf an deren Quantifizierung und Messung wahrscheinlich steigen.

Sicherheit von Ballongas: Die Gefahren von Helium und Stickstoff 

Ballongas ist ein Gemisch aus Helium und Luft. Ballongas ist bei richtiger Verwendung sicher, aber Sie sollten das Gas niemals absichtlich einatmen, da es ein Erstickungsmittel ist und zu gesundheitlichen Komplikationen führen kann. Wie andere Erstickungsmittel nimmt das Helium im Ballongas einen Teil des Volumens ein, das normalerweise von Luft eingenommen wird, und verhindert so, dass diese Luft zur Aufrechterhaltung von Bränden oder zur Aufrechterhaltung von Körperfunktionen verwendet werden kann.

Es gibt noch weitere Asphyxantien, die in der Industrie eingesetzt werden. So ist der Einsatz von Stickstoff in zahlreichen industriellen Fertigungs- und Transportprozessen nahezu unverzichtbar geworden. Trotz der zahlreichen Verwendungsmöglichkeiten von Stickstoff muss er gemäß den Sicherheitsvorschriften für die Industrie gehandhabt werden. Stickstoff sollte unabhängig vom Umfang des industriellen Prozesses, in dem er verwendet wird, als potenzielles Sicherheitsrisiko betrachtet werden. Kohlendioxid wird häufig als Erstickungsmittel verwendet, insbesondere in Feuerlöschsystemen und einigen Feuerlöschern. Ebenso ist Helium nicht brennbar, ungiftig und reagiert unter normalen Bedingungen nicht mit anderen Elementen. Es ist jedoch wichtig, den richtigen Umgang mit Helium zu kennen, da ein Missverständnis zu Fehleinschätzungen führen kann, die tödlich enden können, da Helium in vielen Alltagssituationen verwendet wird. Wie bei allen Gasen ist die richtige Pflege und Handhabung von Heliumbehältern entscheidend.

Was sind die Gefahren?

Wenn Sie Helium wissentlich oder unwissentlich einatmen, verdrängt es die Luft, die zum Teil aus Sauerstoff. Das bedeutet, dass beim Einatmen Sauerstoff, der normalerweise in der Lunge vorhanden wäre, durch Helium ersetzt wird. Da Sauerstoff für viele Körperfunktionen wie Denken und Bewegung eine Rolle spielt, stellt eine zu starke Verdrängung ein Gesundheitsrisiko dar. In der Regel hat das Einatmen einer kleinen Menge Helium eine stimmverändernde Wirkung, es kann aber auch ein wenig Schwindelgefühl verursachen, und es besteht immer die Möglichkeit anderer Auswirkungen, einschließlich Übelkeit, Benommenheit und/oder eines vorübergehenden Bewusstseinsverlusts - alles Auswirkungen von Sauerstoffmangel.

  • Wie die meisten Erstickungsgase ist Stickstoff wie Helium farblos und geruchlos. Ohne Stickstoffdetektoren ist das Risiko für Industriearbeiter, einer gefährlichen Stickstoffkonzentration ausgesetzt zu sein, deutlich höher. Während Helium aufgrund seiner geringen Dichte oft aus dem Arbeitsbereich aufsteigt, bleibt Stickstoff zurück, breitet sich aus und verteilt sich nicht schnell. Daher sind Systeme, die mit Stickstoff betrieben werden und in denen sich unentdeckte Lecks bilden, ein großes Problem für die Sicherheitsvorschriften. In den Leitlinien für die Gesundheitsprävention am Arbeitsplatz wird versucht, diesem erhöhten Risiko durch zusätzliche Sicherheitsprüfungen der Anlagen zu begegnen. Das Problem sind niedrige Sauerstoffkonzentrationen, die das Personal beeinträchtigen. Zu den anfänglichen Symptomen gehören leichte Kurzatmigkeit und Husten, Schwindel und vielleicht Unruhe, gefolgt von schneller Atmung, Schmerzen in der Brust und Verwirrung, bei längerem Einatmen auch Bluthochdruck, Bronchospasmus und Lungenödem.
  • Helium kann genau die gleichen Symptome verursachen, wenn es in einem Volumen eingeschlossen ist und nicht entweichen kann. Und in jedem Fall führt ein vollständiger Austausch der Luft durch das erstickende Gas zu einem schnellen Zusammenbruch, bei dem eine Person einfach dort zusammenbricht, wo sie steht, was zu einer Vielzahl von Verletzungen führt.

Bewährte Verfahren für die Ballongassicherheit

In Übereinstimmung mit OSHA Richtlinien sind für enge Industrieräume obligatorische Tests vorgeschrieben, wobei die Verantwortung auf alle Arbeitgeber übertragen wird. Die Entnahme von Proben der atmosphärischen Luft in diesen Räumen trägt dazu bei, ihre Eignung zum Atmen zu bestimmen. Zu den durchzuführenden Tests gehören vor allem die Sauerstoffkonzentration, aber auch das Vorhandensein von brennbaren Gasen und Tests auf toxische Dämpfe, um die Ansammlung dieser Gase zu ermitteln.

