Eine batteriebetriebene Zukunft: Der Aufstieg der Lithium-Ionen-Batterien und was das für die Nachhaltigkeit bedeutet

Während wir uns gemeinsam auf eine grünere Zukunft zubewegen, in der die Umstellung auf nachhaltige Energielösungen zu einem zentralen globalen gesellschaftspolitischen Thema geworden ist, sind Lithium-Ionen-Batterien als mögliche Lösung in den Mittelpunkt gerückt. Dank ihrer Fähigkeit, große Energiemengen in einer vergleichsweise leichten und kompakten Form zu speichern, haben sie alles revolutioniert, von tragbaren Geräten bis hin zu Elektrofahrzeugen. Aber inwieweit ist eine batteriebetriebene Zukunft wirklich die perfekte Energielösung, nach der wir gesucht haben?

Erleichterung umweltfreundlicherer Energiemöglichkeiten

Die zunehmende Verbreitung von Lithium-Ionen-Batterien bringt eine Fülle von Vorteilen mit sich, da wir uns von der Abhängigkeit von fossilen Brennstoffen lösen, Sie tragen zu einer erheblichen Verringerung der Treibhausgasemissionen und der Luftverschmutzung bei. Dies gilt insbesondere für die Elektrifizierung des Verkehrs durch Elektrofahrzeuge (EVs). Durch den Betrieb von Elektrofahrzeugen mit sauberem Strom, der in Batterien gespeichert wird, kann der Verkehrssektor seine Abhängigkeit von fossilen Brennstoffen verringern und den Ausstoß von Treibhausgasen und Schadstoffen reduzieren. Da der Sektor der Elektrofahrzeuge immer wettbewerbsfähiger wird und viele Regierungen Anreize für die Verbreitung von Elektrofahrzeugen schaffen, werden die Fortschritte in der Batterietechnologie die Reichweite, die Ladegeschwindigkeit und die Erschwinglichkeit von Elektrofahrzeugen weiter verbessern, was ihre Verbreitung beschleunigt und die Abhängigkeit von Fahrzeugen mit Verbrennungsmotoren weiter verringert.

Lithium-Ionen-Batterien spielen auch eine immer wichtigere Rolle bei der Stabilisierung der Stromnetze, da sie die Integration intermittierender erneuerbarer Energiequellen wie Sonnen- und Windenergie in das Stromnetz ermöglichen. Die Sonne scheint nicht immer, und es ist nicht immer windig - aber indem sie überschüssige Energie, die in Zeiten hoher Produktion erzeugt wird, speichern und bei Bedarf entladen, ermöglichen Batterien eine zuverlässige Versorgung mit sauberer Energie in einer zuverlässigen, stabilen Weise, die bisher nur schwer zu erreichen war. Durch die Optimierung des Energiemanagements und die Verringerung der mit herkömmlichen Energiesystemen verbundenen Verluste tragen Batterien zu einer effizienteren und nachhaltigeren Energienutzung in verschiedenen Sektoren bei.

Wie umweltfreundlich sind Lithium-Ionen-Batterien?

Die zunehmende Verbreitung von Batterien hat jedoch auch eine Reihe von Umweltauswirkungen mit sich gebracht. Die Gewinnung und Verarbeitung von Seltenerdmetallen wie Lithium und Kobalt erfolgt oft unter ausbeuterischen Bedingungen in Bergbauregionen, und der Gewinnungsprozess kann auch erhebliche Umweltauswirkungen haben, einschließlich der Zerstörung von Lebensräumen und der Wasserverschmutzung. Darüber hinaus wirft die Entsorgung von Lithium-Ionen-Batterien am Ende ihres Lebenszyklus auch Bedenken hinsichtlich des Recyclings und der Möglichkeit des Austretens gefährlicher Abfälle in die Umwelt auf.

Es gibt jedoch noch einen weiteren Bereich, der bei Lithium-Ionen-Batterien bedenklich ist und mit ihrer zunehmenden Verwendung zu einem Anstieg gefährlicher Zwischenfälle geführt hat: ihre flüchtige und brennbare Natur. Jeder, der das thermische Durchgehen von Lithium-Ionen-Batterien gesehen hat, kann das Risiko, das mit ihrer zunehmenden Verwendung verbunden ist, nicht übersehen. Selbst der Ausfall kleinerer Lithium-Ionen-Geräte der Unterhaltungselektronik kann zu tödlichen und verheerenden Explosionen und Bränden führen, so dass die Lagerung und Verwendung von Batterien in größerem Umfang robuster Sicherheitsmaßnahmen bedarf.

Risikomanagement bei Lithium-Ionen-Batterien

Glücklicherweise gibt es Möglichkeiten, das mit Lithium-Ionen-Batterien verbundene Risiko zu mindern. Üblicherweise werden Batteriemanagementsysteme (BMS) eingesetzt, um den Ladezustand, die Spannung, den Strom und die Temperatur der Batterie zu überwachen, was dazu beitragen kann, Probleme mit den Batterien zu erkennen. Es gibt jedoch eine effizientere und zuverlässigere Methode zur Erkennung eines thermischen Durchgehens: die Gasdetektion.

Vor dem thermischen Durchgehen durchlaufen die Batterien einen Prozess des "Ausgasens", bei dem erhöhte Mengen giftiger VOC freigesetzt werden. Durch die Überwachung der Gase in der Umgebung der Batterien können Anzeichen von Stress oder Schäden erkannt werden, bevor der thermische Durchbruch einsetzt.

Derzeit konzentrieren sich viele Versicherer auf das Brandrisiko und fordern Batteriespeichersysteme (Battery Energy Storage Systems, BESS) dazu auf, Prozesse einzurichten, die sicherstellen, dass Brände so schnell und effektiv wie möglich kontrolliert und bekämpft werden können. Da Lithium-Ionen-Batterien jedoch sehr temperaturempfindlich sind, ist es wahrscheinlich, dass, sobald ein Feuer in einer Batterie ausgebrochen ist, auch alle anderen Batterien in der Nähe unwiderruflich beschädigt werden - oder selbst einen thermischen Durchbruch erleiden. Die Lösung ist einfach: Erkennen Sie die Probleme so früh wie möglich durch Gasdetektion, und sorgen Sie dafür, dass Brände gar nicht erst entstehen können, um eine Katastrophe zu verhindern.

Sicherheit ist unbezahlbar

Die Kosten für die Investition in eine hochentwickelte Gasdetektion sind im Gegensatz zu den Kosten für einen Brand vernachlässigbar - sie betragen etwa 0,01 % der Kosten eines neuen Projekts - und machen sie zu einer offensichtlichen Wahl für diejenigen, die das Risiko bei der Herstellung, Lagerung und Verwendung von Lithium-Ionen-Batterien mindern wollen. Die Schäden am Eigentum, die Kosten für die menschliche Gesundheit (und sogar für das Leben) sowie die Schäden für die natürliche Umwelt durch potenzielle Kontaminationsprobleme nach einem Batterieausfall sind allesamt umfangreich und erheblich. In Verbindung mit der Bedrohung der Aufrechterhaltung des Geschäftsbetriebs und der erforderlichen Schadensbegrenzung ist die Vermeidung komplizierter und teurer Sanierungsmaßnahmen von größter Bedeutung. Das ist etwas, was das Crowcon-Team besser als jeder andere versteht.

Crowcon arbeitet eng mit Ihnen zusammen, um zu gewährleisten, dass Ihr Unternehmen und Ihre Mitarbeiter durch modernste Gaserkennungstechnologie wie den MPS™-Sensor so sicher wie möglich sind. Unsere Molecular Property Spectrometer™ (MPS™)-Technologie erkennt mehr als 15 gefährliche Gase in einem Gerät und ermöglicht so einen höheren Standard bei der Erkennung brennbarer Gase und ein größeres Vertrauen in die Sicherheit Ihrer Batterien.

Klicken Sie hier für sprechen Sie mit uns über Schutzing Ihr Unternehmen

Auch wenn die Ausschöpfung des vollen Potenzials der Lithium-Ionen-Technologie noch die Bewältigung der ökologischen und sozialen Herausforderungen erfordert, die mit ihrer Herstellung, Wartung und Entsorgung verbunden sind, stellt die zunehmende Verbreitung von Lithium-Ionen-Batterien einen wichtigen Schritt in Richtung einer nachhaltigeren und saubereren Energiezukunft dar. Innovationen bei der Wartung und Effizienzsteigerung von Technologien für erneuerbare Energien, wie z. B. wiederaufladbare Batterien, sind ein entscheidender Schritt, um die Gesellschaft von der Abhängigkeit von fossilen Brennstoffen zu lösen. Lithium-Ionen-Batterien stehen an der Spitze der Nachhaltigkeitsrevolution - von der Stromversorgung unserer Alltagsgeräte bis hin zur Umstellung auf elektrische Verkehrsmittel und erneuerbare Energien - und das Crowcon-Team steht bereit, um eine grünere und sicherere Zukunft für künftige Generationen zu schaffen.

