Warum ist die Gasdetektion für Getränkeschankanlagen so wichtig?

Schankgas, auch bekannt als Biergas, Fassgas, Kellergas oder Kneipengas, wird in Bars und Restaurants sowie im Freizeit- und Gaststättengewerbe verwendet. Die Verwendung von Zapfgas beim Ausschank von Bier und alkoholfreien Getränken ist weltweit üblich. Kohlendioxid (CO2) oder ein Gemisch ausCO2 und Stickstoff (N2) wird verwendet, um ein Getränk an den "Zapfhahn" zu bringen.CO2 als Keg-Gas trägt dazu bei, den Inhalt steril und in der richtigen Zusammensetzung zu halten, was den Zapfvorgang erleichtert.

Gasgefahren

Auch wenn das Getränk zur Auslieferung bereit ist, bleiben gasbedingte Gefahren bestehen. Diese entstehen bei jeder Tätigkeit in Räumlichkeiten, die Druckgasflaschen enthalten, aufgrund des Risikos der Beschädigung beim Bewegen oder Auswechseln dieser Flaschen. Darüber hinaus besteht nach der Freisetzung die Gefahr eines erhöhten Kohlendioxidgehalts oder eines Sauerstoffmangels (aufgrund eines höheren Stickstoff- oder Kohlendioxidgehalts).

CO2 kommt natürlich in der Atmosphäre vor (0,04 %) und ist farb- und geruchlos. Es ist schwerer als Luft und sinkt, wenn es entweicht, auf den Boden.CO2 sammelt sich in Kellern, auf dem Boden von Behältern und in geschlossenen Räumen wie Tanks und Silos.CO2 entsteht in großen Mengen während der Gärung. Es wird auch während der Kohlensäurebildung in Getränke eingeleitet, um die Bläschen zu erzeugen. Zu den ersten Symptomen einer Exposition gegenüber hohen Kohlendioxidkonzentrationen gehören Schwindel, Kopfschmerzen und Verwirrung, gefolgt von Bewusstlosigkeit. Im Extremfall kann es zu Unfällen und Todesfällen kommen, wenn eine erhebliche Menge Kohlendioxid in ein geschlossenes oder schlecht belüftetes Volumen entweicht. Ohne geeignete Erkennungsmethoden und -verfahren könnte jeder, der diesen Raum betritt, gefährdet sein. Außerdem könnte das Personal in den umliegenden Räumen unter den oben genannten Frühsymptomen leiden.

Stickstoff (N2) wird häufig beim Ausschank von Bier, insbesondere von Stouts, Pale Ales und Porters, verwendet und verhindert die Oxidation oder Verunreinigung des Biers mit scharfen Aromen. Stickstoff hilft, die Flüssigkeit von einem Tank in einen anderen zu befördern, und kann auch in Fässer eingeleitet werden, um sie für die Lagerung und den Versand unter Druck zu setzen. Dieses Gas ist nicht giftig, verdrängt aber den Sauerstoff in der Atmosphäre, was bei einem Gasleck eine Gefahr darstellen kann, weshalb eine genaue Gasdetektion entscheidend ist.

Da Stickstoff den Sauerstoffgehalt verringern kann, sollten Sauerstoffsensoren in Umgebungen eingesetzt werden, in denen eines dieser potenziellen Risiken besteht. Bei der Platzierung von Sauerstoffsensoren muss die Dichte des Verdünnungsgases und der "Atembereich" (Nasenhöhe) berücksichtigt werden. Auch die Belüftungsmuster müssen bei der Platzierung der Sensoren berücksichtigt werden. Handelt es sich bei dem verdünnenden Gas beispielsweise um Stickstoff, ist es sinnvoll, die Sensoren in Schulterhöhe zu platzieren. Handelt es sich bei dem verdünnenden Gas jedoch um Kohlendioxid, sollten die Sensoren in Kniehöhe angebracht werden.