Unabhängig von der Dauer des Aufenthalts verlangt die OSHA von allen Arbeitgebern, dass sie eine Aufsichtsperson außerhalb eines genehmigungspflichtigen Raums bereitstellen, wenn das Personal darin arbeitet. Diese Person muss die Gasbedingungen im Raum ständig überwachen und die Rettungskräfte rufen, wenn der Arbeiter im geschlossenen Raum nicht mehr reagiert. Es ist wichtig zu beachten, dass die Aufsichtsperson zu keiner Zeit versuchen darf, den gefährlichen Raum zu betreten, um eine Rettung ohne Hilfe durchzuführen.

In eingeschränkten Bereichen kann eine erzwungene Luftzirkulation die Ansammlung von Helium, Stickstoff oder anderen erstickenden Gasen erheblich reduzieren und die Wahrscheinlichkeit einer tödlichen Exposition verringern. Während diese Strategie in Bereichen mit geringem Stickstoffleckagerisiko angewandt werden kann, ist es den Arbeitnehmern untersagt, sich in Umgebungen mit reinem Stickstoffgas zu begeben, ohne geeignete Atemschutzgeräte zu verwenden. In diesen Fällen muss das Personal geeignete Geräte für die künstliche Beatmung verwenden.

Erkennen von Gefahren in der Milchwirtschaft: Auf welche Gase sollten Sie achten? 

Die weltweite Nachfrage nach Milchprodukten nimmt weiter zu, was größtenteils auf das Bevölkerungswachstum, steigende Einkommen und die Urbanisierung zurückzuführen ist. Millionen von Landwirten weltweit halten etwa 270 Millionen Milchkühe, um Milch zu produzieren. In der gesamten Milchwirtschaft gibt es eine Vielzahl von Gasgefahren, die ein Risiko für die in der Milchwirtschaft Tätigen darstellen.

Welchen Gefahren sind die Beschäftigten in der Milchwirtschaft ausgesetzt?

Chemikalien

In der Milchviehwirtschaft werden Chemikalien für eine Vielzahl von Aufgaben eingesetzt, z. B. für die Reinigung, die Anwendung verschiedener Behandlungen wie Impfungen oder Medikamente, Antibiotika, Sterilisation und Besprühen. Wenn diese Chemikalien und gefährlichen Stoffe nicht ordnungsgemäß verwendet oder gelagert werden, kann dies zu ernsthaften Schäden für die Arbeiter oder die Umgebung führen. Diese Chemikalien können nicht nur Krankheiten verursachen, sondern es besteht auch die Gefahr des Todes, wenn eine Person ihnen ausgesetzt ist. Einige Chemikalien können brennbar und explosiv sein, andere sind ätzend und giftig.

Es gibt verschiedene Möglichkeiten, mit diesen chemischen Gefahren umzugehen, doch das Hauptaugenmerk sollte auf der Einführung eines Prozesses und Verfahrens liegen. Dieses Verfahren sollte sicherstellen, dass alle Mitarbeiter im sicheren Umgang mit Chemikalien geschult sind und Aufzeichnungen geführt werden. Im Rahmen des Verfahrens für Chemikalien sollte auch ein Chemikalienverzeichnis zur Nachverfolgung erstellt werden. Diese Art der Bestandsverwaltung ermöglicht dem gesamten Personal den Zugang zu Sicherheitsdatenblättern (SDS) sowie zu Verwendungs- und Standortaufzeichnungen. Neben diesem Verzeichnis sollte auch die Überprüfung des laufenden Betriebs berücksichtigt werden.

  • Wie ist das derzeitige Verfahren?
  • Welche PSA ist erforderlich?
  • Wie werden veraltete Chemikalien entsorgt und gibt es eine Ersatzchemikalie, die ein geringeres Risiko für Ihre Mitarbeiter darstellt?

Beengte Räume

Es gibt zahlreiche Umstände, die es erforderlich machen können, dass ein Arbeitnehmer einen engen Raum betritt, darunter Futtersilos, Milchfässer, Wassertanks und Gruben in der Milchindustrie. Der sicherste Weg, um die Gefahr von engen Räumen zu beseitigen, ist, wie von vielen Branchenverbänden erwähnt, die Verwendung einer sicheren Konstruktion. Dazu gehört auch, dass ein Betreten des geschlossenen Raums nicht mehr erforderlich ist. Auch wenn dies nicht immer realistisch ist und von Zeit zu Zeit Reinigungsroutinen durchgeführt werden müssen oder eine Verstopfung auftreten kann, muss sichergestellt werden, dass die richtigen Verfahren zur Beseitigung der Gefahr vorhanden sind.