Weitere Informationen zur Batteriesicherheit finden Sie in unserem eBook "Der Batterie-Boom: Der explosive Anstieg des thermischen Durchgehens und wie Sie es verhindern können".

Holen Sie sich Ihr KOSTENLOSES Exemplar des eBook 'The Battery Boom'.

Möchten Sie mehr darüber erfahren, wie Crowcon mit erstklassigen Gaswarnsystemen zur Zukunftssicherung Ihres Unternehmens beitragen kann? Klicken Sie hier um ein unverbindliches Gespräch mit einem Mitglied unseres Teams zu führen.

Molecular Property Spectrometer™ Sensoren für brennbare Gase

Die von NevadaNano entwickelten Molecular Property Spectrometer™ (MPS™) Sensoren stellen die nächste Generation von Detektoren für brennbare Gase. MPS™ kann schnell mehr als 15 charakteristische brennbare Gase auf einmal erkennen. Bis vor kurzem musste jeder, der brennbare Gase überwachen wollte, entweder einen herkömmlichen Detektor für brennbare Gase wählen, der einen für ein bestimmtes Gas kalibrierten Pellistor-Sensor enthielt, oder einen Infrarotsensor (IR), dessen Leistung ebenfalls je nach dem gemessenen brennbaren Gas variiert und der daher für jedes Gas kalibriert werden muss. Diese Lösungen sind zwar vorteilhaft, aber nicht immer ideal. So müssen beispielsweise beide Sensortypen regelmäßig kalibriert werden, und die katalytischen Pellistor-Sensoren müssen außerdem häufig überprüft werden, um sicherzustellen, dass sie nicht durch Verunreinigungen (so genannte "Sensorvergiftungen") oder durch raue Bedingungen beschädigt wurden. In manchen Umgebungen müssen die Sensoren häufig ausgetauscht werden, was sowohl in Bezug auf die Kosten als auch auf die Ausfallzeiten oder die Produktverfügbarkeit kostspielig ist. Die IR-Technologie kann Wasserstoff nicht erkennen, da dieser keine IR-Signatur hat, und sowohl IR- als auch Pellistor-Detektoren erkennen manchmal zufällig andere (d. h. nicht kalibrierte) Gase, was zu ungenauen Messwerten führt, die falsche Alarme auslösen oder das Personal beunruhigen können.

Aufbauend auf mehr als 50 Jahren Erfahrung im Gasbereich leistet Crowcon Pionierarbeit in der fortschrittlichen MPS™-Sensortechnologie die über 15 verschiedene brennbare Gase in einem Gerät erkennt und genau identifiziert. Jetzt erhältlich in Crowcons Flaggschiff Xgard Bright stationären Detektoren und tragbaren Detektoren Gasman und T4x.

Vorteile der Molecular Property Spectrometer™ Sensoren für brennbare Gase

Der MPS™-Sensor bietet wichtige Funktionen, die dem Bediener und damit auch den Mitarbeitern in der Praxis greifbare Vorteile bringen. Dazu gehören:

Keine Kalibrierung

Bei der Implementierung eines Systems, das einen fest installierten Detektor enthält, ist es üblich, die Wartung nach einem vom Hersteller empfohlenen Zeitplan durchzuführen. Dies ist mit laufenden Kosten verbunden und kann zu einer Unterbrechung der Produktion oder des Prozesses führen, um den Detektor oder mehrere Detektoren zu warten oder sogar Zugang zu ihnen zu erhalten. Es kann auch ein Risiko für das Personal bestehen, wenn die Melder in besonders gefährlichen Umgebungen montiert sind. Die Interaktion mit einem MPS-Sensor ist weniger streng, da es keine unentdeckten Fehlermodi gibt, sofern Luft vorhanden ist. Es wäre falsch zu sagen, dass es keine Kalibrierungsanforderungen gibt. Eine Werkskalibrierung, gefolgt von einer Gasprüfung bei der Inbetriebnahme, ist ausreichend, da während der gesamten Lebensdauer des Sensors alle 2 Sekunden eine interne automatische Kalibrierung durchgeführt wird. Was wirklich gemeint ist, ist - keine Kundenkalibrierung.

Multispezies-Gas - 'True LEL'™

In vielen Branchen und Anwendungen werden mehrere Gase in derselben Umgebung verwendet oder entstehen als Nebenprodukt. Dies kann eine Herausforderung für herkömmliche Sensortechnologien darstellen, die nur ein einziges Gas, für das sie kalibriert wurden, in der richtigen Konzentration erkennen können, was zu ungenauen Messwerten und sogar Fehlalarmen führen kann, die den Prozess oder die Produktion unterbrechen können, wenn ein anderer brennbarer Gastyp vorhanden ist. Das fehlende oder übermäßige Ansprechen, das in Umgebungen mit mehreren Gasen häufig auftritt, kann frustrierend und kontraproduktiv sein und die Sicherheit der besten Benutzerpraktiken gefährden. Der MPS™-Sensor kann mehrere Gase auf einmal erkennen und den Gastyp sofort identifizieren. Darüber hinaus verfügt der MPS™ Sensor über eine integrierte Umgebungskompensation und benötigt keinen extern angewendeten Korrekturfaktor. Ungenaue Messwerte und Fehlalarme gehören damit der Vergangenheit an.

Keine Sensorvergiftung

In bestimmten Umgebungen besteht für herkömmliche Sensortypen die Gefahr der Vergiftung. Extremer Druck, hohe Temperaturen und hohe Luftfeuchtigkeit können die Sensoren beschädigen, während Umweltgifte und Verunreinigungen die Sensoren "vergiften" können, was zu erheblichen Leistungseinbußen führt. In Umgebungen, in denen Gifte oder Inhibitoren auftreten können, ist eine regelmäßige und häufige Prüfung die einzige Möglichkeit, um sicherzustellen, dass die Leistung nicht beeinträchtigt wird. Sensorausfälle aufgrund von Vergiftungen können sehr kostspielig sein. Die Technologie des MPS™-Sensors wird durch Verunreinigungen in der Umgebung nicht beeinträchtigt. Für Prozesse, die mit Verunreinigungen belastet sind, steht nun eine Lösung zur Verfügung, die zuverlässig arbeitet und den Bediener durch ein ausfallsicheres Design warnt, so dass Mitarbeiter und Anlagen in gefährlichen Umgebungen beruhigt sein können. Außerdem wird der MPS-Sensor nicht durch erhöhte Konzentrationen brennbarer Gase beeinträchtigt, die beispielsweise bei herkömmlichen katalytischen Sensortypen zu Rissen führen können. Der MPS-Sensor arbeitet weiter.

Wasserstoff (H2)

Die Verwendung von Wasserstoff in industriellen Prozessen nimmt zu, da man eine saubere Alternative zur Verwendung von Erdgas anstrebt. Die Erkennung von Wasserstoff ist derzeit auf Pellistor-, Metalloxid-Halbleiter-, elektrochemische und weniger genaue Wärmeleitfähigkeitssensoren beschränkt, da Infrarotsensoren Wasserstoff nicht erkennen können. Angesichts der oben genannten Probleme mit Vergiftungen oder Fehlalarmen kann die derzeitige Lösung dazu führen, dass der Betreiber zusätzlich zu den Fehlalarmen auch noch häufige Stoßprüfungen und Wartungsarbeiten durchführen muss. Der MPS™-Sensor bietet eine weitaus bessere Lösung für die Erkennung von Wasserstoff und beseitigt die mit der herkömmlichen Sensortechnologie verbundenen Probleme. Ein langlebiger, relativ schnell ansprechender Wasserstoffsensor, der während der gesamten Lebensdauer des Sensors keine Kalibrierung erfordert, ohne das Risiko von Vergiftungen oder Fehlalarmen, kann zu erheblichen Einsparungen bei den Gesamtbetriebskosten führen und reduziert die Interaktion mit dem Gerät, was für die Betreiber, die die MPS™-Technologie nutzen, ein beruhigendes Gefühl und ein geringeres Risiko bedeutet. All dies ist dank der MPS™ Technologie möglich, die den größten Durchbruch in der Gasdetektion seit mehreren Jahrzehnten darstellt.

Wie funktioniert der Molecular Property Spectrometer™ Sensor für brennbare Gase?

