Überblick über die Industrie: Abfall zu Energie

In der Abfallverwertungsindustrie werden verschiedene Abfallbehandlungsverfahren eingesetzt. Feste Siedlungs- und Industrieabfälle werden in Strom und manchmal auch in Wärme für die industrielle Verarbeitung und Fernwärmesysteme umgewandelt. Das Hauptverfahren ist natürlich die Verbrennung, aber auch Zwischenschritte wie Pyrolyse, Vergasung und anaerobe Vergärung werden manchmal eingesetzt, um den Abfall in nützliche Nebenprodukte umzuwandeln, die dann zur Stromerzeugung durch Turbinen oder andere Anlagen genutzt werden. Diese Technologie findet weltweit immer mehr Anerkennung als umweltfreundlichere und sauberere Energieform als die herkömmliche Verbrennung fossiler Brennstoffe und als Mittel zur Verringerung der Abfallproduktion.

Arten der Energiegewinnung aus Abfällen

Verbrennung

Die Verbrennung ist ein Abfallbehandlungsverfahren, bei dem energiereiche Stoffe, die in den Abfällen enthalten sind, verbrannt werden, und zwar in der Regel bei hohen Temperaturen um 1000 Grad C. Industrieanlagen für die Abfallverbrennung werden gemeinhin als Müllverbrennungsanlagen bezeichnet und sind oft selbst große Kraftwerke. Die Verbrennung und andere Hochtemperatur-Abfallbehandlungssysteme werden häufig als "thermische Behandlung" bezeichnet. Während des Prozesses wird der Abfall in Wärme und Dampf umgewandelt, die zum Antrieb einer Turbine verwendet werden können, um Strom zu erzeugen. Der Wirkungsgrad dieser Methode liegt derzeit bei etwa 15-29 %, ist aber noch ausbaufähig.

Pyrolyse

Die Pyrolyse ist ein anderes Abfallbehandlungsverfahren, bei dem die Zersetzung fester Kohlenwasserstoffabfälle, in der Regel Kunststoffe, bei hohen Temperaturen unter Ausschluss von Sauerstoff und in einer Atmosphäre aus Inertgasen erfolgt. Diese Behandlung wird in der Regel bei oder über 500 °C durchgeführt, wodurch genügend Wärme entsteht, um die langkettigen Moleküle, einschließlich der Biopolymere, in einfachere Kohlenwasserstoffe mit geringerer Masse zu zerlegen.

Vergasung

Dieses Verfahren wird eingesetzt, um aus schwereren Brennstoffen und aus brennbaren Abfällen gasförmige Brennstoffe herzustellen. Bei diesem Verfahren werden kohlenstoffhaltige Stoffe bei hoher Temperatur in Kohlendioxid (CO2), Kohlenmonoxid (CO) und eine geringe Menge Wasserstoff umgewandelt. Bei diesem Prozess entsteht ein Gas, das eine gute Quelle für nutzbare Energie ist. Dieses Gas kann dann zur Erzeugung von Strom und Wärme genutzt werden.

Plasma-Lichtbogenvergasung

Bei diesem Verfahren wird ein Plasmabrenner verwendet, um energiereiches Material zu ionisieren. Es entsteht ein Synthesegas, das zur Herstellung von Düngemitteln oder zur Stromerzeugung verwendet werden kann. Diese Methode ist eher ein Abfallbeseitigungsverfahren als ein ernsthaftes Mittel zur Gaserzeugung, denn sie verbraucht oft so viel Energie, wie das erzeugte Gas liefern kann.

Gründe für Waste to Energy

Da diese Technologie im Hinblick auf die Abfallproduktion und die Nachfrage nach sauberer Energie weltweit immer mehr Anerkennung findet.

