Molecular Property Spectrometer™ Sensoren für brennbare Gase

Die von NevadaNano entwickelten Molecular Property Spectrometer™ (MPS™) Sensoren stellen die nächste Generation von Detektoren für brennbare Gase. MPS™ kann schnell mehr als 15 charakteristische brennbare Gase auf einmal erkennen. Bis vor kurzem musste jeder, der brennbare Gase überwachen wollte, entweder einen herkömmlichen Detektor für brennbare Gase wählen, der einen für ein bestimmtes Gas kalibrierten Pellistor-Sensor enthielt, oder einen Infrarotsensor (IR), dessen Leistung ebenfalls je nach dem gemessenen brennbaren Gas variiert und der daher für jedes Gas kalibriert werden muss. Diese Lösungen sind zwar vorteilhaft, aber nicht immer ideal. So müssen beispielsweise beide Sensortypen regelmäßig kalibriert werden, und die katalytischen Pellistor-Sensoren müssen außerdem häufig überprüft werden, um sicherzustellen, dass sie nicht durch Verunreinigungen (so genannte "Sensorvergiftungen") oder durch raue Bedingungen beschädigt wurden. In manchen Umgebungen müssen die Sensoren häufig ausgetauscht werden, was sowohl in Bezug auf die Kosten als auch auf die Ausfallzeiten oder die Produktverfügbarkeit kostspielig ist. Die IR-Technologie kann Wasserstoff nicht erkennen, da dieser keine IR-Signatur hat, und sowohl IR- als auch Pellistor-Detektoren erkennen manchmal zufällig andere (d. h. nicht kalibrierte) Gase, was zu ungenauen Messwerten führt, die falsche Alarme auslösen oder das Personal beunruhigen können.

Aufbauend auf mehr als 50 Jahren Erfahrung im Gasbereich leistet Crowcon Pionierarbeit in der fortschrittlichen MPS™-Sensortechnologie die über 15 verschiedene brennbare Gase in einem Gerät erkennt und genau identifiziert. Jetzt erhältlich in Crowcons Flaggschiff Xgard Bright stationären Detektoren und tragbaren Detektoren Gasman und T4x.

Vorteile der Molecular Property Spectrometer™ Sensoren für brennbare Gase

Der MPS™-Sensor bietet wichtige Funktionen, die dem Bediener und damit auch den Mitarbeitern in der Praxis greifbare Vorteile bringen. Dazu gehören:

Keine Kalibrierung

Bei der Implementierung eines Systems, das einen fest installierten Detektor enthält, ist es üblich, die Wartung nach einem vom Hersteller empfohlenen Zeitplan durchzuführen. Dies ist mit laufenden Kosten verbunden und kann zu einer Unterbrechung der Produktion oder des Prozesses führen, um den Detektor oder mehrere Detektoren zu warten oder sogar Zugang zu ihnen zu erhalten. Es kann auch ein Risiko für das Personal bestehen, wenn die Melder in besonders gefährlichen Umgebungen montiert sind. Die Interaktion mit einem MPS-Sensor ist weniger streng, da es keine unentdeckten Fehlermodi gibt, sofern Luft vorhanden ist. Es wäre falsch zu sagen, dass es keine Kalibrierungsanforderungen gibt. Eine Werkskalibrierung, gefolgt von einer Gasprüfung bei der Inbetriebnahme, ist ausreichend, da während der gesamten Lebensdauer des Sensors alle 2 Sekunden eine interne automatische Kalibrierung durchgeführt wird. Was wirklich gemeint ist, ist - keine Kundenkalibrierung.

Multispezies-Gas - 'True LEL'™

In vielen Branchen und Anwendungen werden mehrere Gase in derselben Umgebung verwendet oder entstehen als Nebenprodukt. Dies kann eine Herausforderung für herkömmliche Sensortechnologien darstellen, die nur ein einziges Gas, für das sie kalibriert wurden, in der richtigen Konzentration erkennen können, was zu ungenauen Messwerten und sogar Fehlalarmen führen kann, die den Prozess oder die Produktion unterbrechen können, wenn ein anderer brennbarer Gastyp vorhanden ist. Das fehlende oder übermäßige Ansprechen, das in Umgebungen mit mehreren Gasen häufig auftritt, kann frustrierend und kontraproduktiv sein und die Sicherheit der besten Benutzerpraktiken gefährden. Der MPS™-Sensor kann mehrere Gase auf einmal erkennen und den Gastyp sofort identifizieren. Darüber hinaus verfügt der MPS™ Sensor über eine integrierte Umgebungskompensation und benötigt keinen extern angewendeten Korrekturfaktor. Ungenaue Messwerte und Fehlalarme gehören damit der Vergangenheit an.

Keine Sensorvergiftung

In bestimmten Umgebungen besteht für herkömmliche Sensortypen die Gefahr der Vergiftung. Extremer Druck, hohe Temperaturen und hohe Luftfeuchtigkeit können die Sensoren beschädigen, während Umweltgifte und Verunreinigungen die Sensoren "vergiften" können, was zu erheblichen Leistungseinbußen führt. In Umgebungen, in denen Gifte oder Inhibitoren auftreten können, ist eine regelmäßige und häufige Prüfung die einzige Möglichkeit, um sicherzustellen, dass die Leistung nicht beeinträchtigt wird. Sensorausfälle aufgrund von Vergiftungen können sehr kostspielig sein. Die Technologie des MPS™-Sensors wird durch Verunreinigungen in der Umgebung nicht beeinträchtigt. Für Prozesse, die mit Verunreinigungen belastet sind, steht nun eine Lösung zur Verfügung, die zuverlässig arbeitet und den Bediener durch ein ausfallsicheres Design warnt, so dass Mitarbeiter und Anlagen in gefährlichen Umgebungen beruhigt sein können. Außerdem wird der MPS-Sensor nicht durch erhöhte Konzentrationen brennbarer Gase beeinträchtigt, die beispielsweise bei herkömmlichen katalytischen Sensortypen zu Rissen führen können. Der MPS-Sensor arbeitet weiter.