Ein mikroelektromechanischer Wandler (MEMS) - bestehend aus einer inerten, mikrometergroßen Membran mit eingebettetem Heizelement und Thermometer - misst Veränderungen der thermischen Eigenschaften der Luft und der Gase in seiner Nähe. Mehrere Messungen, ähnlich einem thermischen "Spektrum", sowie Umgebungsdaten werden verarbeitet, um die Art und Konzentration der vorhandenen brennbaren Gase, einschließlich Gasgemische, zu klassifizieren. Dies wird als TrueLEL.

  1. Das Gas entweicht schnell durch das Maschensieb des Sensors und gelangt in die Sensorkammer und damit in das MEMS-Sensormodul.
  2. Der Joule-Heizer heizt die Heizplatte schnell auf.
  3. Die Umgebungsbedingungen (Temperatur, Druck und Luftfeuchtigkeit) werden in Echtzeit vom integrierten Umgebungssensor gemessen.
  4. Die zur Erwärmung der Probe erforderliche Energie wird mit einem Widerstandsthermometer genau gemessen.
  5. Der für die Gasart und die Umgebungsbedingungen korrigierte Gaspegel wird berechnet und an das Gaswarngerät ausgegeben.

MPS in unseren Produkten

Xgard Bright

In vielen Branchen und Anwendungen werden mehrere Gase in derselben Umgebung verwendet oder entstehen als Nebenprodukt. Dies kann eine Herausforderung für die herkömmliche Sensortechnologie sein, die nur ein einziges Gas, für das sie kalibriert wurde, in der richtigen Konzentration erkennen kann, was zu ungenauen Messwerten führen kann. 

Xgard Bright mit MPS™-Sensortechnologie bietet einen'TrueLEL™'Messwert für alle brennbaren Gase in jeder Umgebung mit mehreren Gasspezies ohneKalibrierung erforderlichoderplanmäßige Wartungüber seineLebenszyklus von mehr als 5 JahrenDadurch werden Betriebsunterbrechungen reduziert und die Betriebszeit erhöht. Dies wiederum reduziert die Interaktion mit dem Detektor und führt zuniedrigeren Gesamtbetriebskostenüber den gesamten Lebenszyklus des Sensors sowie ein geringeres Risiko für das Personal und die Produktionsleistung bei der Durchführung regelmäßiger Wartungsarbeiten.Xgard Bright MPS™ istmaßgeschneidert für die WasserstoffdetektionMit dem MPS™-Sensor wird nur ein Gerät benötigt, das Platz spart, ohne dass die Sicherheit beeinträchtigt wird.

Gasman

Unsere MPS™-Sensortechnologie wurde für die heutigen Multigas-Umgebungen entwickelt, ist resistent gegen Verunreinigungen und verhindert Sensorvergiftungen. Geben Sie Ihren Teams die Gewissheit, dass ein speziell entwickeltes Gerät in jeder Umgebung eingesetzt werden kann. Die MPS-Technologie in unseren tragbaren Gaswarngeräten erkennt automatisch Wasserstoff und gängige Kohlenwasserstoffe in einem einzigen Sensor. Unser zuverlässiges und verlässliches Gasman mit branchenführender Sensortechnologie, die Ihre Anwendungen erfordern.

Gasman MPS™ bietet einen'TrueLEL™'Messwert für alle brennbaren Gase in jeder Umgebung mit mehreren Gasarten, ohneKalibrierung erforderlichoderplanmäßige Wartungüber seineLebenszyklus von mehr als 5 JahrenDadurch werden Betriebsunterbrechungen reduziert und die Betriebszeit erhöht.Alsgiftresistentund mitverdoppelter Batterielebensdauerist es wahrscheinlicher, dass die Bediener nie ohne ein Gerät sind.Gasman MPS™ ist ATEXZone 0 zugelassenDies ermöglicht es dem Bediener, einen Bereich zu betreten, in dem eine explosive Gasatmosphäre ständig oder für längere Zeit vorhanden ist, ohne befürchten zu müssen, dass sein Gasman die Umgebung entzündet.

T4x

T4xDa die Industrie ständig nach Verbesserungen bei der Sicherheit, geringeren Umweltauswirkungen und niedrigeren Betriebskosten verlangt, sind unsere zuverlässigen und verlässlichen tragbaren T4x Gasmonitor erfüllt diese Anforderungen mit seinen branchenführenden Sensortechnologien. Er ist speziell für die Anforderungen Ihrer Anwendungen konzipiert. 

T4x hilft den Betriebsteams, sich auf wertschöpfende Aufgaben zu konzentrieren, indemVerringerung der Anzahl von Sensoraustauschvorgängenum 75 % reduziert und die Zuverlässigkeit der Sensoren erhöht.

Durch die Gewährleistung der Konformität an allen Standorten hilft T4x den Verantwortlichen für Gesundheit und Sicherheit durchSie müssen nicht mehr sicherstellen, dass jedes Gerät kalibriert ist.für das jeweilige brennbare Gas kalibriert werden muss, da es mehr als 15 Gase auf einmal erkennt.Als giftresistentund mitverdoppelter Batterielebensdauerist es wahrscheinlicher, dass Bediener nie ohne ein Gerät sind.T4x reduziert die5-Jahres-Gesamtbetriebskostenum über 25% undspart 12 g Blei Blei pro DetektorDas macht das Recycling am Ende der Lebensdauer viel einfacher und ist besser für die Umwelt.

Mehr über Crowcon finden Sie unter https://www.crowcon.com oder für mehr über MPS besuchen Sie https://www.crowcon.com/mpsinfixed/

Eine Einführung in die Öl- und Gasindustrie 

Die Öl- und Gasindustrie ist eine der größten Industrien der Welt und leistet einen bedeutenden Beitrag zur Weltwirtschaft. Dieser riesige Sektor wird häufig in drei Hauptbereiche unterteilt: Upstream, Midstream und Downstream. Jeder Sektor birgt seine eigenen, einzigartigen Gasgefahren.

Upstream

Der vorgelagerte Sektor der Öl- und Gasindustrie, der manchmal auch als Exploration und Produktion (oder E&P) bezeichnet wird, befasst sich mit der Suche nach Standorten für die Öl- und Gasförderung und der anschließenden Bohrung, Förderung und Produktion von Erdöl und Erdgas. Die Öl- und Gasförderung ist eine äußerst kapitalintensive Branche, die den Einsatz teurer Maschinen und hochqualifizierter Arbeitskräfte erfordert. Der vorgelagerte Sektor ist sehr breit gefächert und umfasst sowohl Onshore- als auch Offshore-Bohrungen.

Die größte Gasgefahr in der vorgelagerten Öl- und Gasindustrie ist Schwefelwasserstoff (H2S), ein farbloses Gas, das durch seinen charakteristischen Geruch nach faulen Eiern bekannt ist.H2Sist ein hochgiftiges, entflammbares Gas, das gesundheitsschädliche Auswirkungen haben kann, die bei hohen Konzentrationen zu Bewusstlosigkeit und sogar zum Tod führen können.

Die Lösung von Crowcon für die Erkennung von Schwefelwasserstoff kommt in Form des XgardIQeinem intelligenten Gasdetektor, der die Sicherheit erhöht, indem er die Zeit, die das Bedienpersonal in gefährlichen Bereichen verbringen muss, minimiert. XgardIQ ist erhältlich mit Hochtemperatur-H2S-Sensorerhältlich, der speziell für die rauen Umgebungen des Nahen Ostens entwickelt wurde.

Midstream

Der Midstream-Sektor der Öl- und Gasindustrie umfasst die Lagerung, den Transport und die Verarbeitung von Rohöl und Erdgas. Der Transport von Erdöl und Erdgas erfolgt sowohl auf dem Land- als auch auf dem Seeweg, wobei große Mengen in Tankern und Seeschiffen befördert werden. An Land werden Tanker und Pipelines als Transportmittel eingesetzt. Zu den Herausforderungen im Midstream-Sektor gehören unter anderem die Aufrechterhaltung der Integrität von Lager- und Transportbehältern und der Schutz von Arbeitnehmern, die an Reinigungs-, Spül- und Abfüllarbeiten beteiligt sind.

Die Überwachung von Lagertanks ist unerlässlich, um die Sicherheit von Arbeitnehmern und Maschinen zu gewährleisten.

Nachgelagert

Der nachgelagerte Sektor umfasst die Raffination und Verarbeitung von Erdgas und Erdöl sowie den Vertrieb der Endprodukte. Dies ist die Phase des Prozesses, in der diese Rohstoffe in Produkte umgewandelt werden, die für eine Vielzahl von Zwecken wie das Betanken von Fahrzeugen und das Heizen von Häusern verwendet werden.