  • Vermeidung von Methanemissionen aus Mülldeponien
  • Kompensiert Treibhausgasemissionen aus der Stromerzeugung mit fossilen Brennstoffen
  • Rückgewinnung und Wiederverwertung wertvoller Ressourcen, wie z. B. Metalle
  • Erzeugt saubere, zuverlässige, grundlastfähige Energie und Dampf
  • Verbraucht weniger Land pro Megawatt als andere erneuerbare Energiequellen
  • Nachhaltige und beständige erneuerbare Brennstoffquelle (im Vergleich zu Wind und Sonne)
  • Vernichtet chemische Abfälle
  • Führt zu niedrigen Emissionswerten, die in der Regel weit unter den zulässigen Werten liegen
  • Zerstört katalytisch Stickoxide (NOx), Dioxine und Furane mit Hilfe einer selektiven katalytischen Reduktion (SCR)

Was sind die Gasgefahren?

Es gibt viele Verfahren zur Umwandlung von Abfällen in Energie, darunter Biogasanlagen, Müllverwertung, Sickerwasserpools, Verbrennung und Wärmerückgewinnung. Alle diese Verfahren bergen Gasgefahren für diejenigen, die in diesen Umgebungen arbeiten.

In einer Biogasanlage wird Biogas erzeugt. Dieses entsteht, wenn organische Materialien wie landwirtschaftliche und Lebensmittelabfälle von Bakterien in einer sauerstoffarmen Umgebung abgebaut werden. Dieser Prozess wird anaerobe Vergärung genannt. Wenn das Biogas aufgefangen wurde, kann es zur Erzeugung von Wärme und Strom für Motoren, Mikroturbinen und Brennstoffzellen verwendet werden. Natürlich hat Biogas einen hohen Methangehalt und enthält auch viel Schwefelwasserstoff (H2S), was zu mehreren ernsthaften Gasgefahren führt. (In unserem Blog finden Sie weitere Informationen über Biogas). Es besteht jedoch ein erhöhtes Brand- und Explosionsrisiko, Gefahr in engen Räumen, Erstickungsgefahr, Sauerstoffmangel und Gasvergiftung, meist durchH2Soder Ammoniak (NH3). Arbeiter in einer Biogasanlage müssen über persönliche Gasdetektoren verfügen, die brennbare Gase, Sauerstoff und giftige Gase wieH2Sund CO erkennen und überwachen.

In einer Müllsammlung findet man häufig das brennbare Gas Methan (CH4) und die giftigen GaseH2S, CO und NH3. Das liegt daran, dass die Müllbunker mehrere Meter unter der Erde gebaut sind und die Gasdetektoren in der Regel hoch oben in den Bereichen angebracht sind, was die Wartung und Kalibrierung dieser Detektoren erschwert. In vielen Fällen ist ein Probenahmesystem eine praktische Lösung, da die Luftproben an einen geeigneten Ort gebracht und gemessen werden können.

Sickerwasser ist eine Flüssigkeit, die aus einem Gebiet, in dem Abfälle gesammelt werden, abfließt (auslaugt), wobei Sickerwasserpools eine Reihe von Gasgefahren darstellen. Dazu gehören die Gefahr von brennbarem Gas (Explosionsgefahr),H2S(Gift, Korrosion), Ammoniak (Gift, Korrosion), CO (Gift) und ungünstige Sauerstoffwerte (Erstickungsgefahr). Das Sickerwasserbecken und die zum Sickerwasserbecken führenden Gänge müssen auf CH4,H2S, CO, NH3, Sauerstoff (O2) undCO2 überwacht werden. Entlang der Wege zum Sickerwasserbecken sollten verschiedene Gasdetektoren angebracht werden, deren Ausgänge mit externen Kontrolltafeln verbunden sind.

Bei der Verbrennung und Wärmerückgewinnung müssenO2 und die giftigen Gase Schwefeldioxid (SO2) und CO nachgewiesen werden. Diese Gase stellen eine Gefahr für alle dar, die in Kesselhäusern arbeiten.

Ein weiterer Prozess, der als gasgefährdend eingestuft wird, ist ein Abluftwäscher. Das Verfahren ist gefährlich, da die Rauchgase aus der Verbrennung hochgiftig sind. Das liegt daran, dass es Schadstoffe wie Stickstoffdioxid (NO2), SO2, Chlorwasserstoff (HCL) und Dioxin enthält. NO2 und SO2 sind wichtige Treibhausgase, während HCL alle hier erwähnten Gasarten für die menschliche Gesundheit schädlich sind.