Chemische Stoffe können bei der Verwendung in einem geschlossenen Raum die Gefahr des Erstickens erhöhen, da die Gase den Sauerstoff verdrängen. Eine Möglichkeit, dieses Risiko auszuschalten, ist die Reinigung des Behälters von außen mit einem Hochdruckschlauch. Wenn ein Arbeiter den engen Raum betreten muss, sollten Sie sich vergewissern, dass die richtige Beschilderung vorhanden ist, da die Ein- und Ausgänge beschränkt sind. Sie sollten Isolierschalter in Erwägung ziehen und sicherstellen, dass Ihre Mitarbeiter das korrekte Notfall-Rettungsverfahren verstehen, falls etwas passieren sollte.

Gasgefahren

Ammoniak (NH3) findet sich in tierischen Abfällen und Gülle, die auf landwirtschaftlichen Flächen ausgebracht werden. Es handelt sich um ein farbloses Gas mit stechendem Geruch, das durch die Zersetzung von Stickstoffverbindungen in tierischen Abfällen entsteht. Es ist nicht nur schädlich für die menschliche Gesundheit, sondern auch für das Wohlergehen der Tiere, da es bei ihnen Erkrankungen der Atemwege, beim Menschen Augenreizungen, Erblindung, Lungenschäden sowie Nasen- und Rachenschäden und sogar den Tod verursachen kann. Die Belüftung ist eine wichtige Voraussetzung für die Vermeidung von Gesundheitsproblemen, da eine schlechte Belüftung die durch dieses Gas verursachten Schäden noch vergrößert.

Kohlendioxid (CO2) wird auf natürliche Weise in der Atmosphäre erzeugt, obwohl der Gehalt durch landwirtschaftliche Prozesse erhöht wird.CO2 ist farb- und geruchlos und wird von landwirtschaftlichen Geräten, der Pflanzen- und Tierproduktion und anderen landwirtschaftlichen Prozessen emittiert.CO2 kann sich in Bereichen wie Abfalltanks und Silos ansammeln. Dies führt dazu, dass der Luftsauerstoff verdrängt wird und die Erstickungsgefahr für Tiere und Menschen steigt. Versiegelte Silos, Abfall- und Getreidelagerräume sind besonders gefährlich, da sich hierCO2 ansammeln kann und sie ohne externe Luftzufuhr für Menschen ungeeignet sind.

Stickstoffdioxid (NO2) gehört zu einer Gruppe hochreaktiver Gase, die als Stickstoffoxide (NOx) bezeichnet werden. AIm schlimmsten Fall kann es selbst bei kurzzeitiger Einwirkung zum plötzlichen Tod führen. Dieses Gas kann zum Ersticken führen und wird aus Silos infolge bestimmter chemischer Reaktionen von Pflanzenmaterial freigesetzt. Es ist an seinem bleichähnlichen Geruch zu erkennen, und seine Eigenschaften führen zu einer rotbraunen Trübung. Da es sich über bestimmten Oberflächen ansammelt, kann es über Siloschächte in Bereiche mit Viehbestand gelangen und stellt daher eine echte Gefahr für Menschen und Tiere in der Umgebung dar. Es kann auch die Lungenfunktion beeinträchtigen, innere Blutungen verursachen und zu anhaltenden Atemproblemen führen.

Wann sollten Gaswarngeräte eingesetzt werden?

Gasdetektoren bieten überall in Milchviehbetrieben und rund um Güllesilos einen Mehrwert, aber vor allem:

  • Wann und wo die Gülle gemischt wird
  • Beim Abpumpen und Ausbringen der Gülle
  • Auf und um den Traktor beim Mischen oder Ausbringen von Gülle
  • Im Stall bei Wartungsarbeiten an Güllepumpen, Güllekratzern und dergleichen
  • In der Nähe von und um kleine Öffnungen und Risse im Boden, z. B. um Melkroboter herum
  • Tief am Boden in schlecht belüfteten Ecken und Räumen (H2S ist schwerer als Luft und sinkt zu Boden)
  • In Güllesilos
  • In Güllebehältern

Produkte, die helfen können, sich zu schützen

Die Gasdetektion kann sowohl in festen und tragbaren Formen angeboten werden. Die Installation eines ortsfesten Gaswarngeräts kann für einen größeren Raum von Vorteil sein, um einen kontinuierlichen Schutz des Bereichs und des Personals 24 Stunden am Tag zu gewährleisten. Ein tragbarer Detektor kann jedoch besser für die Sicherheit der Arbeiter geeignet sein.

Wenn Sie mehr über die Gefahren in der Landwirtschaft erfahren möchten, besuchen Sie unsere Industrie-Seite für weitere Informationen.