Der Raffinationsprozess für Rohöl wird im Allgemeinen in drei grundlegende Schritte unterteilt: Trennung, Umwandlung und Aufbereitung. Bei der Erdgasaufbereitung werden die verschiedenen Kohlenwasserstoffe und Flüssigkeiten getrennt, um Gas in "Pipelinequalität" zu erzeugen.

Zu den für den nachgelagerten Sektor typischen Gasgefahren gehören Schwefelwasserstoff, Schwefeldioxid, Wasserstoff und eine breite Palette toxischer Gase. Crowcon's Xgard und Xgard Bright fest installierte Detektoren bieten beide eine breite Palette von Sensoroptionen, um alle in dieser Branche vorkommenden Gasgefahren abzudecken. Xgard Bright ist auch mit der nächsten Generation MPS™-Sensorfür die Erkennung von über 15 brennbaren Gasen in einem Detektor. Außerdem sind sowohl Einzel- als auch Multigas-Personenmonitore erhältlich, um die Sicherheit der Mitarbeiter in diesen potenziell gefährlichen Umgebungen zu gewährleisten. Dazu gehören die Gas-Pro und T4xmit Gas-Pro , die 5 Gase in einer kompakten und robusten Lösung unterstützen.

Eine kurze Geschichte der Gasdetektion 

Die Entwicklung der Gasüberwachung hat sich im Laufe der Jahre stark verändert. Neue, innovative Ideen von Kanarienvögeln bis hin zu tragbaren Überwachungsgeräten bieten den Arbeitern eine kontinuierliche, präzise Gasüberwachung.

Die industrielle Revolution war der Katalysator für die Entwicklung der Gasdetektion, da sie die Verwendung von vielversprechenden Brennstoffen wie Kohle ermöglichte. Da Kohle entweder im Bergbau oder unter Tage abgebaut werden kann, waren Hilfsmittel wie Helme und Flammenlampen der einzige Schutz vor den Gefahren einer Methanexposition unter Tage, die noch nicht entdeckt worden waren. Methangas ist farb- und geruchlos, so dass seine Anwesenheit schwer zu erkennen ist, bis ein auffälliges Muster von Gesundheitsproblemen entdeckt wird. Die Risiken der Gasexposition führten dazu, dass man mit Nachweismethoden experimentierte, um die Sicherheit der Arbeiter auf Jahre hinaus zu gewährleisten.

Der Bedarf an Gasdetektion

Als sich die Gasbelastung abzeichnete, wurde den Bergleuten klar, dass sie wissen mussten, ob es in der Mine, in der sie arbeiteten, eine Methangasquelle gab. Anfang des 19. Jahrhunderts wurde der erste Gasdetektor erfunden, und viele Bergleute trugen Flammenleuchten an ihren Helmen, um während der Arbeit sehen zu können, so dass die Fähigkeit, das extrem brennbare Methangas aufzuspüren, von größter Bedeutung war. Die Arbeiter trugen eine dicke, nasse Decke über dem Körper und hatten einen langen Docht bei sich, dessen Ende in Flammen stand. Beim Betreten der Minen bewegte der Arbeiter die Flamme an den Wänden entlang und suchte nach Gaseinschlüssen. Wurde eine Gasblase gefunden, entzündete sie sich und wurde der Besatzung gemeldet, während die Person, die sie aufspürte, durch die Decke geschützt war. Mit der Zeit wurden fortschrittlichere Methoden zum Aufspüren von Gas entwickelt.

Die Einführung der Kanarienvögel

Die Gasdetektion wurde von Menschen auf Kanarienvögel verlagert, da diese laut zwitschern und ein ähnliches Nervensystem zur Steuerung der Atmung haben. Die Kanarienvögel wurden in bestimmten Bereichen des Bergwerks platziert, von wo aus die Arbeiter nach den Kanarienvögeln sahen, um sie zu versorgen und festzustellen, ob ihre Gesundheit beeinträchtigt war. Während der Arbeitsschichten hörten die Bergleute auf das Zwitschern der Kanarienvögel. Wenn ein Kanarienvogel anfing, seinen Käfig zu schütteln, war dies ein deutliches Anzeichen dafür, dass er einer Gasblase ausgesetzt war, die seine Gesundheit beeinträchtigt hatte. Die Bergleute evakuierten dann das Bergwerk und stellten fest, dass es unsicher war, es zu betreten. In einigen Fällen, in denen der Kanarienvogel ganz aufhörte zu zwitschern, wussten die Bergleute, dass sie das Bergwerk schneller verlassen mussten, bevor die Gasbelastung ihre Gesundheit beeinträchtigen konnte.

Das Flammenlicht

Die Flammenlampe war die nächste Entwicklung für die Gasdetektion im Bergwerk, da man sich um die Sicherheit der Tiere sorgte. Während die Flamme den Bergleuten Licht spendete, befand sie sich in einer Flammensperre, die jegliche Hitze absorbierte und die Flamme einfing, um zu verhindern, dass sie eventuell vorhandenes Methan entzündete. Die äußere Hülle enthielt ein Glasstück mit drei horizontal verlaufenden Einschnitten. Die mittlere Linie stellte die ideale Gasumgebung dar, während die untere Linie eine sauerstoffarme Umgebung und die obere Linie eine Methanexposition oder eine sauerstoffangereicherte Umgebung anzeigte. Die Bergleute zündeten die Flamme in einer Umgebung mit Frischluft an. Wenn die Flamme kleiner wurde oder zu erlöschen begann, deutete dies auf eine sauerstoffarme Umgebung hin. Wurde die Flamme größer, wussten die Bergleute, dass Methan mit Sauerstoff vorhanden war, was in beiden Fällen bedeutete, dass sie das Bergwerk verlassen mussten.

Der katalytische Sensor

Obwohl die Flammenlampe eine Entwicklung in der Gasdetektionstechnologie war, war sie doch kein "Einheitsansatz" für alle Branchen. Daher war der katalytische Sensor der erste Gasdetektor, der Ähnlichkeit mit der modernen Technologie hat. Die Sensoren funktionieren nach dem Prinzip, dass bei der Oxidation eines Gases Wärme entsteht. Der katalytische Sensor funktioniert durch eine Temperaturänderung, die proportional zur Gaskonzentration ist. Dies war zwar ein Fortschritt in der Entwicklung der für die Gasdetektion erforderlichen Technologie, doch war anfangs noch eine manuelle Bedienung erforderlich, um einen Messwert zu erhalten.

Moderne Technologie

Die Gaswarntechnik hat sich seit dem frühen 19. Jahrhundert, als das erste Gaswarngerät registriert wurde, enorm weiterentwickelt. Heute gibt es mehr als fünf verschiedene Arten von Sensoren, die in allen Branchen eingesetzt werden, darunter Elektrochemische, Katalytische Perlen (Pellistor), Photoionisationsdetektor (PID) und Infrarot-Technik (IR), zusammen mit den modernsten Sensoren Molekulares Eigenschaftsspektrometer™ (MPS) und Langlebiger Sauerstoff (LLO2) sind moderne Gasdetektoren hochempfindlich, genau und vor allem zuverlässig, so dass die Sicherheit aller Mitarbeiter gewährleistet ist und die Zahl der Todesfälle am Arbeitsplatz reduziert werden kann.

Die Vorteile von MPS-Sensoren 

Entwickelt vonNevadaNanoDie von NevadaNano entwickelten Molecular Property Spectrometer™ (MPS™) Sensoren stellen die neue Generation von Detektoren für brennbare Gase dar. MPS™ kann schnell mehr als 15 charakterisierte brennbare Gase auf einmal erkennen. Bis vor kurzem musste jeder, der brennbare Gase überwachen wollte, entweder einen herkömmlichen Detektor für brennbare Gase wählen, der einen Pellistor Sensor, der für ein bestimmtes Gas kalibriert ist, oder einen Infrarotsensor (IR)-Sensor, dessen Leistung ebenfalls je nach dem gemessenen brennbaren Gas variiert und der daher für jedes Gas kalibriert werden muss. Diese Lösungen sind zwar vorteilhaft, aber nicht immer ideal. So müssen beispielsweise beide Sensortypen regelmäßig kalibriert werden, und die katalytischen Pellistor-Sensoren müssen außerdem häufig überprüft werden, um sicherzustellen, dass sie nicht durch Verunreinigungen (so genannte "Sensorvergiftungen") oder durch raue Bedingungen beschädigt wurden. In manchen Umgebungen müssen die Sensoren häufig ausgetauscht werden, was sowohl in Bezug auf die Kosten als auch auf die Ausfallzeiten oder die Produktverfügbarkeit kostspielig ist. Die IR-Technologie kann Wasserstoff nicht erkennen, da dieser keine IR-Signatur hat, und sowohl IR- als auch Pellistor-Detektoren erkennen manchmal zufällig andere (d. h. nicht kalibrierte) Gase, was zu ungenauen Messwerten führt, die falsche Alarme auslösen oder das Personal beunruhigen können.