Wenn Sie mehr über die Abfallverwertungsindustrie erfahren möchten, besuchen Sie unsere Branchenseite.

Eine Einführung in die Öl- und Gasindustrie 

Die Öl- und Gasindustrie ist eine der größten Industrien der Welt und leistet einen bedeutenden Beitrag zur Weltwirtschaft. Dieser riesige Sektor wird häufig in drei Hauptbereiche unterteilt: Upstream, Midstream und Downstream. Jeder Sektor birgt seine eigenen, einzigartigen Gasgefahren.

Upstream

Der vorgelagerte Sektor der Öl- und Gasindustrie, der manchmal auch als Exploration und Produktion (oder E&P) bezeichnet wird, befasst sich mit der Suche nach Standorten für die Öl- und Gasförderung und der anschließenden Bohrung, Förderung und Produktion von Erdöl und Erdgas. Die Öl- und Gasförderung ist eine äußerst kapitalintensive Branche, die den Einsatz teurer Maschinen und hochqualifizierter Arbeitskräfte erfordert. Der vorgelagerte Sektor ist sehr breit gefächert und umfasst sowohl Onshore- als auch Offshore-Bohrungen.

Die größte Gasgefahr in der vorgelagerten Öl- und Gasindustrie ist Schwefelwasserstoff (H2S), ein farbloses Gas, das durch seinen charakteristischen Geruch nach faulen Eiern bekannt ist.H2Sist ein hochgiftiges, entflammbares Gas, das gesundheitsschädliche Auswirkungen haben kann, die bei hohen Konzentrationen zu Bewusstlosigkeit und sogar zum Tod führen können.

Die Lösung von Crowcon für die Erkennung von Schwefelwasserstoff kommt in Form des XgardIQeinem intelligenten Gasdetektor, der die Sicherheit erhöht, indem er die Zeit, die das Bedienpersonal in gefährlichen Bereichen verbringen muss, minimiert. XgardIQ ist erhältlich mit Hochtemperatur-H2S-Sensorerhältlich, der speziell für die rauen Umgebungen des Nahen Ostens entwickelt wurde.

Midstream

Der Midstream-Sektor der Öl- und Gasindustrie umfasst die Lagerung, den Transport und die Verarbeitung von Rohöl und Erdgas. Der Transport von Erdöl und Erdgas erfolgt sowohl auf dem Land- als auch auf dem Seeweg, wobei große Mengen in Tankern und Seeschiffen befördert werden. An Land werden Tanker und Pipelines als Transportmittel eingesetzt. Zu den Herausforderungen im Midstream-Sektor gehören unter anderem die Aufrechterhaltung der Integrität von Lager- und Transportbehältern und der Schutz von Arbeitnehmern, die an Reinigungs-, Spül- und Abfüllarbeiten beteiligt sind.

Die Überwachung von Lagertanks ist unerlässlich, um die Sicherheit von Arbeitnehmern und Maschinen zu gewährleisten.

Nachgelagert

Der nachgelagerte Sektor umfasst die Raffination und Verarbeitung von Erdgas und Erdöl sowie den Vertrieb der Endprodukte. Dies ist die Phase des Prozesses, in der diese Rohstoffe in Produkte umgewandelt werden, die für eine Vielzahl von Zwecken wie das Betanken von Fahrzeugen und das Heizen von Häusern verwendet werden.

Der Raffinationsprozess für Rohöl wird im Allgemeinen in drei grundlegende Schritte unterteilt: Trennung, Umwandlung und Aufbereitung. Bei der Erdgasaufbereitung werden die verschiedenen Kohlenwasserstoffe und Flüssigkeiten getrennt, um Gas in "Pipelinequalität" zu erzeugen.

