Visión general del sector: Alimentación y bebidas 

La industria de alimentos y bebidas (F&B) incluye todas las empresas que participan en el procesamiento de materias primas alimentarias, así como las que las envasan y distribuyen. Esto incluye alimentos frescos y preparados, así como alimentos envasados y bebidas alcohólicas y no alcohólicas.

La industria de la alimentación y las bebidas se divide en dos grandes segmentos, que son la producción y la distribución de bienes comestibles. El primer grupo, la producción, incluye el procesamiento de carnes y quesos y la creación de refrescos, bebidas alcohólicas, alimentos envasados y otros alimentos modificados. Cualquier producto destinado al consumo humano, aparte de los productos farmacéuticos, pasa por este sector. La producción también abarca la transformación de carnes, quesos y alimentos envasados, productos lácteos y bebidas alcohólicas. El sector de la producción excluye los alimentos y los productos frescos que se producen directamente a través de la agricultura, ya que estos entran en el ámbito de la agricultura.

La fabricación y el procesamiento de alimentos y bebidas crean riesgos considerables de incendio y exposición a gases tóxicos. Se utilizan muchos gases para hornear, procesar y refrigerar alimentos. Estos gases pueden ser muy peligrosos, ya sean tóxicos, inflamables o ambos.

Peligros del gas

Procesamiento de alimentos

Los métodos de procesamiento secundario de alimentos incluyen la fermentación, el calentamiento, la refrigeración, la deshidratación o algún tipo de cocción. Muchos tipos de procesamiento comercial de alimentos consisten en la cocción, especialmente las calderas de vapor industriales. Las calderas de vapor suelen funcionar con gas (gas natural o GLP) o utilizan una combinación de gas y fuel. En el caso de las calderas de vapor alimentadas con gas, el gas natural consiste principalmente en metano (CH4), un gas altamente combustible, más ligero que el aire, que se introduce directamente en las calderas. En cambio, el GLP se compone principalmente de propano (C3H8), y suele requerir un tanque de almacenamiento de combustible in situ. Siempre que se utilicen gases inflamables in situ, debe incluirse una ventilación mecánica forzada en las zonas de almacenamiento, en caso de fuga. Esta ventilación suele activarse mediante detectores de gas instalados cerca de las calderas y en las salas de almacenamiento.

Desinfección química

El sector de la restauración se toma muy en serio la higiene, ya que la más mínima contaminación de las superficies y los equipos puede constituir un caldo de cultivo ideal para todo tipo de gérmenes. Por ello, el sector de la hostelería exige una limpieza y desinfección rigurosas, que deben cumplir las normas del sector.

Hay tres métodos de desinfección que se utilizan habitualmente en el sector de la restauración: térmico, por radiación y químico. La desinfección química con compuestos a base de cloro es, con mucho, la forma más común y eficaz de desinfectar equipos u otras superficies. Esto se debe a que los compuestos a base de cloro son baratos, de acción rápida y eficaces contra una gran variedad de microorganismos. Se suelen utilizar diferentes compuestos de cloro, entre los que se encuentran el hipoclorito, las cloraminas orgánicas e inorgánicas y el dióxido de cloro. La solución de hipoclorito de sodio (NaOCl) se almacena en tanques, mientras que el gas de dióxido de cloro (ClO2) suele generarse in situ.

En cualquier combinación, los compuestos de cloro son peligrosos y la exposición a altas concentraciones de cloro puede causar graves problemas de salud. Los gases de cloro suelen almacenarse en el lugar y debe instalarse un sistema de detección de gases, con una salida de relé para activar los ventiladores una vez que se detecta un nivel elevado de cloro.

Envasado de alimentos

El envase de los alimentos sirve para muchas cosas: permite transportar y almacenar los alimentos con seguridad, los protege, indica el tamaño de las porciones y proporciona información sobre el producto. Para mantener los alimentos seguros durante mucho tiempo, es necesario eliminar el oxígeno del envase porque, de lo contrario, se producirá una oxidación cuando el alimento entre en contacto con el oxígeno. La presencia de oxígeno también favorece la proliferación de bacterias, que son perjudiciales cuando se consumen. Sin embargo, si el envase se limpia con nitrógeno, la vida útil de los alimentos envasados puede prolongarse.

