Überblick über die Industrie: Abfall zu Energie

In der Abfallverwertungsindustrie werden verschiedene Abfallbehandlungsverfahren eingesetzt. Feste Siedlungs- und Industrieabfälle werden in Strom und manchmal auch in Wärme für die industrielle Verarbeitung und Fernwärmesysteme umgewandelt. Das Hauptverfahren ist natürlich die Verbrennung, aber auch Zwischenschritte wie Pyrolyse, Vergasung und anaerobe Vergärung werden manchmal eingesetzt, um den Abfall in nützliche Nebenprodukte umzuwandeln, die dann zur Stromerzeugung durch Turbinen oder andere Anlagen genutzt werden. Diese Technologie findet weltweit immer mehr Anerkennung als umweltfreundlichere und sauberere Energieform als die herkömmliche Verbrennung fossiler Brennstoffe und als Mittel zur Verringerung der Abfallproduktion.

Arten der Energiegewinnung aus Abfällen

Verbrennung

Die Verbrennung ist ein Abfallbehandlungsverfahren, bei dem energiereiche Stoffe, die in den Abfällen enthalten sind, verbrannt werden, und zwar in der Regel bei hohen Temperaturen um 1000 Grad C. Industrieanlagen für die Abfallverbrennung werden gemeinhin als Müllverbrennungsanlagen bezeichnet und sind oft selbst große Kraftwerke. Die Verbrennung und andere Hochtemperatur-Abfallbehandlungssysteme werden häufig als "thermische Behandlung" bezeichnet. Während des Prozesses wird der Abfall in Wärme und Dampf umgewandelt, die zum Antrieb einer Turbine verwendet werden können, um Strom zu erzeugen. Der Wirkungsgrad dieser Methode liegt derzeit bei etwa 15-29 %, ist aber noch ausbaufähig.

Pyrolyse

Die Pyrolyse ist ein anderes Abfallbehandlungsverfahren, bei dem die Zersetzung fester Kohlenwasserstoffabfälle, in der Regel Kunststoffe, bei hohen Temperaturen unter Ausschluss von Sauerstoff und in einer Atmosphäre aus Inertgasen erfolgt. Diese Behandlung wird in der Regel bei oder über 500 °C durchgeführt, wodurch genügend Wärme entsteht, um die langkettigen Moleküle, einschließlich der Biopolymere, in einfachere Kohlenwasserstoffe mit geringerer Masse zu zerlegen.

Vergasung

Dieses Verfahren wird eingesetzt, um aus schwereren Brennstoffen und aus brennbaren Abfällen gasförmige Brennstoffe herzustellen. Bei diesem Verfahren werden kohlenstoffhaltige Stoffe bei hoher Temperatur in Kohlendioxid (CO2), Kohlenmonoxid (CO) und eine geringe Menge Wasserstoff umgewandelt. Bei diesem Prozess entsteht ein Gas, das eine gute Quelle für nutzbare Energie ist. Dieses Gas kann dann zur Erzeugung von Strom und Wärme genutzt werden.

Plasma-Lichtbogenvergasung

Bei diesem Verfahren wird ein Plasmabrenner verwendet, um energiereiches Material zu ionisieren. Es entsteht ein Synthesegas, das zur Herstellung von Düngemitteln oder zur Stromerzeugung verwendet werden kann. Diese Methode ist eher ein Abfallbeseitigungsverfahren als ein ernsthaftes Mittel zur Gaserzeugung, denn sie verbraucht oft so viel Energie, wie das erzeugte Gas liefern kann.

Gründe für Waste to Energy

Da diese Technologie im Hinblick auf die Abfallproduktion und die Nachfrage nach sauberer Energie weltweit immer mehr Anerkennung findet.