Wasserstoff (H2)

Die Verwendung von Wasserstoff in industriellen Prozessen nimmt zu, da man eine saubere Alternative zur Verwendung von Erdgas anstrebt. Die Erkennung von Wasserstoff ist derzeit auf Pellistor-, Metalloxid-Halbleiter-, elektrochemische und weniger genaue Wärmeleitfähigkeitssensoren beschränkt, da Infrarotsensoren Wasserstoff nicht erkennen können. Angesichts der oben genannten Probleme mit Vergiftungen oder Fehlalarmen kann die derzeitige Lösung dazu führen, dass der Betreiber zusätzlich zu den Fehlalarmen auch noch häufige Stoßprüfungen und Wartungsarbeiten durchführen muss. Der MPS™-Sensor bietet eine weitaus bessere Lösung für die Erkennung von Wasserstoff und beseitigt die mit der herkömmlichen Sensortechnologie verbundenen Probleme. Ein langlebiger, relativ schnell ansprechender Wasserstoffsensor, der während der gesamten Lebensdauer des Sensors keine Kalibrierung erfordert, ohne das Risiko von Vergiftungen oder Fehlalarmen, kann zu erheblichen Einsparungen bei den Gesamtbetriebskosten führen und reduziert die Interaktion mit dem Gerät, was für die Betreiber, die die MPS™-Technologie nutzen, ein beruhigendes Gefühl und ein geringeres Risiko bedeutet. All dies ist dank der MPS™ Technologie möglich, die den größten Durchbruch in der Gasdetektion seit mehreren Jahrzehnten darstellt.

Wie funktioniert der Molecular Property Spectrometer™ Sensor für brennbare Gase?

Ein mikroelektromechanischer Wandler (MEMS) - bestehend aus einer inerten, mikrometergroßen Membran mit eingebettetem Heizelement und Thermometer - misst Veränderungen der thermischen Eigenschaften der Luft und der Gase in seiner Nähe. Mehrere Messungen, ähnlich einem thermischen "Spektrum", sowie Umgebungsdaten werden verarbeitet, um die Art und Konzentration der vorhandenen brennbaren Gase, einschließlich Gasgemische, zu klassifizieren. Dies wird als TrueLEL.

  1. Das Gas entweicht schnell durch das Maschensieb des Sensors und gelangt in die Sensorkammer und damit in das MEMS-Sensormodul.
  2. Der Joule-Heizer heizt die Heizplatte schnell auf.
  3. Die Umgebungsbedingungen (Temperatur, Druck und Luftfeuchtigkeit) werden in Echtzeit vom integrierten Umgebungssensor gemessen.
  4. Die zur Erwärmung der Probe erforderliche Energie wird mit einem Widerstandsthermometer genau gemessen.
  5. Der für die Gasart und die Umgebungsbedingungen korrigierte Gaspegel wird berechnet und an das Gaswarngerät ausgegeben.

MPS in unseren Produkten

Xgard Bright

In vielen Branchen und Anwendungen werden mehrere Gase in derselben Umgebung verwendet oder entstehen als Nebenprodukt. Dies kann eine Herausforderung für die herkömmliche Sensortechnologie sein, die nur ein einziges Gas, für das sie kalibriert wurde, in der richtigen Konzentration erkennen kann, was zu ungenauen Messwerten führen kann. 

Xgard Bright mit MPS™-Sensortechnologie bietet einen'TrueLEL™'Messwert für alle brennbaren Gase in jeder Umgebung mit mehreren Gasspezies ohneKalibrierung erforderlichoderplanmäßige Wartungüber seineLebenszyklus von mehr als 5 JahrenDadurch werden Betriebsunterbrechungen reduziert und die Betriebszeit erhöht. Dies wiederum reduziert die Interaktion mit dem Detektor und führt zuniedrigeren Gesamtbetriebskostenüber den gesamten Lebenszyklus des Sensors sowie ein geringeres Risiko für das Personal und die Produktionsleistung bei der Durchführung regelmäßiger Wartungsarbeiten.Xgard Bright MPS™ istmaßgeschneidert für die WasserstoffdetektionMit dem MPS™-Sensor wird nur ein Gerät benötigt, das Platz spart, ohne dass die Sicherheit beeinträchtigt wird.

Gasman

Unsere MPS™-Sensortechnologie wurde für die heutigen Multigas-Umgebungen entwickelt, ist resistent gegen Verunreinigungen und verhindert Sensorvergiftungen. Geben Sie Ihren Teams die Gewissheit, dass ein speziell entwickeltes Gerät in jeder Umgebung eingesetzt werden kann. Die MPS-Technologie in unseren tragbaren Gaswarngeräten erkennt automatisch Wasserstoff und gängige Kohlenwasserstoffe in einem einzigen Sensor. Unser zuverlässiges und verlässliches Gasman mit branchenführender Sensortechnologie, die Ihre Anwendungen erfordern.

Gasman MPS™ bietet einen'TrueLEL™'Messwert für alle brennbaren Gase in jeder Umgebung mit mehreren Gasarten, ohneKalibrierung erforderlichoderplanmäßige Wartungüber seineLebenszyklus von mehr als 5 JahrenDadurch werden Betriebsunterbrechungen reduziert und die Betriebszeit erhöht.Alsgiftresistentund mitverdoppelter Batterielebensdauerist es wahrscheinlicher, dass die Bediener nie ohne ein Gerät sind.Gasman MPS™ ist ATEXZone 0 zugelassenDies ermöglicht es dem Bediener, einen Bereich zu betreten, in dem eine explosive Gasatmosphäre ständig oder für längere Zeit vorhanden ist, ohne befürchten zu müssen, dass sein Gasman die Umgebung entzündet.