Zu den für den nachgelagerten Sektor typischen Gasgefahren gehören Schwefelwasserstoff, Schwefeldioxid, Wasserstoff und eine breite Palette toxischer Gase. Crowcon's Xgard und Xgard Bright fest installierte Detektoren bieten beide eine breite Palette von Sensoroptionen, um alle in dieser Branche vorkommenden Gasgefahren abzudecken. Xgard Bright ist auch mit der nächsten Generation MPS™-Sensorfür die Erkennung von über 15 brennbaren Gasen in einem Detektor. Außerdem sind sowohl Einzel- als auch Multigas-Personenmonitore erhältlich, um die Sicherheit der Mitarbeiter in diesen potenziell gefährlichen Umgebungen zu gewährleisten. Dazu gehören die Gas-Pro und T4xmit Gas-Pro , die 5 Gase in einer kompakten und robusten Lösung unterstützen.

Warum wird bei der Zementherstellung Gas freigesetzt?

Wie wird Zement hergestellt?

Beton ist einer der wichtigsten und am häufigsten verwendeten Baustoffe im weltweiten Bauwesen. Beton wird in großem Umfang für den Bau von Wohn- und Geschäftshäusern, Brücken, Straßen und vielem mehr verwendet.

Der wichtigste Bestandteil von Beton ist Zement, ein Bindemittel, das alle anderen Bestandteile des Betons (im Allgemeinen Kies und Sand) miteinander verbindet. Jedes Jahr werden weltweit mehr als 4 Milliarden Tonnen Zement verbrauchtverbraucht, was das enorme Ausmaß der globalen Bauindustrie verdeutlicht.

Die Herstellung von Zement ist ein komplexer Prozess, der mit Rohstoffen wie Kalkstein und Ton beginnt, die in großen Öfen von bis zu 120 m Länge auf bis zu 1.500 °C erhitzt werden. Bei solch hohen Temperaturen kommt es durch chemische Reaktionen zu einer Verbindung dieser Rohstoffe, wodurch Zement entsteht.

Wie viele industrielle Prozesse ist auch die Zementherstellung nicht ohne Gefahren. Bei der Herstellung von Zement können Gase freigesetzt werden, die für Arbeitnehmer, örtliche Gemeinschaften und die Umwelt schädlich sind.

Welche Gasgefahren gibt es bei der Zementherstellung?

Die in Zementwerken im Allgemeinen emittierten Gase sind Kohlendioxid (CO2), Stickstoffoxide (NOx) und Schwefeldioxid (SO2), wobeiCO2 den größten Teil der Emissionen ausmacht.

Das in Zementwerken vorhandene Schwefeldioxid stammt in der Regel aus den Rohstoffen, die im Zementherstellungsprozess verwendet werden. Die größte Gefahr geht von Kohlendioxid aus, denn die Zementindustrie ist für einen Anteil von 8 % der weltweitenCO2 Emissionen.

Der Großteil der Kohlendioxidemissionen entsteht durch einen chemischen Prozess namens Kalzinierung. Dies geschieht, wenn Kalkstein in den Öfen erhitzt wird, wodurch er sich inCO2 und Kalziumoxid zerfällt. Die andere Hauptquelle vonCO2 ist die Verbrennung von fossilen Brennstoffen. Die bei der Zementherstellung verwendeten Öfen werden in der Regel mit Erdgas oder Kohle beheizt, wodurch eine weitere Quelle von Kohlendioxid zusätzlich zu dem durch die Kalzinierung erzeugten entsteht.

Gasdetektion bei der Zementherstellung

In einer Industrie, die in großem Umfang gefährliche Gase produziert, ist die Detektion der Schlüssel. Crowcon bietet eine breite Palette von stationären und mobilen Detektionslösungen an.

Xgard Bright ist unser adressierbarer Festpunkt-Gasdetektor mit Display, der einfache Bedienung und reduzierte Installationskosten bietet. Xgard Bright bietet Optionen für die Detektion von Kohlendioxid und Schwefeldioxydden Gasen, die beim Mischen von Zement am meisten Probleme bereiten.

Für die tragbare Gasdetektion ist das GasmanDas robuste, tragbare und leichte Design macht es zur perfekten Ein-Gas-Lösung für die Zementproduktion. Es ist in einerCO2-Version für den sicheren Bereich erhältlich, die 0-5% Kohlendioxid misst.

Für einen verbesserten Schutz kann das Gas-Pro Multigasdetektor kann mit bis zu 5 Sensoren ausgestattet werden, darunter alle in der Zementherstellung gebräuchlichen Sensoren, CO2, SO2 und NO2.