Die MPS™ Sensor bietet wichtige Funktionen, die dem Bediener und damit den Mitarbeitern in der Praxis greifbare Vorteile bringen. Dazu gehören:

Keine Kalibrierung

Bei der Implementierung eines Systems, das einen fest installierten Detektor enthält, ist es üblich, die Wartung nach einem vom Hersteller empfohlenen Zeitplan durchzuführen. Dies ist mit laufenden Kosten verbunden und kann zu einer Unterbrechung der Produktion oder des Prozesses führen, um den Detektor oder mehrere Detektoren zu warten oder sogar Zugang zu ihnen zu erhalten. Es kann auch ein Risiko für das Personal bestehen, wenn die Melder in besonders gefährlichen Umgebungen montiert sind. Die Interaktion mit einem MPS-Sensor ist weniger streng, da es keine unentdeckten Fehlermodi gibt, sofern Luft vorhanden ist. Es wäre falsch zu sagen, dass es keine Kalibrierungsanforderungen gibt. Eine Werkskalibrierung, gefolgt von einer Gasprüfung bei der Inbetriebnahme, ist ausreichend, da während der gesamten Lebensdauer des Sensors alle 2 Sekunden eine interne automatische Kalibrierung durchgeführt wird. Was wirklich gemeint ist, ist - keine Kundenkalibrierung.

Die Xgard Bright mit MPS™ Sensortechnologie ist keine Kalibrierung erforderlich. Dies wiederum reduziert die Interaktion mit dem Detektor, was zu niedrigeren Gesamtbetriebskosten über den Lebenszyklus des Sensors und zu einem geringeren Risiko für das Personal und die Produktionsleistung führt, um eine regelmäßige Wartung durchzuführen. Es ist dennoch ratsam, die Sauberkeit des Gasdetektors von Zeit zu Zeit zu überprüfen, da Gas nicht durch dicke Ablagerungen von Störstoffen hindurchgelangen kann und somit den Sensor nicht erreichen würde.

Multispezies-Gas - 'True LEL'™

In vielen Branchen und Anwendungen werden mehrere Gase in derselben Umgebung verwendet oder entstehen als Nebenprodukt. Dies kann eine Herausforderung für herkömmliche Sensortechnologien darstellen, die nur ein einziges Gas, für das sie kalibriert wurden, in der richtigen Konzentration erkennen können, was zu ungenauen Messwerten und sogar Fehlalarmen führen kann, die den Prozess oder die Produktion unterbrechen können, wenn ein anderer brennbarer Gastyp vorhanden ist. Das fehlende oder übermäßige Ansprechen, das in Umgebungen mit mehreren Gasen häufig auftritt, kann frustrierend und kontraproduktiv sein und die Sicherheit der besten Benutzerpraktiken gefährden. Der MPS™-Sensor kann mehrere Gase auf einmal erkennen und den Gastyp sofort identifizieren. Darüber hinaus verfügt der MPS™-Sensor über eine integrierte Umgebungskompensation und benötigt keinen extern angewendeten Korrekturfaktor. Ungenaue Messwerte und Fehlalarme gehören damit der Vergangenheit an.

Keine Sensorvergiftung

In bestimmten Umgebungen besteht für herkömmliche Sensortypen die Gefahr der Vergiftung. Extremer Druck, Temperatur und Feuchtigkeit können die Sensoren beschädigen, während Umweltgifte und Verunreinigungen die Sensoren "vergiften" können, was zu erheblichen Leistungseinbußen führt. In Umgebungen, in denen Gifte oder Inhibitoren auftreten können, ist eine regelmäßige und häufige Prüfung die einzige Möglichkeit, um sicherzustellen, dass die Leistung nicht beeinträchtigt wird. Sensorausfälle aufgrund von Vergiftungen können eine kostspielige Erfahrung sein. Die Technologie des MPS™-Sensors wird durch Verunreinigungen in der Umgebung nicht beeinträchtigt. Für Prozesse, die mit Verunreinigungen belastet sind, steht nun eine Lösung zur Verfügung, die zuverlässig arbeitet und den Bediener durch ein ausfallsicheres Design warnt, so dass Mitarbeiter und Anlagen in gefährlichen Umgebungen beruhigt sein können. Außerdem wird der MPS-Sensor nicht durch erhöhte Konzentrationen brennbarer Gase beeinträchtigt, die beispielsweise bei herkömmlichen katalytischen Sensortypen zu Rissen führen können. Der MPS-Sensor arbeitet weiter.

Wasserstoff (H2)

Die Verwendung von Wasserstoff in industriellen Prozessen nimmt zu, da eine saubere Alternative zur Verwendung von Erdgas gesucht wird. Die Erkennung von Wasserstoff ist derzeit auf Pellistor-, Metalloxid-Halbleiter-, elektrochemische und weniger genaue Wärmeleitfähigkeitssensoren beschränkt, da Infrarotsensoren Wasserstoff nicht erkennen können. Angesichts der oben genannten Probleme mit Vergiftungen oder Fehlalarmen kann die derzeitige Lösung dazu führen, dass der Betreiber zusätzlich zu den Fehlalarmen auch noch häufige Stoßprüfungen und Wartungsarbeiten durchführen muss. Der MPS™-Sensor bietet eine weitaus bessere Lösung für die Erkennung von Wasserstoff und beseitigt die mit der herkömmlichen Sensortechnologie verbundenen Probleme. Ein langlebiger, relativ schnell ansprechender Wasserstoffsensor, der während der gesamten Lebensdauer des Sensors keine Kalibrierung erfordert, ohne das Risiko von Vergiftungen oder Fehlalarmen, kann zu erheblichen Einsparungen bei den Gesamtbetriebskosten führen und reduziert die Interaktion mit dem Gerät, was für die Betreiber, die die MPS™-Technologie nutzen, ein beruhigendes Gefühl und ein geringeres Risiko bedeutet. All dies ist dank der MPS™ Technologie möglich, die den größten Durchbruch in der Gasdetektion seit mehreren Jahrzehnten darstellt. Die Gasman mit MPS ist für Wasserstoff (H2) geeignet. Ein einziger MPS-Sensor detektiert Wasserstoff und gängige Kohlenwasserstoffe in einer ausfallsicheren, giftresistenten Lösung ohne Neukalibrierung.

Mehr über Crowcon finden Sie unter https://www.crowcon.com oder für mehr über MPSTM besuchen Sie https://www.crowcon.com/mpsinfixed/

Weltwasserstoffgipfel 2022

Crowcon stellte auf dem World Hydrogen Summit & Exhibition 2022 vom 9. bis 11. Mai 2022 im Rahmen der Veranstaltung aus, die die Entwicklung im Wasserstoffsektor vorantreiben soll. Die in Rotterdam stattfindende und vom Sustainable Energy Council (SEC) organisierte Ausstellung war die erste, an der Crowcon teilgenommen hat. Wir haben uns sehr gefreut, Teil einer Veranstaltung zu sein, die Verbindungen und Zusammenarbeit zwischen den führenden Köpfen der Schwerindustrie fördert und den Wasserstoffsektor vorantreibt.

Unsere Teamvertreter trafen sich mit verschiedenen Branchenkollegen und präsentierten unsere Wasserstofflösungen für die Gasdetektion. Unser MPS-Sensor bietet einen höheren Standard für die Erkennung brennbarer Gase dank seiner bahnbrechenden fortschrittlichen Molekular-Eigenschafts-Spektrometer (MPS™)-Technologie, die über 15 verschiedene brennbare Gase erkennen und genau identifizieren kann. Dies stellt eine ideale Lösung für die Erkennung von Wasserstoff dar, da Wasserstoff Eigenschaften besitzt, die eine leichte Entzündung und eine höhere Verbrennungsintensität im Vergleich zu Benzin oder Diesel ermöglichen und somit ein echtes Explosionsrisiko darstellen. Lesen Sie unseren Blog, um mehr darüber zu erfahren.

Unsere MPS-Technologie war interessant, da sie während der gesamten Lebensdauer des Sensors keine Kalibrierung erfordert und brennbare Gase ohne das Risiko einer Vergiftung oder eines Fehlalarms erkennt.

Das Gipfeltreffen ermöglichte es uns, den aktuellen Stand des Wasserstoffmarktes zu verstehen, einschließlich der Hauptakteure und der aktuellen Projekte, was es uns ermöglichte, ein besseres Verständnis für unsere Produktanforderungen zu entwickeln, um eine wichtige Rolle in der Zukunft der Wasserstoffgasdetektion zu spielen.

Wir freuen uns auf die Teilnahme im nächsten Jahr!