T4x

T4xDa die Industrie ständig nach Verbesserungen bei der Sicherheit, geringeren Umweltauswirkungen und niedrigeren Betriebskosten verlangt, sind unsere zuverlässigen und verlässlichen tragbaren T4x Gasmonitor erfüllt diese Anforderungen mit seinen branchenführenden Sensortechnologien. Er ist speziell für die Anforderungen Ihrer Anwendungen konzipiert. 

T4x hilft den Betriebsteams, sich auf wertschöpfende Aufgaben zu konzentrieren, indemVerringerung der Anzahl von Sensoraustauschvorgängenum 75 % reduziert und die Zuverlässigkeit der Sensoren erhöht.

Durch die Gewährleistung der Konformität an allen Standorten hilft T4x den Verantwortlichen für Gesundheit und Sicherheit durchSie müssen nicht mehr sicherstellen, dass jedes Gerät kalibriert ist.für das jeweilige brennbare Gas kalibriert werden muss, da es mehr als 15 Gase auf einmal erkennt.Als giftresistentund mitverdoppelter Batterielebensdauerist es wahrscheinlicher, dass Bediener nie ohne ein Gerät sind.T4x reduziert die5-Jahres-Gesamtbetriebskostenum über 25% undspart 12 g Blei Blei pro DetektorDas macht das Recycling am Ende der Lebensdauer viel einfacher und ist besser für die Umwelt.

Mehr über Crowcon finden Sie unter https://www.crowcon.com oder für mehr über MPS besuchen Sie https://www.crowcon.com/mpsinfixed/

Gas-Pro TK: Doppelte Ablesung von %LEL und %Vol

Gas-Pro Das tragbare Messgerät TK (umbenannt von Tank-Pro) mit zwei Messbereichen misst die Konzentration brennbarer Gase in inerten Tanks. Erhältlich für Methan, Butan und Propan, Gas-Pro TK verwendet einen dualen IR-Sensor für brennbare Gase - die beste Technologie für diese spezielle Umgebung. Gas-Pro TK dual IR verfügt über eine automatische Bereichsumschaltung zwischen %vol. und %LEL-Messung, um den Betrieb im richtigen Messbereich zu gewährleisten. Diese Technologie wird durch hohe Kohlenwasserstoffkonzentrationen nicht beschädigt und benötigt keine Sauerstoffkonzentrationen, wie sie für katalytische Beads/Pellistoren in solchen Umgebungen einschränkend sind.

Welches Problem soll mit Gas-Pro TK speziell gelöst werden?

Wenn Sie zu Inspektions- oder Wartungszwecken in einen Kraftstofftank einsteigen wollen, kann es sein, dass er zunächst mit brennbarem Gas gefüllt ist. Man kann nicht einfach Luft hineinpumpen, um das entflammbare Gas zu verdrängen, denn an einem bestimmten Punkt des Übergangs von nur vorhandenem Kraftstoff zu nur vorhandener Luft würde sich ein explosives Gemisch aus Kraftstoff und Luft bilden. Stattdessen müssen Sie ein inertes Gas, in der Regel Stickstoff, einpumpen, um den Brennstoff zu verdrängen, ohne Sauerstoff einzubringen. Der Übergang von 100 % brennbarem Gas und 0 % Volumen Stickstoff zu 0 % Volumen brennbares Gas und 100 % Stickstoff ermöglicht einen sicheren Übergang von 100 % Stickstoff zu Luft. Dieser zweistufige Prozess ermöglicht einen sicheren Übergang von Brennstoff zu Luft, ohne eine Explosion zu riskieren.

Während dieses Prozesses sind weder Luft noch Sauerstoff vorhanden, so dass katalytische Perlen-/Pellistorsensoren nicht richtig funktionieren und außerdem durch die hohen Konzentrationen an brennbarem Gas vergiftet werden. Der von Gas-Pro TK verwendete Zweibereichs-Infrarotsensor benötigt weder Luft noch Sauerstoff, um zu funktionieren, und ist daher ideal für die Überwachung des gesamten Prozesses, von der Volumen- bis zur %LEL-Konzentration, während er gleichzeitig den Sauerstoffgehalt in derselben Umgebung überwacht.

Was ist LEL?

Die Untere Explosionsgrenze (UEG) ist die niedrigste Konzentration eines Gases oder Dampfes, die in Luft brennt. Die Messwerte sind ein Prozentsatz davon, wobei 100 % UEG die Mindestmenge an Gas ist, die zur Verbrennung benötigt wird. Die UEG variiert von Gas zu Gas, liegt aber bei den meisten brennbaren Gasen unter 5 Volumenprozent. Das bedeutet, dass eine relativ geringe Konzentration von Gas oder Dampf ausreicht, um ein hohes Explosionsrisiko zu erzeugen.
Damit eine Explosion stattfinden kann, müssen drei Dinge vorhanden sein: brennbares Gas (der Brennstoff), Luft und eine Zündquelle (wie in der Abbildung dargestellt). Außerdem muss der Brennstoff in der richtigen Konzentration vorhanden sein, zwischen der unteren Explosionsgrenze (UEG), unterhalb derer das Gas-Luft-Gemisch zu mager ist, um zu brennen, und der oberen Explosionsgrenze (OEG), oberhalb derer das Gemisch zu fett ist und nicht mehr genügend Sauerstoff für eine Flamme vorhanden ist.