Die Bedeutung der Gasdetektion in der petrochemischen Industrie

Die petrochemische Industrie, die eng mit der Öl- und Gasindustrie verbunden ist, nimmt Rohstoffe aus der Raffination und der Gasverarbeitung auf und wandelt sie durch chemische Verfahrenstechniken in wertvolle Produkte um. Die in diesem Sektor am meisten produzierten organischen Chemikalien sind Methanol, Ethylen, Propylen, Butadien, Benzol, Toluol und Xylole (BTX). Diese Chemikalien sind die Bausteine vieler Konsumgüter wie Kunststoffe, Bekleidungsstoffe, Baumaterialien, synthetische Waschmittel und landwirtschaftliche Produkte.

Mögliche Gefährdungen

Eine Exposition gegenüber potenziell gefährlichen Stoffen ist bei Stillstands- oder Wartungsarbeiten wahrscheinlicher, da diese Arbeiten eine Abweichung vom Routinebetrieb der Raffinerie darstellen. Da es sich hierbei um Abweichungen von der normalen Routine handelt, muss jederzeit darauf geachtet werden, dass das Einatmen von Lösungsmitteldämpfen, giftigen Gasen und anderen Schadstoffen für die Atemwege vermieden wird. Eine ständige automatische Überwachung ist hilfreich, um das Vorhandensein von Lösungsmitteln oder Gasen festzustellen und die damit verbundenen Risiken zu mindern. Dazu gehören Warnsysteme wie Gas- und Flammendetektoren, die durch Notfallverfahren unterstützt werden, sowie Genehmigungssysteme für jede Art von potenziell gefährlicher Arbeit.

Die Erdölindustrie wird in einen vorgelagerten, einen mittelgelagerten und einen nachgelagerten Bereich unterteilt, die sich durch die Art der in jedem Bereich anfallenden Arbeiten unterscheiden. Die vorgelagerten Arbeiten sind in der Regel als Explorations- und Produktionssektor (E&P) bekannt. Der Midstream-Sektor umfasst den Transport von Produkten durch Pipelines, Transit- und Öltankschiffe sowie den Großhandelsvertrieb von Erdölprodukten. Der Downstream-Sektor umfasst die Raffination von Rohöl, die Verarbeitung von Roh-Erdgas sowie die Vermarktung und den Vertrieb von Endprodukten.

Upstream

Fest installierte und tragbare Gasdetektoren werden benötigt, um Anlagen und Personal vor den Risiken der Freisetzung brennbarer Gase (in der Regel Methan) sowie vor hohenH2S-Konzentrationenzu schützen, insbesondere bei sauren Bohrungen. Gasdetektoren fürO2-Verarmung, SO2 und flüchtige organische Verbindungen (VOC) sind Teil der persönlichen Schutzausrüstung (PSA), die in der Regel eine gut sichtbare Farbe hat und in der Nähe des Atemraums getragen wird. Manchmal wird HF-Lösung als Reinigungsmittel verwendet. Die wichtigsten Anforderungen an Gasdetektoren sind ein robustes und zuverlässiges Design und eine lange Batterielebensdauer. Modelle mit Designelementen, die ein einfaches Flottenmanagement und die Einhaltung von Vorschriften unterstützen, sind natürlich im Vorteil. Über das VOC-Risiko und die Lösung von Crowcon können Sie in unserer Fallstudie lesen.

Midstream

Fest installierte Überwachungsgeräte für brennbare Gase in der Nähe von Druckentlastungsvorrichtungen, Füll- und Entleerungsbereichen sind notwendig, um frühzeitig vor örtlichen Leckagen zu warnen. Tragbare Überwachungsgeräte für mehrere Gase müssen eingesetzt werden, um die Sicherheit des Personals zu gewährleisten, insbesondere bei Arbeiten in engen Räumen und zur Unterstützung der Prüfung von Bereichen mit Heißarbeitserlaubnis. Die Infrarottechnologie bei der Detektion brennbarer Gase unterstützt die Spülung mit der Fähigkeit, in inerten Atmosphären zu arbeiten, und bietet eine zuverlässige Detektion in Bereichen, in denen Pellistor-Detektoren aufgrund von Vergiftung oder Volumenexposition versagen würden. In unserem Blog erfahren Sie mehr über die Funktionsweise der Infrarotdetektion und lesen Sie unsere Fallstudie zur Infrarotüberwachung in Raffinerien in Südostasien.