Die Bedeutung der Gasdetektion in Getränkeschankanlagen

Leider kommt es in der Getränkeindustrie immer wieder zu Unfällen und Todesfällen aufgrund von Gasgefahren. Daher sind im Vereinigten Königreich die Grenzwerte für die sichere Exposition am Arbeitsplatz von der Gesundheits- und Sicherheitsbehörde (Health and Safety Executive, HSE ) in der Dokumentation zur Kontrolle gesundheitsgefährdender Stoffe (Control of Substances Hazardous to Health, COSHH) kodifiziert. Für Kohlendioxid gilt ein 8-Stunden-Grenzwert von 0,5 % und ein 15-Minuten-Grenzwert von 1,5 Volumenprozent. Gaswarnsysteme tragen dazu bei, Gasrisiken zu mindern, und ermöglichen es Getränkeherstellern, Abfüllbetrieben und Betreibern von Bars und Kneipen, die Sicherheit des Personals zu gewährleisten und die Einhaltung gesetzlicher Grenzwerte oder genehmigter Verhaltensregeln nachzuweisen.

Sauerstoffverarmung

Die normale Sauerstoffkonzentration in der Atmosphäre beträgt etwa 20,9 % des Volumens. Ein zu niedriger Sauerstoffgehalt kann gefährlich sein (Sauerstoffmangel). Bei unzureichender Belüftung kann der Sauerstoffgehalt durch Atmung und Verbrennungsprozesse erstaunlich schnell sinken.

Der Sauerstoffgehalt kann auch durch die Verdünnung durch andere Gase wie Kohlendioxid (ebenfalls ein giftiges Gas), Stickstoff oder Helium sowie durch chemische Absorption bei Korrosionsprozessen und ähnlichen Reaktionen verringert werden. Sauerstoffsensoren sollten in Umgebungen eingesetzt werden, in denen eines dieser potenziellen Risiken besteht. Bei der Platzierung von Sauerstoffsensoren muss die Dichte des Verdünnungsgases und der "Atem"-Zone (Nasenhöhe) berücksichtigt werden. Sauerstoffmonitore lösen in der Regel einen Alarm der ersten Stufe aus, wenn die Sauerstoffkonzentration auf 19 % des Volumens gesunken ist. Die meisten Menschen beginnen, sich abnormal zu verhalten, wenn der Wert 17 % erreicht, daher wird bei diesem Schwellenwert in der Regel ein zweiter Alarm ausgelöst. In Atmosphären mit einem Sauerstoffgehalt zwischen 10 und 13 % kann es sehr schnell zu Bewusstlosigkeit kommen; der Tod tritt sehr schnell ein, wenn der Sauerstoffgehalt unter 6 % Volumen sinkt.

Unsere Lösung

Die Gasdetektion kann sowohl in Form von festen als auch von tragbaren Detektoren erfolgen. Die Installation eines ortsfesten Gaswarngeräts kann in größeren Räumen wie Kellern oder Werksräumen von Vorteil sein, um einen kontinuierlichen Schutz des Bereichs und des Personals 24 Stunden am Tag zu gewährleisten. Für die Sicherheit der Mitarbeiter in und um Flaschenlager und in Räumen, die als beengte Räume ausgewiesen sind, kann jedoch ein tragbarer Melder besser geeignet sein. Dies gilt insbesondere für Kneipen und Getränkemärkte, um die Sicherheit von Mitarbeitern und Personen zu gewährleisten, die sich in dieser Umgebung nicht auskennen, wie z. B. Lieferfahrer, Verkaufsteams oder Techniker. Das tragbare Gerät kann einfach an der Kleidung befestigt werden und erkenntCO2-Taschen durch Alarme und visuelle Signale, die darauf hinweisen, dass der Benutzer den Bereich sofort verlassen sollte.

Für weitere Informationen über die Gaserkennung in Getränkeschankanlagen wenden Sie sich bitte an unser Team.

Überblick über die Industrie: Lebensmittel und Getränke 

Die Lebensmittel- und Getränkeindustrie (F&B) umfasst alle Unternehmen, die sich mit der Verarbeitung von Lebensmittelrohstoffen sowie mit deren Verpackung und Vertrieb befassen. Dazu gehören frische, zubereitete und verpackte Lebensmittel sowie alkoholische und nichtalkoholische Getränke.

Die Lebensmittel- und Getränkeindustrie gliedert sich in zwei große Segmente, nämlich die Produktion und den Vertrieb von Lebensmitteln. Die erste Gruppe, die Produktion, umfasst die Verarbeitung von Fleisch und Käse sowie die Herstellung von Erfrischungsgetränken, alkoholischen Getränken, verpackten Lebensmitteln und anderen veränderten Lebensmitteln. Alle Produkte, die für den menschlichen Verzehr bestimmt sind, mit Ausnahme von Arzneimitteln, fallen in diesen Sektor. Die Produktion umfasst auch die Verarbeitung von Fleisch, Käse und verpackten Lebensmitteln, Molkereiprodukten und alkoholischen Getränken. Nicht zum Produktionssektor gehören Lebensmittel und Frischwaren, die direkt in der Landwirtschaft erzeugt werden, da diese unter die Landwirtschaft fallen.