Bei den Sicherheitsverfahren geht es im Allgemeinen darum, brennbare Gase zu erkennen, bevor sie eine explosive Konzentration erreichen. Daher sind Gaswarnsysteme und tragbare Überwachungsgeräte so konzipiert, dass sie einen Alarm auslösen, bevor Gase oder Dämpfe die untere Explosionsgrenze erreichen. Die spezifischen Schwellenwerte variieren je nach Anwendung, aber der erste Alarm wird in der Regel bei 20 % UEG und ein weiterer Alarm bei 40 % UEG ausgelöst. Die UEG-Werte sind in den folgenden Normen definiert: ISO10156 (auf die auch in der inzwischen überholten EN50054 verwiesen wird) und IEC60079.

Was ist %Volumen?

Die Volumenprozent-Skala wird verwendet, um die Konzentration einer Gasart in einem Gasgemisch als Prozentsatz des vorhandenen Gasvolumens anzugeben. Es handelt sich dabei lediglich um eine andere Skala, bei der z. B. die untere Explosionsgrenze für Methan mit 4,4 % des Volumens anstelle von 100 % UEG oder 44000 ppm angezeigt wird, die alle gleichwertig sind. Bei einer Methankonzentration von 5 % oder mehr in der Luft würde es sich um eine äußerst gefährliche Situation handeln, in der jeder Funke oder jede heiße Oberfläche eine Explosion verursachen könnte, wenn Luft (insbesondere Sauerstoff) vorhanden ist. Eine Anzeige von 100 % des Volumens bedeutet, dass kein anderes Gas im Gasgemisch vorhanden ist.

Gas-Pro TK

Unser Gas-Pro TKwurde für den Einsatz in speziellen inerten Tankumgebungen entwickelt, um den Gehalt an brennbaren Gasen und Sauerstoff zu überwachen, da Standardgasdetektoren nicht funktionieren. Im 'Tank-Check-Modus' ist unser Gas-Pro TKGerät eignet sich für spezielle Anwendungen zur Überwachung von inertisierten Tankräumen während der Spülung oder Gasfreimachung sowie als normales persönliches Gasüberwachungsgerät im Normalbetrieb. Es ermöglicht dem Benutzer die Überwachung des Gasgemisches in Tanks mit brennbarem Gas während des Transports auf See (da es für die Schifffahrt zugelassen ist) oder an Land, z. B. in Öltankern und Öllagerterminals. Mit 340 g istGas-Pro TK bis zu sechsmal leichter als andere Überwachungsgeräte für diese Anwendung; ein Segen, wenn man es den ganzen Tag bei sich tragen muss.

Im Tank-Check-Modus überwacht das CrowconGas-Pro TK die Konzentrationen von brennbarem Gas und Sauerstoff und stellt sicher, dass sich kein unsicheres Gemisch entwickelt. Das Gerät schaltet automatisch zwischen %vol und %LEL um, wenn die Gaskonzentration dies erfordert, ohne dass ein manuelles Eingreifen erforderlich ist, und benachrichtigt den Benutzer, sobald dies geschieht. Gas-Pro TK zeigt die Sauerstoffkonzentration im Tank in Echtzeit auf dem Display an, so dass der Benutzer den Sauerstoffgehalt verfolgen kann, entweder wenn der Sauerstoffgehalt niedrig genug ist, um Kraftstoff sicher zu laden und zu lagern, oder hoch genug, um den Tank während der Wartung sicher zu betreten.

DieGas-Pro TKist kalibriert für Methan, Propan oder Butan erhältlich.Mit der Schutzart IP65 und IP67 erfüllt das Gas-Pro TK die Anforderungen der meisten industriellen Umgebungen. Mit optionalen MED-Zertifizierungen ist es ein wertvolles Werkzeug für die Tanküberwachung an Bord von Schiffen. Mit dem optionalen High-H₂S-Sensor können Benutzer mögliche Risiken analysieren, wenn Gase während der Spülung entweichen. Mit dieser Option kann der Benutzer den Bereich von 0-100 oder 0-1000 ppm überwachen.

Bitte beachten Sie: Handelt es sich bei dem Kraftstoff im Tank um Wasserstoff oder Ammoniak, ist eine andere Gasmesstechnik erforderlich - und Sie sollten sich an Crowcon wenden.

Weitere Informationen über Gas-Pro TK finden Sie auf unserer Produktseite oder nehmen Sie Kontakt mit unserem Team.

Überblick über die Industrie: Batterieleistung

Batterien sind ein wirksames Mittel zur Verringerung von Stromausfällen, da sie auch überschüssige Energie aus dem herkömmlichen Netz speichern können. Die in den Batterien gespeicherte Energie kann immer dann freigesetzt werden, wenn eine große Menge an Strom benötigt wird, z. B. bei einem Stromausfall in einem Rechenzentrum, um Datenverluste zu verhindern, oder als Reservestromversorgung für ein Krankenhaus oder eine militärische Anwendung, um die Kontinuität lebenswichtiger Dienste zu gewährleisten. Großbatterien können auch eingesetzt werden, um kurzfristige Bedarfslücken im Netz zu schließen. Diese Batteriezusammensetzungen können auch in kleineren Größen für den Antrieb von Elektroautos verwendet werden und können weiter verkleinert werden, um kommerzielle Produkte wie Telefone, Tablets, Laptops, Lautsprecher und - natürlich - persönliche Gasdetektoren zu betreiben.

Die Anwendungen umfassen Batteriespeicherung, Transport und Schweißen und können in vier Hauptkategorien unterteilt werden: Chemisch - z. B. Ammoniak, Wasserstoff, Methanol und synthetische Kraftstoffe, elektrochemisch - Bleisäure, Lithium-Ionen, Na-Cd, Na-Ionen, elektrisch - Superkondensatoren, supraleitende Magnetspeicher und mechanisch - Druckluft, gepumptes Wasser, Schwerkraft.