Los envasadores suelen utilizar métodos de lavado con nitrógeno (N2) para conservar y almacenar sus productos. El nitrógeno es un gas no reactivo, no oloroso y no tóxico. Evita la oxidación de los alimentos frescos con azúcares o grasas, detiene el crecimiento de bacterias peligrosas e inhibe el deterioro. Por último, evita que los envases se hundan al crear una atmósfera presurizada. El nitrógeno puede generarse in situ mediante generadores o suministrarse en cilindros. Los generadores de gas son rentables y proporcionan un suministro ininterrumpido de gas. El nitrógeno es un asfixiante, capaz de desplazar el oxígeno del aire. Como no tiene olor y no es tóxico, los trabajadores pueden no darse cuenta de las condiciones de bajo oxígeno antes de que sea demasiado tarde.

Los niveles de oxígeno inferiores al 19% provocan mareos y pérdida de conciencia. Para evitarlo, el contenido de oxígeno debe controlarse con un sensor electroquímico. La instalación de detectores de oxígeno en las zonas de envasado garantiza la seguridad de los trabajadores y la detección temprana de fugas.

Instalaciones de refrigeración

Las instalaciones de refrigeración del sector de la restauración se utilizan para mantener los alimentos fríos durante largos periodos de tiempo. Las instalaciones de almacenamiento de alimentos a gran escala suelen utilizar sistemas de refrigeración basados en el amoníaco (> 50% NH3), ya que es eficiente y económico. Sin embargo, el amoníaco es tóxico e inflamable; además, es más ligero que el aire y llena rápidamente los espacios cerrados. El amoníaco puede volverse inflamable si se libera en un espacio cerrado donde haya una fuente de ignición, o si un recipiente de amoníaco anhidro se expone al fuego.

El amoníaco se detecta con tecnología de sensores electroquímicos (tóxicos) y catalíticos (inflamables). La detección portátil, que incluye detectores de uno o varios gases, puede controlar la exposición instantánea y TWA a niveles tóxicos de NH3. Se ha demostrado que los monitores personales multigás mejoran la seguridad de los trabajadores cuando se utiliza un rango bajo de ppm para las inspecciones rutinarias del sistema y un rango inflamable durante el mantenimiento del mismo. Los sistemas fijos de detección incluyen una combinación de detectores de niveles tóxicos e inflamables conectados a paneles de control locales; suelen suministrarse como parte de un sistema de refrigeración. Los sistemas fijos también pueden utilizarse para la anulación de procesos y el control de la ventilación.

Industria cervecera y de bebidas

El riesgo que conlleva la fabricación de alcohol implica un equipo de fabricación de gran tamaño que puede ser potencialmente dañino, tanto para su funcionamiento como por los humos y vapores que pueden emitirse a la atmósfera y que posteriormente repercuten en el medio ambiente. El principal riesgo de combustible que se encuentra en las destilerías y cervecerías son los humos y vapores producidos por el etanol. Con la capacidad de ser emitidos por fugas en tanques, barriles, bombas de transferencia, tuberías y mangueras flexibles, el vapor de etanol es un peligro muy real de incendio y explosión al que se enfrentan los que trabajan en la industria de la destilación. Una vez que el gas y el vapor se liberan a la atmósfera, pueden acumularse rápidamente y suponer un peligro para la salud de los trabajadores. Sin embargo, hay que tener en cuenta que la concentración necesaria para causar daños a la salud de los trabajadores tiene que ser muy alta. Teniendo esto en cuenta, el riesgo más importante del etanol en el aire es el de explosión. Este hecho refuerza la importancia de los equipos de detección de gases para reconocer y remediar inmediatamente cualquier fuga, a fin de evitar consecuencias desastrosas.

Envasado, transporte y dispensación

Una vez que el vino está embotellado y la cerveza está envasada, hay que entregarlos a los puntos de venta correspondientes. Esto incluye habitualmente a las empresas de distribución, los almacenes y, en el caso de las cervecerías, los barqueros. La cerveza y los refrescos utilizan dióxido de carbono o una mezcla de dióxido de carbono y nitrógeno como forma de llevar la bebida al "grifo". Estos gases también proporcionan a la cerveza una espuma más duradera y mejoran la calidad y el sabor.

Incluso cuando la bebida está lista para ser entregada, siguen existiendo riesgos relacionados con el gas. Estos surgen en cualquier actividad en locales que contengan cilindros de gas comprimido, debido al riesgo de aumento de los niveles de dióxido de carbono o de agotamiento de los niveles de oxígeno (debido a los altos niveles de nitrógeno). El dióxido de carbono (CO2) se encuentra de forma natural en la atmósfera (0,04%). ELCO2 es incoloro e inodoro, más pesado que el aire y, si se escapa, tenderá a hundirse en el suelo. ELCO2 se acumula en las bodegas y en el fondo de los contenedores y espacios confinados, como tanques y silos. ELCO2 se genera en grandes cantidades durante la fermentación. También se inyecta en las bebidas durante la carbonatación.