T4x a Compliance 4-Gas-Monitor 

Es ist von größter Wichtigkeit, dass der von Ihnen eingesetzte Gassensor vollständig optimiert und zuverlässig bei der Erkennung und genauen Messung von brennbaren Gasen und Dämpfen ist, egal in welcher Umgebung oder an welchem Arbeitsplatz.

Feststehend oder tragbar?

Gaswarngeräte gibt es in verschiedenen Formen, am häufigsten sind sie bekannt als ortsfest, tragbar Diese Geräte sind so konzipiert, dass sie den Anforderungen des Benutzers und der Umgebung gerecht werden und gleichzeitig die Sicherheit der Personen, die sich darin aufhalten, gewährleisten.

Fest installierte Melder werden als permanente Vorrichtungen in einer Umgebung eingesetzt, um eine ständige Überwachung von Anlagen und Geräten zu gewährleisten. Gemäß den Leitlinien der Health and Safety Executive (HSE) sind diese Arten von Sensoren besonders hilfreich, wenn die Möglichkeit eines Lecks in einem geschlossenen oder teilweise geschlossenen Raum besteht, das zu einer Ansammlung brennbarer Gase führen könnte. Der Internationale Gastransporter-Kodex (IGC-Code) heißt es, dass Gaswarngeräte so installiert werden sollten, dass sie die Unversehrtheit der zu überwachenden Umgebung überwachen, und dass sie gemäß den anerkannten Normen geprüft werden sollten. Um sicherzustellen, dass das fest installierte Gaswarnsystem effektiv funktioniert, ist eine rechtzeitige und genaue Kalibrierung der Sensoren entscheidend.

Tragbare Detektoren sind in der Regel kleine, tragbare Geräte, die in kleineren Umgebungen eingesetzt werden können, beengte Räumeeingesetzt werden können, um Lecks aufzuspüren oder Frühwarnungen für das Vorhandensein von brennbaren Gasen und Dämpfen in Gefahrenbereichen zu geben. Transportable Detektoren werden nicht in der Hand gehalten, sondern können leicht von einem Ort zum anderen transportiert werden, um als "Ersatzmonitor" zu fungieren, während ein fest installierter Sensor gewartet wird.

Was ist ein 4-Gas-Überwachungsgerät?

Gassensoren werden in erster Linie durch Konstruktion oder Kalibrierung für die Erkennung bestimmter Gase oder Dämpfe optimiert. Es ist wünschenswert, dass ein Sensor für toxische Gase, z. B. ein Sensor für Kohlenmonoxid oder Schwefelwasserstoff, eine genaue Anzeige der Zielgaskonzentration liefert und nicht auf eine andere störende Verbindung reagiert. Persönliche Sicherheitsmonitore kombinieren oft mehrere Sensoren zum Schutz des Benutzers vor bestimmten Gasrisiken. Ein "Compliance 4-Gas-Monitor" umfasst jedoch Sensoren zur Messung der Konzentration von Kohlenmonoxid (CO), Schwefelwasserstoff (H2S), Sauerstoff (O2) und entflammbaren Gasen, normalerweise Methan (CH4) in einem Gerät.

Der T4x Monitor mit dem bahnbrechenden MPS™-Sensor ist in der Lage, Schutz vor CO, H2S, O2 Risiken durch genaue Messung mehrerer brennbarer Gase und Dämpfe unter Verwendung einer grundlegenden Methankalibrierung.

Besteht Bedarf an einem 4-Gas-Überwachungsgerät?

Viele der in herkömmlichen Überwachungsgeräten eingesetzten Sensoren für brennbare Gase sind durch Kalibrierung für die Erkennung eines bestimmten Gases oder Dampfes optimiert, sprechen aber auf viele andere Verbindungen an. Dies ist problematisch und potenziell gefährlich, da die vom Sensor angezeigte Gaskonzentration nicht genau ist und möglicherweise eine höhere (oder gefährlichere) und niedrigere Gas-/Dampfkonzentration anzeigt als vorhanden ist. Da die Arbeitnehmer an ihrem Arbeitsplatz häufig potenziell Risiken durch mehrere brennbare Gase und Dämpfe ausgesetzt sind, ist es äußerst wichtig, dass sie durch den Einsatz eines genauen und zuverlässigen Sensors geschützt werden.

Worin unterscheidet sich das tragbare 4-in-1-Gaswarngerät T4x ?

Um die kontinuierliche Zuverlässigkeit und Genauigkeit des T4x Detektors zu gewährleisten. Der Detektor nutzt die MPS™ (Molecular Property Spectrometry)-Sensorfunktionalität in seiner robusten Einheit, die eine Reihe von Funktionen zur Gewährleistung der Sicherheit bietet. Er bietet Schutz vor den vier häufigsten Gasgefahren: Kohlenmonoxid, Schwefelwasserstoff, brennbare Gase und Sauerstoffmangel. Der Multigasdetektor T4x verfügt jetzt über eine verbesserte Erkennung von Pentan, Hexan und anderen langkettigen Kohlenwasserstoffen. Das Gerät verfügt über eine große Taste und ein leicht verständliches Menüsystem, so dass es auch von Personen, die Handschuhe tragen und nur eine minimale Schulung absolviert haben, leicht zu bedienen ist. Der robuste und dennoch tragbare T4x Detektor verfügt über einen integrierten Gummistiefel und einen optionalen Clip-on-Filter, der bei Bedarf leicht entfernt und ausgetauscht werden kann. Dank dieser Merkmale bleiben die Sensoren auch in den schmutzigsten Umgebungen geschützt, um einen konstanten Betrieb zu gewährleisten.

Ein einzigartiger Vorteil des T4x Detektors besteht darin, dass er sicherstellt, dass die Exposition gegenüber toxischen Gasen während der gesamten Schicht genau berechnet wird, auch wenn er kurzzeitig, während einer Pause oder auf dem Weg zu einem anderen Standort ausgeschaltet wird. Die TWA-Funktion ermöglicht eine ununterbrochene und unterbrochene Überwachung. So beginnt der Detektor beim Einschalten wieder bei Null, als ob er eine neue Schicht beginnen würde, und ignoriert alle vorherigen Messungen. Unter T4x hat der Benutzer die Möglichkeit, frühere Messungen innerhalb des richtigen Zeitrahmens zu berücksichtigen. Der Detektor ist nicht nur in Bezug auf die genaue Erkennung und Messung von vier Gasen zuverlässig, sondern auch aufgrund seiner Batterielebensdauer. Der Akku hält 18 Stunden und ist für den Einsatz über mehrere oder längere Schichten hinweg geeignet, ohne dass er regelmäßig aufgeladen werden muss.

Während der Nutzung verfügt T4 über eine praktische "Ampel"-Anzeige, die eine ständige visuelle Sicherheit bietet, dass das Gerät einwandfrei funktioniert und den Richtlinien für die Stoßprüfung und Kalibrierung am Standort entspricht. Die hellen grünen und roten Sicherheits-LEDs sind für alle sichtbar und bieten somit eine schnelle, einfache und umfassende Anzeige des Überwachungsstatus für den Benutzer und andere Personen in seiner Umgebung.

T4x hilft den Betriebsteams, sich auf wertschöpfende Aufgaben zu konzentrieren, indem es die Anzahl der Sensorwechsel um 75 % reduziert und die Zuverlässigkeit der Sensoren erhöht. Durch die Sicherstellung der Konformität am gesamten Standort hilft T4x den Managern für Gesundheit und Sicherheit, da sie nicht mehr sicherstellen müssen, dass jedes Gerät für das entsprechende brennbare Gas kalibriert ist, da es genau 19 auf einmal erkennt. Da das Gerät giftresistent ist und die Batterielebensdauer verdoppelt wurde, ist es wahrscheinlicher, dass die Bediener nie ohne Gerät dastehen. T4x reduziert die 5-Jahres-Gesamtbetriebskosten um über 25 % und spart 12 g Blei pro Detektor ein, was das Recycling am Ende seiner Lebensdauer erheblich erleichtert.

Insgesamt wird durch die Kombination von drei Sensoren (darunter zwei neue Sensortechnologien MPS und Langlebige O2) in einem bereits beliebten tragbaren Multigasdetektor. Crowcon ermöglichte die Verbesserung der Sicherheit, Kosteneffizienz und Effizienz einzelner Geräte und ganzer Flotten. Das neue T4x bietet eine längere Lebensdauer und eine höhere Genauigkeit bei der Erkennung von Gasgefahren, während es gleichzeitig nachhaltiger als je zuvor gebaut ist.

Wie lange wird mein Gassensor halten?