Gasgefahren

Brände von Li-Ionen-Batterien

Ein großes Problem ergibt sich, wenn statische Elektrizität oder ein fehlerhaftes Ladegerät die Batterieschutzschaltung beschädigt. Diese Beschädigung kann dazu führen, dass die Halbleiterschalter ohne Wissen des Benutzers in die EIN-Stellung geschaltet werden. Eine Batterie mit einer defekten Schutzschaltung kann zwar normal funktionieren, bietet aber möglicherweise keinen Schutz vor Kurzschlüssen. Ein Gasdetektionssystem kann feststellen, ob ein Fehler vorliegt, und kann in einer Rückkopplungsschleife verwendet werden, um die Stromversorgung abzuschalten, den Raum abzudichten und ein Inertgas (z. B. Stickstoff) in den Bereich freizusetzen, um einen Brand oder eine Explosion zu verhindern.

Austritt von giftigen Gasen vor dem thermischen Durchgehen

Das thermische Durchgehen von Lithium-Metall- und Lithium-Ionen-Zellen hat zu mehreren Bränden geführt. Untersuchungen haben gezeigt, dass die Brände durch entflammbare Gase ausgelöst werden, die während des thermischen Durchgehens aus den Batterien austreten. Der Elektrolyt in einer Lithium-Ionen-Batterie ist brennbar und enthält in der Regel Lithiumhexafluorphosphat (LiPF6) oder andere fluorhaltige Li-Salze. Im Falle einer Überhitzung verdampft der Elektrolyt und wird schließlich aus den Batteriezellen ausgestoßen. Forscher haben festgestellt, dass handelsübliche Lithium-Ionen-Batterien bei einem Brand beträchtliche Mengen an Fluorwasserstoff (HF) freisetzen können und dass die Emissionsraten je nach Batterietyp und Ladezustand (SOC) variieren. Fluorwasserstoff kann die Haut durchdringen und tiefes Hautgewebe und sogar Knochen und Blut angreifen. Selbst bei minimaler Exposition können Schmerzen und Symptome erst nach mehreren Stunden auftreten, wenn die Schäden bereits extrem sind.

Wasserstoff und Explosionsgefahr

Da Wasserstoff-Brennstoffzellen als Alternative zu fossilen Brennstoffen immer beliebter werden, ist es wichtig, sich der Gefahren von Wasserstoff bewusst zu sein. Wie alle Brennstoffe ist auch Wasserstoff leicht entzündlich, und wenn er ausläuft, besteht echte Brandgefahr. Herkömmliche Blei-Säure-Batterien produzieren Wasserstoff, wenn sie geladen werden. Diese Batterien werden in der Regel gemeinsam aufgeladen, manchmal im selben Raum oder Bereich, was zu einer Explosionsgefahr führen kann, insbesondere wenn der Raum nicht richtig belüftet ist. Bei den meisten Wasserstoffanwendungen können aus Sicherheitsgründen keine Geruchsstoffe verwendet werden, da sich Wasserstoff schneller verflüchtigt als Geruchsstoffe. Für Wasserstofftankstellen gelten Sicherheitsnormen, die eine angemessene Schutzausrüstung für alle Mitarbeiter vorschreiben. Dazu gehören Personendetektoren, die in der Lage sind, sowohl den Wasserstoffgehalt in ppm als auch den %LEL-Wert zu erkennen. Die Standardalarmstufen sind auf 20 % und 40 % UEG, d. h. 4 % des Volumens, eingestellt, aber bei einigen Anwendungen kann ein benutzerdefinierter PPM-Bereich und eine benutzerdefinierte Alarmstufe erforderlich sein, um Wasserstoffansammlungen schnell zu erkennen.

Wenn Sie mehr über die Gefahren von Gas in der Batteriewirtschaft erfahren möchten, besuchen Sie unsereIndustrie-Seitefür weitere Informationen.

Was ist so wichtig am Messbereich meines Monitors?

Was ist ein Monitor-Messbereich?

Die Gasüberwachung wird in der Regel im PPM-Bereich (parts per million), in Volumenprozenten oder in Prozenten der UEG (untere Explosionsgrenze) gemessen, so dass Sicherheitsbeauftragte sicherstellen können, dass ihre Mitarbeiter keinen potenziell schädlichen Mengen an Gasen oder Chemikalien ausgesetzt sind. Die Gasüberwachung kann aus der Ferne erfolgen, um sicherzustellen, dass der Bereich sauber ist, bevor ein Arbeiter den Bereich betritt, sowie durch ein fest installiertes Gerät oder ein am Körper getragenes tragbares Gerät, um mögliche Lecks oder gefährliche Bereiche während der Arbeitsschicht zu erkennen.

Warum sind Gaswarngeräte unerlässlich, und in welchem Bereich liegen Mängel oder Anreicherungen?

Es gibt drei Hauptgründe, warum Monitore benötigt werden: Es ist wichtig, Sauerstoffmangel oder -anreicherung zu erkennen, da zu wenig Sauerstoff die Funktionsfähigkeit des menschlichen Körpers beeinträchtigen kann, was dazu führt, dass der Arbeitnehmer das Bewusstsein verliert. Wenn der Sauerstoffgehalt nicht wieder auf ein normales Niveau gebracht werden kann, besteht für den Arbeitnehmer die Gefahr des Todes. Eine Atmosphäre gilt als mangelhaft, wenn die O2-Konzentration weniger als 19,5 % beträgt. Folglich ist eine Umgebung mit zu viel Sauerstoff ebenso gefährlich, da sie ein stark erhöhtes Brand- und Explosionsrisiko birgt; dies ist der Fall, wenn die O2-Konzentration über 23,5 % liegt.