  • Vermeidung von Methanemissionen aus Mülldeponien
  • Kompensiert Treibhausgasemissionen aus der Stromerzeugung mit fossilen Brennstoffen
  • Rückgewinnung und Wiederverwertung wertvoller Ressourcen, wie z. B. Metalle
  • Erzeugt saubere, zuverlässige, grundlastfähige Energie und Dampf
  • Verbraucht weniger Land pro Megawatt als andere erneuerbare Energiequellen
  • Nachhaltige und beständige erneuerbare Brennstoffquelle (im Vergleich zu Wind und Sonne)
  • Vernichtet chemische Abfälle
  • Führt zu niedrigen Emissionswerten, die in der Regel weit unter den zulässigen Werten liegen
  • Zerstört katalytisch Stickoxide (NOx), Dioxine und Furane mit Hilfe einer selektiven katalytischen Reduktion (SCR)

Was sind die Gasgefahren?

Es gibt viele Verfahren zur Umwandlung von Abfällen in Energie, darunter Biogasanlagen, Müllverwertung, Sickerwasserpools, Verbrennung und Wärmerückgewinnung. Alle diese Verfahren bergen Gasgefahren für diejenigen, die in diesen Umgebungen arbeiten.

In einer Biogasanlage wird Biogas erzeugt. Dieses entsteht, wenn organische Materialien wie landwirtschaftliche und Lebensmittelabfälle von Bakterien in einer sauerstoffarmen Umgebung abgebaut werden. Dieser Prozess wird anaerobe Vergärung genannt. Wenn das Biogas aufgefangen wurde, kann es zur Erzeugung von Wärme und Strom für Motoren, Mikroturbinen und Brennstoffzellen verwendet werden. Natürlich hat Biogas einen hohen Methangehalt und enthält auch viel Schwefelwasserstoff (H2S), was zu mehreren ernsthaften Gasgefahren führt. (In unserem Blog finden Sie weitere Informationen über Biogas). Es besteht jedoch ein erhöhtes Brand- und Explosionsrisiko, Gefahr in engen Räumen, Erstickungsgefahr, Sauerstoffmangel und Gasvergiftung, meist durchH2Soder Ammoniak (NH3). Arbeiter in einer Biogasanlage müssen über persönliche Gasdetektoren verfügen, die brennbare Gase, Sauerstoff und giftige Gase wieH2Sund CO erkennen und überwachen.

In einer Müllsammlung findet man häufig das brennbare Gas Methan (CH4) und die giftigen GaseH2S, CO und NH3. Das liegt daran, dass die Müllbunker mehrere Meter unter der Erde gebaut sind und die Gasdetektoren in der Regel hoch oben in den Bereichen angebracht sind, was die Wartung und Kalibrierung dieser Detektoren erschwert. In vielen Fällen ist ein Probenahmesystem eine praktische Lösung, da die Luftproben an einen geeigneten Ort gebracht und gemessen werden können.

Sickerwasser ist eine Flüssigkeit, die aus einem Gebiet, in dem Abfälle gesammelt werden, abfließt (auslaugt), wobei Sickerwasserpools eine Reihe von Gasgefahren darstellen. Dazu gehören die Gefahr von brennbarem Gas (Explosionsgefahr),H2S(Gift, Korrosion), Ammoniak (Gift, Korrosion), CO (Gift) und ungünstige Sauerstoffwerte (Erstickungsgefahr). Das Sickerwasserbecken und die zum Sickerwasserbecken führenden Gänge müssen auf CH4,H2S, CO, NH3, Sauerstoff (O2) undCO2 überwacht werden. Entlang der Wege zum Sickerwasserbecken sollten verschiedene Gasdetektoren angebracht werden, deren Ausgänge mit externen Kontrolltafeln verbunden sind.

Bei der Verbrennung und Wärmerückgewinnung müssenO2 und die giftigen Gase Schwefeldioxid (SO2) und CO nachgewiesen werden. Diese Gase stellen eine Gefahr für alle dar, die in Kesselhäusern arbeiten.