Gasdetektoren werden in vielen Industriezweigen (z. B. Wasseraufbereitung, Raffinerien, Petrochemie, Stahlindustrie und Bauwesen, um nur einige zu nennen) in großem Umfang eingesetzt, um Personal und Ausrüstung vor gefährlichen Gasen und deren Auswirkungen zu schützen. Die Benutzer von tragbaren und fest installierten Geräten kennen die potenziell erheblichen Kosten, die für den sicheren Betrieb ihrer Geräte während ihrer Lebensdauer anfallen. Unter Gassensoren versteht man die Messung der Konzentration eines bestimmten Analyten von Interesse, z. B. CO (Kohlenmonoxid), CO2 (Kohlendioxid) oder NOx (Stickoxid). Es gibt zwei Gassensoren, die in industriellen Anwendungen am häufigsten eingesetzt werden: elektrochemische Sensoren für toxische Gase und Sauerstoffmessungen und Pellistoren (oder katalytische Perlen) für brennbare Gase. In den letzten Jahren hat die Einführung der beiden Sauerstoff und MPS (Molecular Property Spectrometer)-Sensoren haben in den letzten Jahren für mehr Sicherheit gesorgt.

Woran erkenne ich, dass mein Sensor ausgefallen ist?

In den letzten Jahrzehnten wurden mehrere Patente und Techniken auf Gasdetektoren angewandt, die angeblich in der Lage sind, festzustellen, wann ein elektrochemischer Sensor ausgefallen ist. Die meisten dieser Verfahren lassen jedoch nur den Schluss zu, dass der Sensor durch irgendeine Form der Elektrodenstimulation funktioniert, und könnten ein falsches Gefühl der Sicherheit vermitteln. Die einzige sichere Methode, um nachzuweisen, dass ein Sensor funktioniert, besteht darin, Prüfgas zuzuführen und die Reaktion zu messen: ein Bump-Test oder eine vollständige Kalibrierung.

Elektrochemischer Sensor

Elektrochemische Sensoren werden meist im Diffusionsmodus verwendet, bei dem Gas aus der Umgebung durch ein Loch in der Oberfläche der Zelle eintritt. Einige Geräte verwenden eine Pumpe, um dem Sensor Luft oder Gasproben zuzuführen. Eine PTFE-Membran wird über der Öffnung angebracht, um das Eindringen von Wasser oder Ölen in die Zelle zu verhindern. Sensorbereiche und Empfindlichkeiten können durch die Verwendung unterschiedlich großer Löcher variiert werden. Größere Löcher bieten eine höhere Empfindlichkeit und Auflösung, während kleinere Löcher die Empfindlichkeit und Auflösung verringern, aber den Bereich vergrößern.

Faktoren, die die Lebensdauer elektrochemischer Sensoren beeinflussen

Es gibt drei Hauptfaktoren, die sich auf die Lebensdauer des Sensors auswirken: Temperatur, extrem hohe Gaskonzentrationen und Feuchtigkeit. Weitere Faktoren sind die Sensorelektroden sowie extreme Vibrationen und mechanische Stöße.

Extreme Temperaturen können die Lebensdauer des Sensors beeinträchtigen. Der Hersteller gibt einen Betriebstemperaturbereich für das Gerät an: in der Regel -30˚C bis +50˚C. Qualitativ hochwertige Sensoren sind jedoch in der Lage, kurzzeitige Überschreitungen dieser Grenzwerte zu verkraften. Kurze (1-2 Stunden) Exposition gegenüber 60-65˚C für H2S- oder CO-Sensoren (zum Beispiel) ist akzeptabel, aber wiederholte Vorfälle führen zur Verdampfung des Elektrolyts und zu Verschiebungen der Basislinie (Null) und zu einer langsameren Reaktion.

Die Exposition gegenüber extrem hohen Gaskonzentrationen kann die Sensorleistung ebenfalls beeinträchtigen. Elektrochemische Sensoren werden in der Regel bis zum Zehnfachen ihres Auslegungsgrenzwertes getestet. Sensoren, die aus hochwertigem Katalysatormaterial hergestellt werden, sollten solchen Belastungen standhalten können, ohne dass es zu chemischen Veränderungen oder langfristigen Leistungseinbußen kommt. Sensoren mit geringerer Katalysatorbelastung können Schaden nehmen.

Den größten Einfluss auf die Lebensdauer der Sensoren hat die Luftfeuchtigkeit. Die ideale Umgebungsbedingung für elektrochemische Sensoren ist 20˚Celsius und 60 % RH (relative Luftfeuchtigkeit). Steigt die Luftfeuchtigkeit über 60 % RH, wird Wasser in den Elektrolyten absorbiert, was zu einer Verdünnung führt. In extremen Fällen kann der Flüssigkeitsgehalt um das 2-3-fache ansteigen, was zu Leckagen am Sensorgehäuse und dann an den Stiften führen kann. Unter 60 % r.F. beginnt das Wasser im Elektrolyt zu dehydrieren. Die Ansprechzeit kann sich durch das Austrocknen des Elektrolyten erheblich verlängern. Sensorelektroden können unter ungewöhnlichen Bedingungen durch störende Gase vergiftet werden, die am Katalysator adsorbieren oder mit ihm reagieren und Nebenprodukte erzeugen, die den Katalysator hemmen.

Extreme Erschütterungen und mechanische Stöße können die Sensoren ebenfalls beschädigen, da die Schweißnähte, die die Platinelektroden, die Verbindungsstreifen (oder Drähte bei einigen Sensoren) und die Stifte miteinander verbinden, brechen.

Normale" Lebenserwartung eines elektrochemischen Sensors

Elektrochemische Sensoren für gebräuchliche Gase wie Kohlenmonoxid oder Schwefelwasserstoff haben eine Betriebslebensdauer, die üblicherweise mit 2-3 Jahren angegeben wird. Exotischere Gassensoren wie z. B. Fluorwasserstoff haben eine Lebensdauer von nur 12-18 Monaten. Unter idealen Bedingungen (stabile Temperatur und Luftfeuchtigkeit im Bereich von 20 °C und 60 % relative Luftfeuchtigkeit) und ohne das Auftreten von Verunreinigungen sind elektrochemische Sensoren für eine Betriebsdauer von mehr als 4000 Tagen (11 Jahren) bekannt. Die regelmäßige Einwirkung des Zielgases schränkt die Lebensdauer dieser winzigen Brennstoffzellen nicht ein: Hochwertige Sensoren verfügen über eine große Menge an Katalysatormaterial und robuste Leiter, die durch die Reaktion nicht erschöpft werden.

Pellistor-Sensor

Pellistor-Sensoren bestehen aus zwei aufeinander abgestimmten Drahtspulen, die jeweils in eine Keramikperle eingebettet sind. Durch die Spulen fließt Strom, der die Perlen auf etwa 500˚C erhitzt. Das brennbare Gas verbrennt an der Perle, und die zusätzlich erzeugte Wärme führt zu einem Anstieg des Spulenwiderstands, der vom Gerät gemessen wird, um die Gaskonzentration anzuzeigen.

Faktoren, die die Lebensdauer von Pellistor-Sensoren beeinflussen

Die beiden Hauptfaktoren, die sich auf die Lebensdauer des Sensors auswirken, sind eine hohe Gaskonzentration und eine Potenzierung oder Inhibierung des Sensors. Auch extreme mechanische Stöße oder Vibrationen können die Lebensdauer des Sensors beeinträchtigen. Die Fähigkeit der Katalysatoroberfläche, das Gas zu oxidieren, nimmt ab, wenn sie vergiftet oder gehemmt wurde. Eine Sensorlebensdauer von mehr als zehn Jahren ist bei Anwendungen üblich, bei denen keine hemmenden oder vergiftenden Verbindungen vorhanden sind. Pellistoren mit höherer Leistung haben eine größere katalytische Aktivität und sind weniger anfällig für Vergiftungen. Porösere Kügelchen haben auch eine größere katalytische Aktivität, da ihr Oberflächenvolumen größer ist. Ein geschickter Entwurf und ausgeklügelte Herstellungsverfahren gewährleisten eine maximale Porosität der Perlen. Hohe Gaskonzentrationen (>100%LEL) können die Sensorleistung ebenfalls beeinträchtigen und eine Verschiebung des Null-/Basisliniensignals verursachen. Eine unvollständige Verbrennung führt zu Kohlenstoffablagerungen auf der Sicke: Der Kohlenstoff "wächst" in den Poren und verursacht mechanische Schäden. Der Kohlenstoff kann jedoch im Laufe der Zeit abgebrannt werden, um die katalytischen Stellen wieder freizulegen. Extreme mechanische Stöße oder Vibrationen können in seltenen Fällen auch einen Bruch der Pellistorspulen verursachen. Dieses Problem tritt eher bei tragbaren als bei stationären Gasdetektoren auf, da diese eher fallen gelassen werden und die verwendeten Pellistoren weniger Strom verbrauchen (um die Batterielebensdauer zu maximieren) und daher empfindlichere, dünnere Drahtspulen verwenden.