Die Herstellung und Verarbeitung von Lebensmitteln und Getränken birgt ein erhebliches Risiko für Brände und die Exposition gegenüber toxischen Gasen. Beim Backen, Verarbeiten und Kühlen von Lebensmitteln werden viele Gase verwendet. Diese Gase können sehr gefährlich sein - entweder giftig, entflammbar oder beides.

Gasgefahren

Lebensmittelverarbeitung

Zu den sekundären Lebensmittelverarbeitungsmethoden gehören Fermentierung, Erhitzung, Kühlung, Dehydrierung oder Kochen in irgendeiner Form. Viele Arten der kommerziellen Lebensmittelverarbeitung bestehen aus dem Kochen, insbesondere in industriellen Dampfkesseln. Dampfkessel werden in der Regel mit Gas (Erdgas oder Flüssiggas) oder mit einer Kombination aus Gas und Heizöl befeuert. Bei gasbefeuerten Dampfkesseln besteht Erdgas hauptsächlich aus Methan (CH4), einem leicht brennbaren Gas, das leichter ist als Luft, und das direkt in die Kessel geleitet wird. Im Gegensatz dazu besteht Flüssiggas hauptsächlich aus Propan (C3H8) und erfordert in der Regel einen Lagertank vor Ort. Wenn brennbare Gase vor Ort verwendet werden, muss in den Lagerbereichen eine mechanische Zwangsbelüftung für den Fall eines Lecks vorgesehen werden. Diese Belüftung wird in der Regel durch Gasdetektoren ausgelöst, die in der Nähe von Heizkesseln und in Lagerräumen installiert sind.

Chemische Desinfektion

Die F&B-Branche nimmt die Hygiene sehr ernst, da die geringste Verunreinigung von Oberflächen und Geräten einen idealen Nährboden für alle Arten von Keimen bieten kann. Der F&B-Sektor verlangt daher eine rigorose Reinigung und Desinfektion, die den Branchenstandards entsprechen muss.

Es gibt drei in der Gastronomie übliche Desinfektionsmethoden: thermische, strahlende und chemische. Die chemische Desinfektion mit Verbindungen auf Chlorbasis ist bei weitem die gebräuchlichste und wirksamste Methode zur Desinfektion von Geräten und anderen Oberflächen. Der Grund dafür ist, dass Chlorverbindungen preiswert, schnell wirksam und gegen eine Vielzahl von Mikroorganismen wirksam sind. Üblicherweise werden mehrere verschiedene Chlorverbindungen verwendet, darunter Hypochlorit, organische und anorganische Chloramine und Chlordioxid. Natriumhypochloritlösung (NaOCl) wird in Tanks gelagert, während Chlordioxid (ClO2) in der Regel vor Ort erzeugt wird.

In jeder Kombination sind Chlorverbindungen gefährlich, und die Exposition gegenüber hohen Chlorkonzentrationen kann zu schweren gesundheitlichen Problemen führen. Chlorgase werden in der Regel vor Ort gelagert, und es sollte ein Gaswarnsystem installiert werden, das über einen Relaisausgang verfügt, um die Lüftungsventilatoren auszulösen, sobald eine hohe Chlorkonzentration festgestellt wird.

Lebensmittelverpackungen

Lebensmittelverpackungen dienen vielen Zwecken: Sie ermöglichen den sicheren Transport und die Lagerung von Lebensmitteln, schützen sie, geben die Portionsgrößen an und liefern Informationen über das Produkt. Um Lebensmittel lange haltbar zu machen, muss der Sauerstoff aus dem Behälter entfernt werden, da es sonst zu einer Oxidation kommt, wenn die Lebensmittel mit Sauerstoff in Berührung kommen. Das Vorhandensein von Sauerstoff fördert auch das Wachstum von Bakterien, die beim Verzehr schädlich sind. Wird die Verpackung jedoch mit Stickstoff gespült, kann die Haltbarkeit der verpackten Lebensmittel verlängert werden.