Überwachungsgeräte sind erforderlich, wenn toxische Gase vorhanden sind, die dem menschlichen Körper erheblichen Schaden zufügen können. Schwefelwasserstoff (H2S) ist ein klassisches Beispiel dafür. H2S wird von Bakterien freigesetzt, wenn sie organisches Material abbauen., Da dieses Gas schwerer als Luft ist, kann es die Luft verdrängen, was zu einer möglichen Schädigung der anwesenden Personen führen kann, und ist außerdem ein Breitbandgift.

Darüber hinaus sind Gaswarngeräte in der Lage, brennbare Gase zu erkennen. Gefahren, die durch den Einsatz eines Gaswarngerätes vermieden werden können, bestehen nicht nur durch das Einatmen, sondern auch durch die Verbrennung. Gaswarngeräte mit einem UEG-Bereichssensor erkennens und warnen vor brennbaren Gasen.

Warum sind sie wichtig und wie funktionieren sie?

Der Messbereich ist der gesamte Bereich, den das Gerät unter normalen Bedingungen messen kann. Der Begriff "normal" bedeutet, dass es keine Überdruckgrenzen (OPL) gibt und der maximale Arbeitsdruck (MWP) eingehalten wird. Diese Werte sind in der Regel auf der Produktwebsite oder im Datenblatt zu finden. Der Messbereich kann auch berechnet werden, indem die Differenz zwischen der oberen Bereichsgrenze (URL) und der unteren Bereichsgrenze (LRL) des Geräts ermittelt wird. Bei der Bestimmung der Reichweite des Detektors geht es nicht um die Ermittlung der Quadratmeterzahl oder eines festen Radius um den Detektor, sondern um die Ermittlung der Nachgiebigkeit oder Streuung des überwachten Bereichs. Dieser Prozess findet statt, wenn die Sensoren auf die Gase reagieren, die durch die Membranen des Detektors dringen. Daher sind die Geräte in der Lage, Gase zu erkennen, die in unmittelbarem Kontakt mit dem Monitor stehen. Dies verdeutlicht, wie wichtig es ist, den Messbereich von Gaswarngeräten zu kennen, und unterstreicht ihre Bedeutung für die Sicherheit der in diesen Umgebungen tätigen Arbeitnehmer.

Gibt es irgendwelche Produkte, die verfügbar sind?

Crowcon bietet eine Reihe von tragbaren Überwachungsgeräten an; das Gas-Pro tragbare Multigasdetektor bietet die Detektion von bis zu 5 Gasen in einer kompakten und robusten Lösung. Es verfügt über ein leicht ablesbares, oben angebrachtes Display, das die Bedienung erleichtert und optimal für die Gasdetektion in engen Räumen geeignet ist. Eine optionale interne Pumpe, die mit der Durchflussplatte aktiviert wird, vereinfacht das Testen vor dem Betreten des Raums und ermöglicht es Gas-Pro , entweder im Pump- oder im Diffusionsmodus getragen zu werden.

Das T4 tragbare 4-in-1-Gaswarngerät bietet wirksamen Schutz vor 4 häufig auftretenden Gasgefahren: Kohlenmonoxid, Schwefelwasserstoff, brennbare Gase und Sauerstoffmangel. Das Multigaswarngerät T4 verfügt jetzt über eine verbesserte Erkennung von Pentan, Hexan und anderen langkettigen Kohlenwasserstoffen. Das Gerät bietet Ihnen Konformität, Robustheit und niedrige Betriebskosten in einer einfach zu bedienenden Lösung. T4 enthält eine breite Palette leistungsstarker Funktionen, die den täglichen Gebrauch einfacher und sicherer machen.

Das Gasman tragbare Einzelgaswarngerät ist kompakt und leicht, aber dennoch robust und für die härtesten Industrieumgebungen gerüstet. Es lässt sich mit einer einzigen Taste bedienen und verfügt über eine große, leicht ablesbare Anzeige der Gaskonzentration sowie über akustische, optische und vibrierende Alarme.

Crowcon bietet auch ein flexibles Sortiment an ortsfesten Gasdetektoren an, die brennbare, toxische und sauerstoffhaltige Gase erkennen, ihr Vorhandensein melden und Alarme oder zugehörige Geräte aktivieren können. Wir verwenden eine Vielzahl von Mess-, Schutz- und Kommunikationstechnologien, und unsere ortsfesten Gasdetektoren haben sich in vielen schwierigen Umgebungen bewährt, z. B. bei der Öl- und Gasexploration, der Wasseraufbereitung, in Chemieanlagen und Stahlwerken. Diese ortsfesten Gasdetektoren werden in vielen Anwendungen eingesetzt, in denen Zuverlässigkeit, Verlässlichkeit und das Fehlen von Fehlalarmen entscheidend für eine effiziente und effektive Gasdetektion sind. Dazu gehören die Automobil- und Luft- und Raumfahrtindustrie, wissenschaftliche und Forschungseinrichtungen sowie medizinische, zivile und kommerzielle Anlagen mit hoher Auslastung.

Wie Wasserstoff der Gas- und Stahlindustrie hilft, grün zu werden

Grüner Wasserstoff, der sowohl aus kohlenstoffarmen als auch aus erneuerbaren Energiequellen gewonnen wird, kann eine entscheidende Rolle dabei spielen, ein Unternehmen - oder ein Land - der Kohlenstoffneutralität näher zu bringen. Zu den üblichen Anwendungen, in denen grüner Wasserstoff eingesetzt werden kann, gehören:

  • Brennstoffzellen für Elektrofahrzeuge
  • Da der Wasserstoff in Pipeline-Gasmischungen
  • In Raffinerien für "grünen Stahl", die Wasserstoff statt Kohle als Wärmequelle verwenden
  • In Containerschiffen, die mit flüssigem, aus Wasserstoff hergestelltem Ammoniak betrieben werden
  • In wasserstoffbetriebenen Stromturbinen, die in Zeiten der Spitzennachfrage Strom erzeugen können

Dieser Beitrag befasst sich mit der Verwendung von Wasserstoff in Pipeline-Gasmischanlagen und grünen Stahlraffinerien.