Woran erkenne ich, dass mein Sensor ausgefallen ist?

Ein vergifteter Pellistor bleibt elektrisch funktionsfähig, reagiert aber möglicherweise nicht auf Gas. Daher können das Gaswarngerät und das Kontrollsystem scheinbar in einem gesunden Zustand sein, aber ein Leck in einem brennbaren Gas wird möglicherweise nicht erkannt.

Sauerstoffsensor

Langes Leben 02 Icon

Unser neuer bleifreier, langlebiger Sauerstoffsensor hat keine komprimierten Bleistränge, in die der Elektrolyt eindringen muss, so dass ein dickflüssiger Elektrolyt verwendet werden kann, was bedeutet, dass es keine Lecks gibt, keine durch Lecks verursachte Korrosion und verbesserte Sicherheit. Die zusätzliche Robustheit dieses Sensors ermöglicht es uns, eine 5-Jahres-Garantie zu gewähren, die für zusätzliche Sicherheit sorgt.

Langlebige Sauerstoffsensoren haben eine lange Lebensdauer von 5 Jahren und zeichnen sich durch geringere Ausfallzeiten, niedrigere Betriebskosten und eine geringere Umweltbelastung aus. Sie messen Sauerstoff über einen breiten Konzentrationsbereich von 0 bis 30 % Volumen genau und sind die nächste Generation der O2-Gaserkennung.

MPS-Sensor

MPS Sensor bietet eine fortschrittliche Technologie, die eine Kalibrierung überflüssig macht und eine "echte UEG (untere Explosionsgrenze)" für die Messung von fünfzehn brennbaren Gasen liefert, aber alle brennbaren Gase in einer Umgebung mit mehreren Arten erkennen kann. Dies verringert das Risiko für das Personal und vermeidet kostspielige Ausfallzeiten. Der MPS-Sensor ist außerdem immun gegen Sensorvergiftungen.  

Sensorausfälle aufgrund von Vergiftungen können eine frustrierende und kostspielige Erfahrung sein. Die Technologie des MPS™-Sensorswird durch Verunreinigungen in der Umgebung nicht beeinträchtigt. Bei Prozessen mit Verunreinigungen steht nun eine Lösung zur Verfügung, die zuverlässig und ausfallsicher arbeitet, um den Bediener zu warnen und dem Personal und den Anlagen in gefährlichen Umgebungen ein sicheres Gefühl zu geben. Es ist jetzt möglich, mehrere brennbare Gase zu erkennen, sogar in rauen Umgebungen, mit nur einem Sensor, der nicht kalibriert werden muss und eine erwartete Lebensdauer von mindestens 5 Jahren hat.

Die Gefahren des Wasserstoffs

Als Brennstoff ist Wasserstoff leicht entzündlich, und bei Leckagen besteht eine große Brandgefahr. Wasserstoffbrände unterscheiden sich jedoch deutlich von Bränden mit anderen Brennstoffen. Wenn schwerere Brennstoffe und Kohlenwasserstoffe wie Benzin oder Diesel auslaufen, sammeln sie sich in Bodennähe. Im Gegensatz dazu ist Wasserstoff eines der leichtesten Elemente der Erde, so dass sich das Gas bei einem Leck schnell nach oben ausbreitet. Das macht eine Entzündung unwahrscheinlicher, aber ein weiterer Unterschied besteht darin, dass Wasserstoff sich leichter entzündet und brennt als Benzin oder Diesel. Wenn Wasserstoff vorhanden ist, reicht sogar ein Funke statischer Elektrizität vom Finger einer Person aus, um eine Explosion auszulösen. Die Wasserstoffflamme ist außerdem unsichtbar, so dass es schwierig ist, den Ort des eigentlichen "Feuers" zu bestimmen, aber sie erzeugt eine geringe Strahlungswärme, da kein Kohlenstoff vorhanden ist, und neigt dazu, schnell auszubrennen.

Wasserstoff ist geruchs-, farb- und geschmacksneutral, so dass Lecks allein mit den menschlichen Sinnen schwer zu erkennen sind. Wasserstoff ist ungiftig, aber in Innenräumen wie Batterielagerräumen kann er sich ansammeln und durch Verdrängung von Sauerstoff zum Ersticken führen. Diese Gefahr lässt sich bis zu einem gewissen Grad ausgleichen, indem man dem Wasserstoffkraftstoff Geruchsstoffe hinzufügt, die ihm einen künstlichen Geruch verleihen und die Benutzer im Falle eines Lecks warnen. Da sich Wasserstoff jedoch schnell verteilt, ist es unwahrscheinlich, dass der Geruchsstoff mit ihm reist. Wasserstoff, der in Innenräumen entweicht, sammelt sich schnell, zunächst an der Decke und füllt schließlich den ganzen Raum aus. Daher ist die Platzierung von Gasdetektoren entscheidend für die frühzeitige Erkennung eines Lecks.

Wasserstoff wird normalerweise in Flüssigwasserstofftanks gelagert und transportiert. Das letzte Problem ist, dass flüssiger Wasserstoff extrem kalt ist, da er komprimiert ist. Sollte Wasserstoff aus dem Tank entweichen und mit der Haut in Berührung kommen, kann dies zu schweren Erfrierungen oder sogar zum Verlust von Gliedmaßen führen.

Welche Sensortechnologie eignet sich am besten für den Nachweis von Wasserstoff?

Crowcon verfügt über eine breite Palette von Produkten für den Nachweis von Wasserstoff. Die traditionellen Sensortechnologien für den Nachweis brennbarer Gase sind Pellistoren und Infrarot (IR). Pellistor-Gassensoren (auch katalytische Gassensoren genannt) sind seit den 1960er Jahren die wichtigste Technologie zur Erkennung brennbarer Gase, und auf unserer Lösungsseite erfahren Sie mehr über Pellistor-Sensoren. Ihr größter Nachteil ist jedoch, dass Pellistor-Sensoren in sauerstoffarmen Umgebungen nicht richtig funktionieren und sogar ausfallen können. In einigen Anlagen besteht die Gefahr, dass Pellistoren vergiftet oder gehemmt werden, so dass die Arbeiter ungeschützt sind. Außerdem sind Pellistor-Sensoren nicht ausfallsicher, und ein Sensorausfall wird erst erkannt, wenn Prüfgas zugeführt wird.

Infrarotsensoren sind eine zuverlässige Methode zur Erkennung brennbarer Kohlenwasserstoffe in sauerstoffarmen Umgebungen. Sie sind nicht anfällig für Vergiftungen, so dass IR die Sicherheit unter diesen Bedingungen erheblich verbessern kann. Lesen Sie mehr über IR-Sensoren auf unserer Lösungsseite, und die Unterschiede zwischen Pellistoren und IR-Sensoren im folgenden Blog.

Genauso wie Pellistoren anfällig für Vergiftungen sind, sind IR-Sensoren anfällig für starke mechanische und thermische Schocks und werden auch stark von groben Druckänderungen beeinflusst. Außerdem können IR-Sensoren nicht zum Nachweis von Wasserstoff verwendet werden. Die beste Option für die Erkennung von brennbarem Wasserstoff ist daher die MPS™-Sensortechnologie (Molecular Property Spectrometer). Diese erfordert keine Kalibrierung während der gesamten Lebensdauer des Sensors, und da MPS brennbare Gase ohne das Risiko von Vergiftungen oder Fehlalarmen detektiert, können die Gesamtbetriebskosten erheblich gesenkt und die Interaktion mit den Geräten reduziert werden, so dass die Betreiber beruhigt sein können und weniger Risiken eingehen. Die Gasdetektion mit dem Molekularen Eigenschaftsspektrometer wurde an der Universität von Nevada entwickelt und ist derzeit die einzige Gasdetektionstechnologie, die mehrere brennbare Gase, einschließlich Wasserstoff, gleichzeitig, sehr genau und mit einem einzigen Sensor erkennen kann.

Lesen Sie unser White Paper, um mehr über unsere MPS-Sensortechnologie zu erfahren, und besuchen Sie unsere Branchenseite, um weitere Informationen über die Erkennung von Wasserstoffgas zu erhalten, und werfen Sie einen Blick auf unsere anderen Wasserstoff-Ressourcen:

Was müssen Sie über Wasserstoff wissen?

Grüner Wasserstoff - ein Überblick

Blauer Wasserstoff - Ein Überblick

Xgard Bright MPS bietet Wasserstoffdetektion in Energiespeicheranwendung