Verpackungsunternehmen verwenden häufig Stickstoff (N2) für die Konservierung und Lagerung ihrer Produkte. Stickstoff ist ein nicht reaktives Gas, geruchsneutral und ungiftig. Es verhindert die Oxidation frischer Lebensmittel mit Zucker oder Fetten, stoppt das Wachstum gefährlicher Bakterien und hemmt den Verderb. Und schließlich verhindert es das Zusammenfallen von Verpackungen, indem es eine Atmosphäre unter Druck schafft. Stickstoff kann vor Ort mit Generatoren erzeugt oder in Flaschen geliefert werden. Gasgeneratoren sind kostengünstig und sorgen für eine ununterbrochene Versorgung mit Gas. Stickstoff ist ein Erstickungsmittel, das den Sauerstoff in der Luft verdrängen kann. Da er geruchlos und ungiftig ist, bemerken die Arbeiter einen Sauerstoffmangel möglicherweise erst, wenn es zu spät ist.

Ein Sauerstoffgehalt von weniger als 19 % führt zu Schwindelgefühlen und Bewusstlosigkeit. Um dies zu verhindern, sollte der Sauerstoffgehalt mit einem elektrochemischen Sensor überwacht werden. Die Installation von Sauerstoffdetektoren in Verpackungsbereichen gewährleistet die Sicherheit der Arbeitnehmer und die frühzeitige Erkennung von Leckagen.

Kältetechnische Einrichtungen

Kühlanlagen in der F&B-Industrie werden eingesetzt, um Lebensmittel über lange Zeiträume kühl zu halten. In großen Lebensmittellagern werden häufig Kühlsysteme auf der Basis von Ammoniak (> 50% NH3), da diese effizient und wirtschaftlich sind. Ammoniak ist jedoch sowohl giftig als auch brennbar; außerdem ist es leichter als Luft und füllt geschlossene Räume schnell aus. Ammoniak kann entflammbar werden, wenn es in einem geschlossenen Raum freigesetzt wird, in dem eine Zündquelle vorhanden ist, oder wenn ein Behälter mit wasserfreiem Ammoniak einem Feuer ausgesetzt wird.

Ammoniak wird mit elektrochemischer (toxisch) und katalytischer (entflammbar) Sensortechnologie nachgewiesen. Tragbare Detektoren, einschließlich Ein- oder Mehrgasdetektoren, können die unmittelbare und die TWA-Belastung durch toxische Werte von NH3. Mehrgas-Personenmonitore verbessern nachweislich die Sicherheit der Arbeiter, wenn ein niedriger ppm-Bereich für Routineuntersuchungen des Systems und ein entflammbarer Bereich für die Wartung des Systems verwendet wird. Fest installierte Detektionssysteme umfassen eine Kombination aus Detektoren für toxische und brennbare Gase, die an lokale Schalttafeln angeschlossen sind - diese werden normalerweise als Teil eines Kühlsystems geliefert. Fest installierte Systeme können auch für Prozessüberwachungen und Lüftungssteuerung verwendet werden.

Brauerei- und Getränkeindustrie

Das Risiko bei der Herstellung von Alkohol besteht in der Verwendung von großen Produktionsanlagen, die sowohl im Betrieb als auch aufgrund der Dämpfe und Abgase, die in die Atmosphäre gelangen und die Umwelt belasten können, potenziell schädlich sein können. Ethanol ist die Hauptbrennstoffgefahr, die in Brennereien und Brauereien besteht, und zwar wegen der von Ethanol erzeugten Dämpfe und Abgase. Ethanoldämpfe können aus undichten Stellen in Tanks, Fässern, Umfüllpumpen, Rohren und flexiblen Schläuchen austreten und stellen eine sehr reale Brand- und Explosionsgefahr für die Beschäftigten in der Brennereiindustrie dar. Sobald die Gase und Dämpfe in die Atmosphäre entweichen, können sie sich schnell aufbauen und eine Gefahr für die Gesundheit der Arbeiter darstellen. Dabei ist jedoch zu beachten, dass die Konzentration, die erforderlich ist, um die Gesundheit der Arbeitnehmer zu schädigen, sehr hoch sein muss. Die größere Gefahr, die von Ethanol in der Luft ausgeht, ist daher die Gefahr einer Explosion. Diese Tatsache unterstreicht die Bedeutung von Gaswarngeräten, um eventuelle Leckagen sofort zu erkennen und zu beheben, um katastrophale Folgen zu vermeiden.