Die tragbare Laser-Methan-Detektion (LMm) ermöglicht es den Benutzern, Leckagen aus der Entfernung und in schwer zugänglichen Bereichen genau zu lokalisieren, so dass sich das Personal bei der routinemäßigen oder investigativen Lecküberwachung nicht in potenziell gefährliche Umgebungen oder Situationen begeben muss. Der Einsatz von LMm ist eine schnelle und effektive Methode, um Bereiche aus bis zu 100 m Entfernung mit einem Reflektor auf Methan zu überprüfen. Zu diesen Bereichen gehören geschlossene Gebäude, beengte Räume und andere schwer zugängliche Bereiche wie oberirdische Rohrleitungen in der Nähe von Gewässern oder hinter Zäunen.

Nachgelagert

Bei der nachgelagerten Raffination kann es sich bei den Gasrisiken um fast alle Kohlenwasserstoffe handeln, die auch Schwefelwasserstoff, Schwefeldioxid und andere Nebenprodukte enthalten können. Katalytische Detektoren für brennbare Gase sind eine der ältesten Arten von Detektoren für brennbare Gase. Sie funktionieren gut, müssen aber mit einer Bump-Test-Station ausgestattet werden, um sicherzustellen, dass jeder Detektor auf das Zielgas anspricht und noch funktionsfähig ist. Die ständige Forderung nach einer Verringerung der Ausfallzeiten von Anlagen bei gleichzeitiger Gewährleistung der Sicherheit, insbesondere bei Stillstands- und Abstellmaßnahmen, bedeutet, dass die Hersteller von Gaswarngeräten Lösungen anbieten müssen, die eine einfache Bedienung, unkomplizierte Schulung und kürzere Wartungszeiten sowie Service und Support vor Ort bieten.

Bei Betriebsstillständen werden Prozesse gestoppt, Ausrüstungsgegenstände geöffnet und überprüft, und die Zahl der Menschen und Fahrzeuge am Standort ist um ein Vielfaches höher als normal. Viele der durchgeführten Prozesse sind gefährlich und erfordern eine spezielle Gasüberwachung. So sind beispielsweise für Schweißarbeiten und Tankreinigungen sowohl Bereichsmonitore als auch Personenmonitore erforderlich, um die Mitarbeiter vor Ort zu schützen.

Begrenzter Raum

Schwefelwasserstoff (H2S) ist ein potenzielles Problem bei der Beförderung und Lagerung von Rohöl. Die Reinigung von Lagertanks birgt ein hohes Gefahrenpotenzial. Hier können viele Probleme beim Betreten von geschlossenen Räumen auftreten, darunter Sauerstoffmangel infolge früherer Inertisierungsverfahren, Rostbildung und Oxidation organischer Beschichtungen. Bei der Inertisierung wird der Sauerstoffgehalt in einem Ladetank reduziert, um den für die Entzündung erforderlichen Sauerstoffanteil zu entfernen. Im Inertisierungsgas kann Kohlenmonoxid enthalten sein. NebenH2Skönnen je nach den Eigenschaften des zuvor in den Tanks gelagerten Produkts auch andere Chemikalien wie Metallcarbonyl, Arsen und Tetraethylblei vorkommen.