Ein weiterer Prozess, der als gasgefährdend eingestuft wird, ist ein Abluftwäscher. Das Verfahren ist gefährlich, da die Rauchgase aus der Verbrennung hochgiftig sind. Das liegt daran, dass es Schadstoffe wie Stickstoffdioxid (NO2), SO2, Chlorwasserstoff (HCL) und Dioxin enthält. NO2 und SO2 sind wichtige Treibhausgase, während HCL alle hier erwähnten Gasarten für die menschliche Gesundheit schädlich sind.

Wenn Sie mehr über die Abfallverwertungsindustrie erfahren möchten, besuchen Sie unsere Branchenseite.

Warum ist die Gasdetektion für Getränkeschankanlagen so wichtig?

Schankgas, auch bekannt als Biergas, Fassgas, Kellergas oder Kneipengas, wird in Bars und Restaurants sowie im Freizeit- und Gaststättengewerbe verwendet. Die Verwendung von Zapfgas beim Ausschank von Bier und alkoholfreien Getränken ist weltweit üblich. Kohlendioxid (CO2) oder ein Gemisch ausCO2 und Stickstoff (N2) wird verwendet, um ein Getränk an den "Zapfhahn" zu bringen.CO2 als Keg-Gas trägt dazu bei, den Inhalt steril und in der richtigen Zusammensetzung zu halten, was den Zapfvorgang erleichtert.

Gasgefahren

Auch wenn das Getränk zur Auslieferung bereit ist, bleiben gasbedingte Gefahren bestehen. Diese entstehen bei jeder Tätigkeit in Räumlichkeiten, die Druckgasflaschen enthalten, aufgrund des Risikos der Beschädigung beim Bewegen oder Auswechseln dieser Flaschen. Darüber hinaus besteht nach der Freisetzung die Gefahr eines erhöhten Kohlendioxidgehalts oder eines Sauerstoffmangels (aufgrund eines höheren Stickstoff- oder Kohlendioxidgehalts).

CO2 kommt natürlich in der Atmosphäre vor (0,04 %) und ist farb- und geruchlos. Es ist schwerer als Luft und sinkt, wenn es entweicht, auf den Boden.CO2 sammelt sich in Kellern, auf dem Boden von Behältern und in geschlossenen Räumen wie Tanks und Silos.CO2 entsteht in großen Mengen während der Gärung. Es wird auch während der Kohlensäurebildung in Getränke eingeleitet, um die Bläschen zu erzeugen. Zu den ersten Symptomen einer Exposition gegenüber hohen Kohlendioxidkonzentrationen gehören Schwindel, Kopfschmerzen und Verwirrung, gefolgt von Bewusstlosigkeit. Im Extremfall kann es zu Unfällen und Todesfällen kommen, wenn eine erhebliche Menge Kohlendioxid in ein geschlossenes oder schlecht belüftetes Volumen entweicht. Ohne geeignete Erkennungsmethoden und -verfahren könnte jeder, der diesen Raum betritt, gefährdet sein. Außerdem könnte das Personal in den umliegenden Räumen unter den oben genannten Frühsymptomen leiden.

Stickstoff (N2) wird häufig beim Ausschank von Bier, insbesondere von Stouts, Pale Ales und Porters, verwendet und verhindert die Oxidation oder Verunreinigung des Biers mit scharfen Aromen. Stickstoff hilft, die Flüssigkeit von einem Tank in einen anderen zu befördern, und kann auch in Fässer eingeleitet werden, um sie für die Lagerung und den Versand unter Druck zu setzen. Dieses Gas ist nicht giftig, verdrängt aber den Sauerstoff in der Atmosphäre, was bei einem Gasleck eine Gefahr darstellen kann, weshalb eine genaue Gasdetektion entscheidend ist.