Verpackung, Transport und Abgabe

Sobald der Wein in Flaschen abgefüllt und das Bier verpackt ist, müssen sie an die entsprechenden Verkaufsstellen geliefert werden. Dazu gehören in der Regel Vertriebsunternehmen, Lagerhäuser und - im Falle von Brauereien - Fuhrleute. Bei Bier und alkoholfreien Getränken wird Kohlendioxid oder ein Gemisch aus Kohlendioxid und Stickstoff verwendet, um das Getränk an den "Zapfhahn" zu bringen. Diese Gase verleihen dem Bier auch einen länger anhaltenden Schaum und verbessern die Qualität und den Geschmack.

Auch wenn das Getränk zur Auslieferung bereit ist, bleiben gasbedingte Gefahren bestehen. Diese entstehen bei jeder Tätigkeit in Räumen, die Druckgasflaschen enthalten, aufgrund des Risikos eines erhöhten Kohlendioxidgehalts oder eines verminderten Sauerstoffgehalts (aufgrund eines hohen Stickstoffgehalts). Kohlendioxid (CO2) kommt in der Atmosphäre natürlich vor (0,04 %).CO2 ist farb- und geruchlos, schwerer als Luft und sinkt beim Entweichen auf den Boden.CO2 sammelt sich in Kellern und am Boden von Behältern und geschlossenen Räumen wie Tanks und Silos.CO2 wird in großen Mengen während der Gärung erzeugt. Außerdem wird es bei der Karbonisierung in Getränke eingeleitet.

Um mehr über die Gasgefahren in der Lebensmittel- und Getränkeherstellung zu erfahren, besuchen Sie unsereIndustrie-Seitefür weitere Informationen.

Risiken der Sauerstoffverarmung durch Stickstoff bei der pharmazeutischen Verarbeitung

In der Luft beträgt die normale Sauerstoffkonzentration 21 %, während Stickstoff zusammen mit einigen Spurengasen 78 % der restlichen Atmosphäre ausmacht. Inerte Gase wie Stickstoff, Argon und Helium sind zwar nicht giftig, tragen aber nicht zur menschlichen Atmung bei. Sie sind geruchlos, farblos und geschmacklos und daher nicht nachweisbar. Ein Anstieg des Volumens anderer Gase, bei denen es sich nicht um Sauerstoff handelt, kann dazu führen, dass Menschen zu ersticken drohen, was zu schweren Verletzungen oder sogar zum Tod führen kann. Dieser Entzug von Sauerstoff in der Atemluft macht einen Sauerstoffmangelsensor nicht nur nützlich, sondern lebenswichtig.

Wie wird Stickstoff zur Kontrolle des Sauerstoffgehalts eingesetzt?

Stickstoff (N2) kann zur Kontrolle des Sauerstoffgehalts in einem Labor verwendet werden. In der pharmazeutischen Industrie wird Stickstoff beim Umfüllen von Produkten oder beim Verpackungsprozess eingesetzt. Stickstoff wird verwendet, um der Verpackung vor dem Versiegeln den Sauerstoff zu entziehen, um sicherzustellen, dass das Produkt erhalten bleibt. Aus diesem Grund ist der Bedarf an einem Sauerstoffmangelmonitor sehr wichtig. Fest installierte oder tragbare Geräte sind in der Lage, den Sauerstoffgehalt in einem Labor, einer Anlage oder einem Versorgungsraum zu ermitteln. Fest installierte Gaswarnsysteme eignen sich für die Überwachung eines Bereichs oder Raums, während ein tragbares Gaswarngerät so konzipiert ist, dass es von der Person im Atembereich getragen wird.

Was sind die Risiken des Sauerstoffmangels?

Es gibt drei Hauptgründe, warum Monitore benötigt werden: Es ist wichtig, Sauerstoffmangel oder -anreicherung zu erkennen, da zu wenig Sauerstoff die Funktionsfähigkeit des menschlichen Körpers beeinträchtigen kann, was dazu führt, dass der Arbeitnehmer das Bewusstsein verliert. Wenn der Sauerstoffgehalt nicht wieder auf ein normales Niveau gebracht werden kann, besteht für den Arbeitnehmer die Gefahr des Todes. Eine Atmosphäre ist mangelhaft, wenn die O2-Konzentration weniger als 19,5 % beträgt. Folglich ist eine Umgebung mit zu viel Sauerstoff ebenso gefährlich, da sie ein stark erhöhtes Brand- und Explosionsrisiko birgt; dies ist der Fall, wenn die O2-Konzentration über 23,5 % liegt.