Unsere Lösungen

Da es praktisch unmöglich ist, diese Gasgefahren zu beseitigen, müssen sich Arbeitnehmer und Auftragnehmer zu ihrem Schutz auf zuverlässige Gaswarngeräte verlassen. Gasdetektoren können sowohlstationärals auchmobileingesetzt werden. Unsere tragbaren Gasdetektoren schützen vor einer breiten Palette von Gasgefahren, darunterClip SGD,Gasman,Tetra 3,Gas-Pro,T4,Gas-Pro TK undDetective+. Unsere ortsfesten Gasdetektoren werden in vielen Anwendungen eingesetzt, bei denen Zuverlässigkeit, Verlässlichkeit und das Fehlen von Fehlalarmen für eine effiziente und effektive Gasdetektion von entscheidender Bedeutung sind, dazu gehörenXgard,Xgard Bright, Fgard IR3 Flame DetectorundIRmax. In Kombination mit einer Vielzahl unserer ortsfesten Gasdetektoren bieten unsere Gaswarnzentralen ein flexibles Angebot an Lösungen, die brennbare, toxische und sauerstoffhaltige Gase messen, ihr Vorhandensein melden und Alarme oder zugehörige Geräte aktivieren; für die petrochemische Industrie umfassen unsere Zentralenadressierbare Steuergeräte, Vortex und Gasmonitor.

Wenn Sie mehr über die Gasgefahren in der petrochemischen Industrie erfahren möchten, besuchen Sie unsereBranchenseitefür weitere Informationen.

Die Gefahren der Gasexposition in Weinkellereien

Weinkellereien stehen vor besonderen Herausforderungen, wenn es darum geht, ihre Mitarbeiter vor den möglichen Schäden durch gefährliche Gase zu schützen. Eine Gasexposition kann in jeder Phase des Weinherstellungsprozesses auftreten, von der Ankunft der Trauben in der Weinkellerei bis hin zur Gärung und Abfüllung. In jeder Phase muss darauf geachtet werden, dass die Arbeitnehmer nicht unnötigen Risiken ausgesetzt werden. In der Weinkellerei gibt es mehrere spezifische Bereiche, in denen die Gefahr von Gasleckagen und -exposition besteht, darunter Gärräume, Gruben, Fasskeller, Auffangbecken, Lagertanks und Abfüllräume. Die wichtigsten Gasgefahren, die bei der Weinherstellung auftreten, sind Kohlendioxid und Sauerstoffverdrängung, aber auch Schwefelwasserstoff, Schwefeldioxid, Ethylalkohol und Kohlenmonoxid.

Was sind die Gasgefahren?

Schwefelwasserstoff (H2S)

Schwefelwasserstoff ist ein Gas, das während des Gärungsprozesses entstehen kann. Es tritt häufiger unter feuchten Bedingungen auf, wenn Bakterien auf natürliche Öle eingewirkt haben. Es bleibt in stehendem Wasser gelöst, bis es gestört wird. Am gefährlichsten ist es bei der Reinigung eines geschlossenen Raums, z. B. eines Tanks, wo freigesetzte Gase nicht leicht entweichen können. Bei einer Überprüfung vor dem Betreten des Raums wird kein Wasser gefunden, und das stehende Wasser wird beim Betreten des Raums gestört. Die mitH2Sverbundenen Risiken bestehen darin, dass es potenziell gesundheitsgefährdend ist und die Atmung stört. Schwefelwasserstoff stellt selbst bei einer relativ geringen Konzentration in der Luft eine ernsthafte Gefahr für die Atemwege dar. Das Gas wird sehr leicht und schnell über das Lungengewebe in den Blutkreislauf aufgenommen, so dass es sich sehr schnell im ganzen Körper verteilt.

Schwefeldioxid (SO2)

Schwefeldioxid ist ein natürliches Nebenprodukt der Gärung, wird aber auch häufig als Zusatzstoff bei der ökologischen Weinherstellung verwendet. Bei der Weinherstellung wird zusätzliches SO2 zugesetzt, um das Wachstum von unerwünschten Hefen und Mikroben im Wein zu verhindern. Schwefeldioxid kann sehr gesundheitsschädlich sein und ist ein hochgiftiges Gas, das bei Kontakt mit dem Körper zahlreiche Reizungen verursacht. Schwefeldioxid ist ein Gas, das Reizungen der Atemwege, der Nase und des Rachens verursachen kann. Bei Arbeitnehmern, die hohen Schwefeldioxidkonzentrationen ausgesetzt sind, kann es zu Erbrechen, Übelkeit, Magenkrämpfen und Reizungen oder ätzenden Schäden an den Lungen und Atemwegen kommen.