Da Stickstoff den Sauerstoffgehalt verringern kann, sollten Sauerstoffsensoren in Umgebungen eingesetzt werden, in denen eines dieser potenziellen Risiken besteht. Bei der Platzierung von Sauerstoffsensoren muss die Dichte des Verdünnungsgases und der "Atembereich" (Nasenhöhe) berücksichtigt werden. Auch die Belüftungsmuster müssen bei der Platzierung der Sensoren berücksichtigt werden. Handelt es sich bei dem verdünnenden Gas beispielsweise um Stickstoff, ist es sinnvoll, die Sensoren in Schulterhöhe zu platzieren. Handelt es sich bei dem verdünnenden Gas jedoch um Kohlendioxid, sollten die Sensoren in Kniehöhe angebracht werden.

Die Bedeutung der Gasdetektion in Getränkeschankanlagen

Leider kommt es in der Getränkeindustrie immer wieder zu Unfällen und Todesfällen aufgrund von Gasgefahren. Daher sind im Vereinigten Königreich die Grenzwerte für die sichere Exposition am Arbeitsplatz von der Gesundheits- und Sicherheitsbehörde (Health and Safety Executive, HSE ) in der Dokumentation zur Kontrolle gesundheitsgefährdender Stoffe (Control of Substances Hazardous to Health, COSHH) kodifiziert. Für Kohlendioxid gilt ein 8-Stunden-Grenzwert von 0,5 % und ein 15-Minuten-Grenzwert von 1,5 Volumenprozent. Gaswarnsysteme tragen dazu bei, Gasrisiken zu mindern, und ermöglichen es Getränkeherstellern, Abfüllbetrieben und Betreibern von Bars und Kneipen, die Sicherheit des Personals zu gewährleisten und die Einhaltung gesetzlicher Grenzwerte oder genehmigter Verhaltensregeln nachzuweisen.

Sauerstoffverarmung

Die normale Sauerstoffkonzentration in der Atmosphäre beträgt etwa 20,9 % des Volumens. Ein zu niedriger Sauerstoffgehalt kann gefährlich sein (Sauerstoffmangel). Bei unzureichender Belüftung kann der Sauerstoffgehalt durch Atmung und Verbrennungsprozesse erstaunlich schnell sinken.

Der Sauerstoffgehalt kann auch durch die Verdünnung durch andere Gase wie Kohlendioxid (ebenfalls ein giftiges Gas), Stickstoff oder Helium sowie durch chemische Absorption bei Korrosionsprozessen und ähnlichen Reaktionen verringert werden. Sauerstoffsensoren sollten in Umgebungen eingesetzt werden, in denen eines dieser potenziellen Risiken besteht. Bei der Platzierung von Sauerstoffsensoren muss die Dichte des Verdünnungsgases und der "Atem"-Zone (Nasenhöhe) berücksichtigt werden. Sauerstoffmonitore lösen in der Regel einen Alarm der ersten Stufe aus, wenn die Sauerstoffkonzentration auf 19 % des Volumens gesunken ist. Die meisten Menschen beginnen, sich abnormal zu verhalten, wenn der Wert 17 % erreicht, daher wird bei diesem Schwellenwert in der Regel ein zweiter Alarm ausgelöst. In Atmosphären mit einem Sauerstoffgehalt zwischen 10 und 13 % kann es sehr schnell zu Bewusstlosigkeit kommen; der Tod tritt sehr schnell ein, wenn der Sauerstoffgehalt unter 6 % Volumen sinkt.

Unsere Lösung

Die Gasdetektion kann sowohl in Form von festen als auch von tragbaren Detektoren erfolgen. Die Installation eines ortsfesten Gaswarngeräts kann in größeren Räumen wie Kellern oder Werksräumen von Vorteil sein, um einen kontinuierlichen Schutz des Bereichs und des Personals 24 Stunden am Tag zu gewährleisten. Für die Sicherheit der Mitarbeiter in und um Flaschenlager und in Räumen, die als beengte Räume ausgewiesen sind, kann jedoch ein tragbarer Melder besser geeignet sein. Dies gilt insbesondere für Kneipen und Getränkemärkte, um die Sicherheit von Mitarbeitern und Personen zu gewährleisten, die sich in dieser Umgebung nicht auskennen, wie z. B. Lieferfahrer, Verkaufsteams oder Techniker. Das tragbare Gerät kann einfach an der Kleidung befestigt werden und erkenntCO2-Taschen durch Alarme und visuelle Signale, die darauf hinweisen, dass der Benutzer den Bereich sofort verlassen sollte.