Bei unzureichender Belüftung kann der Sauerstoffgehalt durch Atmung und Verbrennungsprozesse überraschend schnell sinken. Der Sauerstoffgehalt kann auch durch Verdünnung mit anderen Gasen wie Kohlendioxid (ebenfalls ein giftiges Gas), Stickstoff oder Helium sowie durch chemische Absorption bei Korrosionsprozessen und ähnlichen Reaktionen verringert werden. Sauerstoffsensoren sollten in Umgebungen eingesetzt werden, in denen eines dieser potenziellen Risiken besteht. Bei der Platzierung von Sauerstoffsensoren muss die Dichte des Verdünnungsgases und der "Atembereich" (Nasenhöhe) berücksichtigt werden. Helium zum Beispiel ist leichter als Luft und verdrängt den Sauerstoff von der Decke nach unten, während Kohlendioxid, das schwerer als Luft ist, den Sauerstoff überwiegend unterhalb der Atemzone verdrängt. Bei der Platzierung der Sensoren müssen auch die Belüftungsmuster berücksichtigt werden.

Sauerstoffmonitore geben in der Regel einen Alarm der ersten Stufe aus, wenn die Sauerstoffkonzentration auf 19 % des Volumens gesunken ist. Die meisten Menschen fangen an, sich abnormal zu verhalten, wenn der Wert 17 % erreicht, daher wird bei diesem Wert in der Regel ein zweiter Alarm ausgelöst. In Atmosphären mit einem Sauerstoffgehalt zwischen 10 % und 13 % kann es sehr schnell zur Bewusstlosigkeit kommen; der Tod tritt sehr schnell ein, wenn der Sauerstoffgehalt unter 6 % des Volumens sinkt. Sauerstoffsensoren werden häufig in Laboratorien installiert, in denen Inertgase (z. B. Stickstoff) in geschlossenen Räumen gelagert werden.

Wie erkennen stationäre oder tragbare Geräte Sauerstoff?

Crowcon bietet eine Reihe von tragbaren Messgeräten an; Gas-Pro Der tragbare Multigasdetektor ermöglicht die Erkennung von bis zu 5 Gasen in einer kompakten und robusten Lösung. Es verfügt über ein leicht ablesbares, oben angebrachtes Display, das die Bedienung erleichtert und optimal für die Gasdetektion in engen Räumen geeignet ist. Eine optionale interne Pumpe, die mit der Durchflussplatte aktiviert wird, vereinfacht das Testen vor dem Betreten des Raumes und ermöglicht es Gas-Pro , entweder im Pump- oder im Diffusionsmodus getragen zu werden.

T4 Das tragbare 4-in-1-Gaswarngerät bietet einen wirksamen Schutz vor Sauerstoffmangel. T4 Multi-Gaswarngerät verfügt jetzt über eine verbesserte Erkennung von Pentan, Hexan und anderen langkettigen Kohlenwasserstoffen. Es bietet Ihnen Konformität, Robustheit und niedrige Betriebskosten in einer einfach zu bedienenden Lösung. T4 enthält eine breite Palette von leistungsstarken Funktionen, die den täglichen Gebrauch einfacher und sicherer machen.

Der ortsfeste Detektor von Crowcon XgardIQ ist ein intelligenter und vielseitiger ortsfester Detektor und Sender, der mit der gesamten Palette der Sensortechnologien von Crowcon kompatibel ist. Er ist mit einer Vielzahl von Sensoren für die Erkennung von brennbaren, toxischen, Sauerstoff- oder H2S-Gasen erhältlich. Das Gerät liefert standardmäßig analoge 4-20-mA- und RS-485-Modbus-Signale. XgardIQ ist optional mit Alarm- und Störungsrelais sowie HART-Kommunikation erhältlich. Die 316er-Edelstähle sind mit drei M20- oder 1/2 "NPT-Kabeleinführungen erhältlich. Dieses Gerät ist auch als (SIL-2) Sicherheitsintegritätsstufe 2 zertifizierter ortsfester Detektor.