Ethanol (Äthylalkohol)

Ethanol ist das wichtigste alkoholische Produkt der ökologischen Weingärung. Es trägt dazu bei, den Geschmack des Weins zu erhalten und stabilisiert den Alterungsprozess. Ethanol entsteht während der Gärung, wenn die Hefe den Zucker aus den Trauben umwandelt. Wein enthält in der Regel zwischen 7 und 15 % Ethanol, was dem Getränk seinen Alkoholgehalt (ABV) verleiht. Die tatsächlich produzierte Ethanolmenge hängt vom Zuckergehalt der Trauben, der Gärungstemperatur und der verwendeten Hefe ab. Ethanol ist eine farb- und geruchlose Flüssigkeit, die brennbare und potenziell gefährliche Dämpfe abgibt. Die Dämpfe von Ethanol oder Ethylalkohol können die Atemwege und die Lunge reizen, wenn sie eingeatmet werden, und es besteht die Möglichkeit eines starken Hustens und Erstickens.

Wo liegen die Gefahren?

Offene Gärungstanks

Jeder Arbeiter, der über einem offenen Gärbehälter oder -tank arbeitet, kann einem hohen Risiko der Gasexposition ausgesetzt sein, insbesondere demCO2 oder dem Sauerstoffmangel. Es hat sich gezeigt, dass ein Arbeiter, der sich bei voller Produktion über einen offenen Gärbehälter beugt, obwohl er sich bis zu zehn Meter über dem Boden befindet, potenziell 100 %CO2 ausgesetzt sein kann. Daher ist in diesen Bereichen besondere Vorsicht und Aufmerksamkeit bei der Gaserkennung geboten.

Exposition durch unzureichende Belüftung

Der Gärungsprozess muss in einer gut belüfteten Umgebung stattfinden, damit sich keine giftigen und erstickenden Gase bilden können. Gärräume, Tankräume und Keller sind alles Orte, die ein Risiko darstellen können. Bei kaltem Wetter oder in der Nacht kann es zu einer erhöhten Gaskonzentration kommen, da Türen und Fenster geschlossen sein können.

Beengte Räume

Enge Räume wie Gruben und Schächte sind oft problematisch und bekannt für die mögliche Ansammlung gefährlicher Gase. Die Definition eines engen Raums in einer Weinkellerei ist ein Raum, der eine gefährliche Atmosphäre enthält oder enthalten kann, in dem die Möglichkeit besteht, dass Material eingeschlossen wird oder ein Eindringling in die Umgebung eingeschlossen wird oder erstickt.

Triebzüge

Wenn eine Weinkellerei wächst und ihren Betrieb ausweitet, möchte sie möglicherweise neue Produktionseinheiten hinzufügen, um die Nachfrage zu decken. Es ist jedoch wichtig, daran zu denken, dass sich die potenziellen Gasrisiken je nach Umgebung unterscheiden, z. B. ist das Gasrisiko in einem Gärkeller nicht dasselbe wie in einem Fassraum. Daher können in verschiedenen Bereichen unterschiedliche Arten von Gaswarngeräten erforderlich sein.

Wenn Sie weitere Informationen über Gasdetektionslösungen für Weinkellereien wünschen oder weitere Fragen haben, nehmen Sie noch heute Kontakt mit uns auf.

Querempfindlichkeit von toxischen Sensoren: Chris untersucht die Gase, denen der Sensor ausgesetzt ist

Eine der häufigsten Anfragen von Kunden, die im technischen Support tätig sind, betrifft maßgeschneiderte Konfigurationen von Sensoren für toxische Gase. Dies führt häufig zu einer Untersuchung der Querempfindlichkeit der verschiedenen Gase, denen der Sensor ausgesetzt sein wird.

Die Querempfindlichkeit variiert von Sensortyp zu Sensortyp, und die Anbieter geben die Querempfindlichkeit oft in Prozent an, während andere die Werte in Teilen pro Million (ppm) angeben.

Weiter lesen "Querempfindlichkeit von toxischen Sensoren: Chris untersucht die Gase, denen der Sensor ausgesetzt ist"