Für weitere Informationen über die Gaserkennung in Getränkeschankanlagen wenden Sie sich bitte an unser Team.

Risiken der Sauerstoffverarmung durch Stickstoff bei der pharmazeutischen Verarbeitung

In der Luft beträgt die normale Sauerstoffkonzentration 21 %, während Stickstoff zusammen mit einigen Spurengasen 78 % der restlichen Atmosphäre ausmacht. Inerte Gase wie Stickstoff, Argon und Helium sind zwar nicht giftig, tragen aber nicht zur menschlichen Atmung bei. Sie sind geruchlos, farblos und geschmacklos und daher nicht nachweisbar. Ein Anstieg des Volumens anderer Gase, bei denen es sich nicht um Sauerstoff handelt, kann dazu führen, dass Menschen zu ersticken drohen, was zu schweren Verletzungen oder sogar zum Tod führen kann. Dieser Entzug von Sauerstoff in der Atemluft macht einen Sauerstoffmangelsensor nicht nur nützlich, sondern lebenswichtig.

Wie wird Stickstoff zur Kontrolle des Sauerstoffgehalts eingesetzt?

Stickstoff (N2) kann zur Kontrolle des Sauerstoffgehalts in einem Labor verwendet werden. In der pharmazeutischen Industrie wird Stickstoff beim Umfüllen von Produkten oder beim Verpackungsprozess eingesetzt. Stickstoff wird verwendet, um der Verpackung vor dem Versiegeln den Sauerstoff zu entziehen, um sicherzustellen, dass das Produkt erhalten bleibt. Aus diesem Grund ist der Bedarf an einem Sauerstoffmangelmonitor sehr wichtig. Fest installierte oder tragbare Geräte sind in der Lage, den Sauerstoffgehalt in einem Labor, einer Anlage oder einem Versorgungsraum zu ermitteln. Fest installierte Gaswarnsysteme eignen sich für die Überwachung eines Bereichs oder Raums, während ein tragbares Gaswarngerät so konzipiert ist, dass es von der Person im Atembereich getragen wird.

Was sind die Risiken des Sauerstoffmangels?

Es gibt drei Hauptgründe, warum Monitore benötigt werden: Es ist wichtig, Sauerstoffmangel oder -anreicherung zu erkennen, da zu wenig Sauerstoff die Funktionsfähigkeit des menschlichen Körpers beeinträchtigen kann, was dazu führt, dass der Arbeitnehmer das Bewusstsein verliert. Wenn der Sauerstoffgehalt nicht wieder auf ein normales Niveau gebracht werden kann, besteht für den Arbeitnehmer die Gefahr des Todes. Eine Atmosphäre ist mangelhaft, wenn die O2-Konzentration weniger als 19,5 % beträgt. Folglich ist eine Umgebung mit zu viel Sauerstoff ebenso gefährlich, da sie ein stark erhöhtes Brand- und Explosionsrisiko birgt; dies ist der Fall, wenn die O2-Konzentration über 23,5 % liegt.