Einspeisung von Wasserstoff in Pipelines

Regierungen und Versorgungsunternehmen auf der ganzen Welt erkunden die Möglichkeiten der Einspeisung von Wasserstoff in ihre Erdgasnetze, um den Verbrauch fossiler Brennstoffe zu senken und die Emissionen zu begrenzen. Tatsächlich ist die Einspeisung von Wasserstoff in Pipelines jetzt Teil der nationalen Wasserstoffstrategien der EU, Australiens und des Vereinigten Königreichs. Die Wasserstoffstrategie der EU sieht die Einführung von Wasserstoff in die nationalen Gasnetze bis 2050 vor.

Aus Umweltsicht hat die Beimischung von Wasserstoff zu Erdgas das Potenzial, die Treibhausgasemissionen erheblich zu verringern, aber dazu muss der Wasserstoff aus kohlenstoffarmen Energiequellen und erneuerbaren Energieträgern hergestellt werden. Dazu muss der Wasserstoff jedoch aus kohlenstoffarmen Energiequellen und erneuerbaren Energieträgern erzeugt werden, z. B. aus Elektrolyse, Bioabfall oder fossilen Brennstoffen mit Kohlenstoffabscheidung und -speicherung (CCS).

In ähnlicher Weise können Länder, die eine grüne Wasserstoffwirtschaft anstreben, auf die Einspeisung in das Gasnetz zurückgreifen, um Investitionen zu fördern und neue Märkte zu erschließen. Um seinen Plan für erneuerbaren Wasserstoff in Gang zu bringen, plant Westaustralien, mindestens 10 % erneuerbaren Wasserstoff in seine Gasleitungen und -netze einzuspeisen und die Ziele des Staates im Rahmen seiner Strategie für erneuerbaren Wasserstoff von 2040 auf 2030 vorzuziehen.

Auf volumetrischer Basis hat Wasserstoff eine viel geringere Energiedichte als Erdgas, so dass die Endverbraucher eines Gasgemischs ein höheres Gasvolumen benötigen, um denselben Heizwert zu erreichen wie die Nutzer von reinem Erdgas. Einfach ausgedrückt: Eine 5 %ige Beimischung von Wasserstoff führt nicht direkt zu einer 5 %igen Verringerung des Verbrauchs fossiler Brennstoffe.

Besteht bei der Beimischung von Wasserstoff zu unserer Gasversorgung ein Sicherheitsrisiko? Lassen Sie uns das Risiko untersuchen:

  1. Wasserstoff hat eine niedrigere UEG als Erdgas, so dass bei Gasgemischen ein höheres Risiko für die Bildung einer entflammbaren Atmosphäre besteht.
  2. Wasserstoff hat eine geringere Zündenergie als Erdgas und einen breiten Entflammbarkeitsbereich (4 % bis 74 % in Luft), so dass eine höhere Explosionsgefahr besteht.
  3. Wasserstoffmoleküle sind klein und bewegen sich schnell, so dass sich ein Leck in einem Gasgemisch schneller und weiter ausbreitet, als dies bei Erdgas der Fall wäre.

Im Vereinigten Königreich entfallen die Hälfte des Energieverbrauchs und ein Drittel der Kohlenstoffemissionen auf die Beheizung von Haushalten und Industrie. Seit 2019 läuft das erste Projekt des Vereinigten Königreichs zur Einspeisung von Wasserstoff in das Gasnetz, wobei Versuche an der Universität Keele stattfinden. Das Projekt HyDeploy zielt darauf ab, bis zu 20 % Wasserstoff einzuspeisen und mit der bestehenden Gasversorgung zu mischen, um Wohnhäuser und Campusgelände zu beheizen, ohne dass die gasbetriebenen Geräte oder Rohrleitungen verändert werden müssen. Bei diesem Projekt werden Gasdetektoren und Abgasanalysatoren von Crowcon eingesetzt, um die Auswirkungen der Wasserstoffbeimischung im Hinblick auf die Erkennung von Gaslecks zu ermitteln. Der Rauchgasanalysator Sprint Pro von Crowcon wird zur Bewertung der Kesseleffizienz eingesetzt.

Crowcon's Sprint Pro ist ein professionelles Abgasanalysegerät mit Funktionen, die auf die Bedürfnisse von HLK-Fachleuten zugeschnitten sind, einem robusten Design, einer großen Auswahl an Zubehör und 5 Jahren Garantie. Lesen Siehier mehr über das Sprint Pro .

Wasserstoff in der Stahlindustrie

Die traditionelle Eisen- und Stahlproduktion gilt als einer der größten Verursacher von Umweltschadstoffen, einschließlich Treibhausgasen und Feinstaub. Die Stahlerzeugung ist in hohem Maße auf fossile Brennstoffe angewiesen, wobei 78 % der Emissionen auf Kohleprodukte entfallen. Es ist daher nicht verwunderlich, dass die Stahlindustrie rund 10 % aller weltweiten prozess- und energiebedingten CO2-Emissionen verursacht.

Wasserstoff könnte eine Alternative für Stahlunternehmen sein, die ihre Kohlenstoffemissionen drastisch reduzieren wollen. Mehrere Stahlhersteller in Deutschland und Korea reduzieren ihre Emissionen bereits durch ein wasserstoffreduziertes Stahlherstellungsverfahren, bei dem Wasserstoff und nicht Kohle zur Stahlherstellung verwendet wird. Traditionell wird bei der Stahlherstellung eine beträchtliche Menge an Wasserstoffgas als Nebenprodukt erzeugt, das so genannte Koksgas. Indem dieses Koksgas durch ein Verfahren namens Kohlenstoffabscheidung und -speicherung (CCS) geleitet wird, können Stahlwerke erhebliche Mengen an blauem Wasserstoff erzeugen, der dann zur Temperaturregelung und zur Verhinderung der Oxidation während der Stahlproduktion verwendet werden kann.

Darüber hinaus stellen Stahlhersteller Stahlprodukte speziell für Wasserstoff her. Als Teil seiner neuen Vision, ein grünes Wasserstoffunternehmen zu werden, hat der koreanische Stahlhersteller POSCO stark in die Entwicklung von Stahlprodukten für die Produktion, den Transport, die Speicherung und die Nutzung von Wasserstoff investiert.

Da in Stahlwerken viele brennbare und giftige Gase vorhanden sind, ist es wichtig, die Querempfindlichkeit von Gasen zu verstehen, denn eine falsche Gasanzeige kann tödlich sein. Ein Hochofen zum Beispiel erzeugt eine große Menge heißer, staubiger, giftiger und brennbarer Gase, die aus Kohlenmonoxid (CO) und etwas Wasserstoff bestehen. Hersteller von Gaswarngeräten, die über Erfahrungen in diesen Umgebungen verfügen, sind mit dem Problem der Beeinträchtigung elektrochemischer CO-Sensoren durch Wasserstoff gut vertraut und bieten daher standardmäßig wasserstoffgefilterte Sensoren für Stahlwerke an.

Weitere Informationen über Querempfindlichkeit finden Sie in unserem Blog. Crowcon-Gasdetektoren werden in vielen Stahlwerken auf der ganzen Welt eingesetzt. Mehr über Crowcon-Lösungen in der Stahlindustrie erfahren Sie hier.

Referenzen:

  1. DieEinspeisung von Wasserstoff in Erdgasnetze könnte für eine stabile Nachfrage sorgen, die der Sektor für seine Entwicklung benötigt (S&P Global Platts, 19. Mai 2020)
  2. Westaustralien investiert 22 Millionen Dollar in Wasserstoff-Aktionsplan (Power Engineering, 14 Sep 2020)
  3. Grüner Wasserstoff in Erdgaspipelines: Dekarbonisierungslösung oder Wunschtraum? (Green Tech Media, 20. November 2020)
  4. Könnte Wasserstoff die Erdgasinfrastruktur huckepack nehmen? (Netzwerk Online, 17. März 2016)
  5. Stahl, Wasserstoff und erneuerbare Energien: Strange Bedfellows? Vielleicht nicht... (Forbes.com, 15. Mai 2020)
  6. POSCO will Wasserstoffproduktion bis 2050 auf 5 Mio. Tonnen ausbauenTonnen bis 2050 (Business Korea, 14 Dec 202 0)http://https://www.crowcon.com/wp-content/uploads/2020/07/shutterstock_607164341-scaled.jpg

Pellistor-Sensoren - wie sie funktionieren

Pellistor-Gassensoren (oder katalytische Gassensoren mit Kügelchen) sind seit den 60er Jahren die wichtigste Technologie zum Nachweis brennbarer Gase. Obwohl wir eine Reihe von Fragen im Zusammenhang mit der Erkennung von brennbaren Gasen und flüchtigen organischen Verbindungen erörtert haben, haben wir uns noch nicht mit der Funktionsweise von Pellistoren befasst. Um dies nachzuholen, fügen wir ein Erklärungsvideo bei, das Sie hoffentlich herunterladen und als Teil Ihrer Schulungen verwenden werden

Ein Pellistor basiert auf einer Wheatstone-Brückenschaltung und besteht aus zwei "Kügelchen", die beide Platinspulen umschließen. Eines der Kügelchen (das "aktive" Kügelchen) wird mit einem Katalysator behandelt, der die Temperatur senkt, bei der sich das Gas um es herum entzündet. Diese Perle wird durch die Verbrennung heiß, was zu einem Temperaturunterschied zwischen dieser aktiven und der anderen "Referenz"-Perle führt. Dadurch entsteht ein Widerstandsunterschied, der gemessen wird; die Menge des vorhandenen Gases ist direkt proportional dazu, so dass die Gaskonzentration als Prozentsatz der unteren Explosionsgrenze (%LEL*) genau bestimmt werden kann.

Die heiße Perle und die elektrischen Schaltkreise befinden sich in einem flammensicheren Sensorgehäuse hinter der Sintermetall-Flammensperre (oder Sinter), durch die das Gas strömt. Innerhalb dieses Sensorgehäuses, das eine Innentemperatur von 500 °C aufweist, kann eine kontrollierte Verbrennung stattfinden, die von der äußeren Umgebung isoliert ist. Bei hohen Gaskonzentrationen kann der Verbrennungsprozess unvollständig sein, was zu einer Rußschicht auf dem aktiven Kügelchen führt. Dies führt zu einer teilweisen oder vollständigen Beeinträchtigung der Leistung. In Umgebungen, in denen Gaskonzentrationen von über 70 % UEG vorkommen können, ist Vorsicht geboten.

Weitere Informationen über die Gassensortechnik für brennbare Gase finden Sie in unserem Artikel über den Vergleich von Pellistoren und Infrarot-Gassensorik: Beeinträchtigen Silikonimplantate Ihre Gasdetektion?

*Untere Explosionsgrenze - Erfahren Sie mehr

Klicken Sie auf die obere rechte Ecke des Videos, um auf eine Datei zuzugreifen, die Sie herunterladen können.