Bei unzureichender Belüftung kann der Sauerstoffgehalt durch Atmung und Verbrennungsprozesse überraschend schnell sinken. Der Sauerstoffgehalt kann auch durch Verdünnung mit anderen Gasen wie Kohlendioxid (ebenfalls ein giftiges Gas), Stickstoff oder Helium sowie durch chemische Absorption bei Korrosionsprozessen und ähnlichen Reaktionen verringert werden. Sauerstoffsensoren sollten in Umgebungen eingesetzt werden, in denen eines dieser potenziellen Risiken besteht. Bei der Platzierung von Sauerstoffsensoren muss die Dichte des Verdünnungsgases und der "Atembereich" (Nasenhöhe) berücksichtigt werden. Helium zum Beispiel ist leichter als Luft und verdrängt den Sauerstoff von der Decke nach unten, während Kohlendioxid, das schwerer als Luft ist, den Sauerstoff überwiegend unterhalb der Atemzone verdrängt. Bei der Platzierung der Sensoren müssen auch die Belüftungsmuster berücksichtigt werden.

Sauerstoffmonitore geben in der Regel einen Alarm der ersten Stufe aus, wenn die Sauerstoffkonzentration auf 19 % des Volumens gesunken ist. Die meisten Menschen fangen an, sich abnormal zu verhalten, wenn der Wert 17 % erreicht, daher wird bei diesem Wert in der Regel ein zweiter Alarm ausgelöst. In Atmosphären mit einem Sauerstoffgehalt zwischen 10 % und 13 % kann es sehr schnell zur Bewusstlosigkeit kommen; der Tod tritt sehr schnell ein, wenn der Sauerstoffgehalt unter 6 % des Volumens sinkt. Sauerstoffsensoren werden häufig in Laboratorien installiert, in denen Inertgase (z. B. Stickstoff) in geschlossenen Räumen gelagert werden.

Wie erkennen stationäre oder tragbare Geräte Sauerstoff?

Crowcon bietet eine Reihe von tragbaren Messgeräten an; Gas-Pro Der tragbare Multigasdetektor ermöglicht die Erkennung von bis zu 5 Gasen in einer kompakten und robusten Lösung. Es verfügt über ein leicht ablesbares, oben angebrachtes Display, das die Bedienung erleichtert und optimal für die Gasdetektion in engen Räumen geeignet ist. Eine optionale interne Pumpe, die mit der Durchflussplatte aktiviert wird, vereinfacht das Testen vor dem Betreten des Raumes und ermöglicht es Gas-Pro , entweder im Pump- oder im Diffusionsmodus getragen zu werden.

T4 Das tragbare 4-in-1-Gaswarngerät bietet einen wirksamen Schutz vor Sauerstoffmangel. T4 Multi-Gaswarngerät verfügt jetzt über eine verbesserte Erkennung von Pentan, Hexan und anderen langkettigen Kohlenwasserstoffen. Es bietet Ihnen Konformität, Robustheit und niedrige Betriebskosten in einer einfach zu bedienenden Lösung. T4 enthält eine breite Palette von leistungsstarken Funktionen, die den täglichen Gebrauch einfacher und sicherer machen.

Der ortsfeste Detektor von Crowcon XgardIQ ist ein intelligenter und vielseitiger ortsfester Detektor und Sender, der mit der gesamten Palette der Sensortechnologien von Crowcon kompatibel ist. Er ist mit einer Vielzahl von Sensoren für die Erkennung von brennbaren, toxischen, Sauerstoff- oder H2S-Gasen erhältlich. Das Gerät liefert standardmäßig analoge 4-20-mA- und RS-485-Modbus-Signale. XgardIQ ist optional mit Alarm- und Störungsrelais sowie HART-Kommunikation erhältlich. Die 316er-Edelstähle sind mit drei M20- oder 1/2 "NPT-Kabeleinführungen erhältlich. Dieses Gerät ist auch als (SIL-2) Sicherheitsintegritätsstufe 2 zertifizierter ortsfester Detektor.

Was ist so wichtig am Messbereich meines Monitors?

Was ist ein Monitor-Messbereich?

Die Gasüberwachung wird in der Regel im PPM-Bereich (parts per million), in Volumenprozenten oder in Prozenten der UEG (untere Explosionsgrenze) gemessen, so dass Sicherheitsbeauftragte sicherstellen können, dass ihre Mitarbeiter keinen potenziell schädlichen Mengen an Gasen oder Chemikalien ausgesetzt sind. Die Gasüberwachung kann aus der Ferne erfolgen, um sicherzustellen, dass der Bereich sauber ist, bevor ein Arbeiter den Bereich betritt, sowie durch ein fest installiertes Gerät oder ein am Körper getragenes tragbares Gerät, um mögliche Lecks oder gefährliche Bereiche während der Arbeitsschicht zu erkennen.

Warum sind Gaswarngeräte unerlässlich, und in welchem Bereich liegen Mängel oder Anreicherungen?

Es gibt drei Hauptgründe, warum Monitore benötigt werden: Es ist wichtig, Sauerstoffmangel oder -anreicherung zu erkennen, da zu wenig Sauerstoff die Funktionsfähigkeit des menschlichen Körpers beeinträchtigen kann, was dazu führt, dass der Arbeitnehmer das Bewusstsein verliert. Wenn der Sauerstoffgehalt nicht wieder auf ein normales Niveau gebracht werden kann, besteht für den Arbeitnehmer die Gefahr des Todes. Eine Atmosphäre gilt als mangelhaft, wenn die O2-Konzentration weniger als 19,5 % beträgt. Folglich ist eine Umgebung mit zu viel Sauerstoff ebenso gefährlich, da sie ein stark erhöhtes Brand- und Explosionsrisiko birgt; dies ist der Fall, wenn die O2-Konzentration über 23,5 % liegt.

Überwachungsgeräte sind erforderlich, wenn toxische Gase vorhanden sind, die dem menschlichen Körper erheblichen Schaden zufügen können. Schwefelwasserstoff (H2S) ist ein klassisches Beispiel dafür. H2S wird von Bakterien freigesetzt, wenn sie organisches Material abbauen., Da dieses Gas schwerer als Luft ist, kann es die Luft verdrängen, was zu einer möglichen Schädigung der anwesenden Personen führen kann, und ist außerdem ein Breitbandgift.

Darüber hinaus sind Gaswarngeräte in der Lage, brennbare Gase zu erkennen. Gefahren, die durch den Einsatz eines Gaswarngerätes vermieden werden können, bestehen nicht nur durch das Einatmen, sondern auch durch die Verbrennung. Gaswarngeräte mit einem UEG-Bereichssensor erkennens und warnen vor brennbaren Gasen.

Warum sind sie wichtig und wie funktionieren sie?

Der Messbereich ist der gesamte Bereich, den das Gerät unter normalen Bedingungen messen kann. Der Begriff "normal" bedeutet, dass es keine Überdruckgrenzen (OPL) gibt und der maximale Arbeitsdruck (MWP) eingehalten wird. Diese Werte sind in der Regel auf der Produktwebsite oder im Datenblatt zu finden. Der Messbereich kann auch berechnet werden, indem die Differenz zwischen der oberen Bereichsgrenze (URL) und der unteren Bereichsgrenze (LRL) des Geräts ermittelt wird. Bei der Bestimmung der Reichweite des Detektors geht es nicht um die Ermittlung der Quadratmeterzahl oder eines festen Radius um den Detektor, sondern um die Ermittlung der Nachgiebigkeit oder Streuung des überwachten Bereichs. Dieser Prozess findet statt, wenn die Sensoren auf die Gase reagieren, die durch die Membranen des Detektors dringen. Daher sind die Geräte in der Lage, Gase zu erkennen, die in unmittelbarem Kontakt mit dem Monitor stehen. Dies verdeutlicht, wie wichtig es ist, den Messbereich von Gaswarngeräten zu kennen, und unterstreicht ihre Bedeutung für die Sicherheit der in diesen Umgebungen tätigen Arbeitnehmer.

Gibt es irgendwelche Produkte, die verfügbar sind?

Crowcon bietet eine Reihe von tragbaren Überwachungsgeräten an; das Gas-Pro tragbare Multigasdetektor bietet die Detektion von bis zu 5 Gasen in einer kompakten und robusten Lösung. Es verfügt über ein leicht ablesbares, oben angebrachtes Display, das die Bedienung erleichtert und optimal für die Gasdetektion in engen Räumen geeignet ist. Eine optionale interne Pumpe, die mit der Durchflussplatte aktiviert wird, vereinfacht das Testen vor dem Betreten des Raums und ermöglicht es Gas-Pro , entweder im Pump- oder im Diffusionsmodus getragen zu werden.

Das T4 tragbare 4-in-1-Gaswarngerät bietet wirksamen Schutz vor 4 häufig auftretenden Gasgefahren: Kohlenmonoxid, Schwefelwasserstoff, brennbare Gase und Sauerstoffmangel. Das Multigaswarngerät T4 verfügt jetzt über eine verbesserte Erkennung von Pentan, Hexan und anderen langkettigen Kohlenwasserstoffen. Das Gerät bietet Ihnen Konformität, Robustheit und niedrige Betriebskosten in einer einfach zu bedienenden Lösung. T4 enthält eine breite Palette leistungsstarker Funktionen, die den täglichen Gebrauch einfacher und sicherer machen.

Das Gasman tragbare Einzelgaswarngerät ist kompakt und leicht, aber dennoch robust und für die härtesten Industrieumgebungen gerüstet. Es lässt sich mit einer einzigen Taste bedienen und verfügt über eine große, leicht ablesbare Anzeige der Gaskonzentration sowie über akustische, optische und vibrierende Alarme.

Crowcon bietet auch ein flexibles Sortiment an ortsfesten Gasdetektoren an, die brennbare, toxische und sauerstoffhaltige Gase erkennen, ihr Vorhandensein melden und Alarme oder zugehörige Geräte aktivieren können. Wir verwenden eine Vielzahl von Mess-, Schutz- und Kommunikationstechnologien, und unsere ortsfesten Gasdetektoren haben sich in vielen schwierigen Umgebungen bewährt, z. B. bei der Öl- und Gasexploration, der Wasseraufbereitung, in Chemieanlagen und Stahlwerken. Diese ortsfesten Gasdetektoren werden in vielen Anwendungen eingesetzt, in denen Zuverlässigkeit, Verlässlichkeit und das Fehlen von Fehlalarmen entscheidend für eine effiziente und effektive Gasdetektion sind. Dazu gehören die Automobil- und Luft- und Raumfahrtindustrie, wissenschaftliche und Forschungseinrichtungen sowie medizinische, zivile und kommerzielle Anlagen mit hoher Auslastung.

Saphirjäger gerettet!

Die Minenjäger sind auf der Suche nach Saphiren. In dieser Folge geht es in den Südwesten Madagaskars, zu einem der wenigen Orte auf der Welt, wo eine einzige Mine Saphire in allen Farben des Regenbogens produzieren kann.

Nach dem Einsturz einer Wand ist der Sauerstoffmangel die größte Gefahr, der sie in diesen gefährlichen Umgebungen ausgesetzt sind - Tunnel, die seit einiger Zeit abgeriegelt sind, lang und eng sind und tief unter die Erde führen.

Leider geht dem Bergmann Fred der Sauerstoff aus, während er die erste schlammige Grube inspiziert. Sein Tetra 3 Gaswarngerät schlägt Alarm, so dass seine Freunde ihn schnell und sicher herausziehen können. Obwohl das Team hier nur ein kleines Budget zur Verfügung hat, ist klar, dass sie auf ein lebensrettendes Gaswarngerät nicht verzichten können!

Sehen Sie sich das Video hier an

Lesen Sie mehr über die Serie Mine Hunters und sehen Sie sich weitere Episodenan .

Erfahren Sie mehr über den Tetra 3 Gasdetektor und andere interessante Anwendungen wie die Vulkanforschung