Para saber más sobre los riesgos del gas en la producción de alimentos y bebidas, visite nuestrapágina de la industriapara obtener más información.

Construcción y retos clave del gas

Los trabajadores del sector de la construcción corren el riesgo de sufrir una gran variedad de gases peligrosos, como el monóxido de carbono (CO), el dióxido de cloro (CLO2), el metano (CH4), el oxígeno (O2), el sulfuro de hidrógeno (H2S) y los compuestos orgánicos volátiles (COV).

Mediante el uso de equipos específicos, el transporte y la realización de actividades específicas del sector, la construcción es uno de los principales contribuyentes a la emisión de gases tóxicos a la atmósfera, lo que también significa que el personal de la construcción corre más riesgo de ingerir estos contaminantes tóxicos.

Los retos relacionados con el gas pueden encontrarse en una gran variedad de aplicaciones, como el almacenamiento de materiales de construcción, los espacios confinados, la soldadura, la apertura de zanjas, la limpieza del terreno y la demolición. Es muy importante garantizar la protección de los trabajadores del sector de la construcción frente a la multitud de peligros que pueden encontrar. En concreto, se trata de proteger a los equipos de los daños causados por los gases tóxicos, inflamables y venenosos, o del consumo de los mismos.

Desafíos del gas

Entrada en espacios confinados

Los trabajadores están más expuestos a los gases y humos peligrosos cuando trabajan en espacios confinados. Los que entran en estos espacios deben estar protegidos de la presencia de gases inflamables y/o tóxicos, como los compuestos orgánicos volátiles (ppm de COV), el monóxido de carbono (ppm de CO) y el dióxido de nitrógeno (ppm de NO2). La realización de mediciones de la distancia y las comprobaciones de seguridad previas a la entrada son primordiales para garantizar la seguridad antes de que el trabajador entre en el espacio. Mientras se encuentre en espacios confinados, debe llevar continuamente un equipo de detección de gases en caso de que se produzcan cambios en el entorno que hagan que el espacio deje de ser seguro para trabajar, debido a una fuga, por ejemplo, y sea necesaria la evacuación.

Zanja y apuntalamiento

Durante los trabajos de excavación, como la apertura de zanjas y el apuntalamiento, los trabajadores de la construcción corren el riesgo de inhalar gases nocivos generados por los materiales degradables presentes en determinados tipos de suelo. Si no se detectan, además de suponer un riesgo para los trabajadores de la construcción, también pueden migrar a través del subsuelo y las grietas hasta el edificio terminado y perjudicar a los residentes de las viviendas. Las zonas zanjadas también pueden tener niveles reducidos de oxígeno, así como contener gases y productos químicos tóxicos. En estos casos deben realizarse pruebas atmosféricas en las excavaciones que superen los cuatro pies. También existe el riesgo de chocar con las líneas de servicios públicos al excavar, lo que puede causar fugas de gas natural y provocar la muerte de los trabajadores.

Almacenamiento de material de construcción

Muchos de los materiales utilizados en la construcción pueden liberar compuestos tóxicos (COV). Estos pueden formarse en diversos estados (sólido o líquido) y proceden de materiales como adhesivos, maderas naturales y contrachapadas, pintura y tabiques de construcción. Entre los contaminantes se encuentran el fenol, el acetaldehído y el formaldehído. Cuando se ingieren, los trabajadores pueden sufrir náuseas, dolores de cabeza, asma, cáncer e incluso la muerte. Los COV son especialmente peligrosos cuando se consumen en espacios confinados, debido al riesgo de asfixia o explosión.

Soldadura y corte

Durante el proceso de soldadura y corte se producen gases, como el dióxido de carbono procedente de la descomposición de los fundentes, el monóxido de carbono procedente de la descomposición del gas de protección de dióxido de carbono en la soldadura por arco, así como el ozono, los óxidos de nitrógeno, el cloruro de hidrógeno y el fosgeno procedentes de otros procesos. Los humos se crean cuando un metal se calienta por encima de su punto de ebullición y luego sus vapores se condensan en finas partículas, conocidas como partículas sólidas. Estos humos son obviamente un peligro para quienes trabajan en el sector e ilustran la importancia de contar con equipos fiables de detección de gases para reducir la exposición.

Normas de salud y seguridad

Las organizaciones que trabajan en el sector de la construcción pueden demostrar su credibilidad y seguridad operativa obteniendo la certificación ISO. ISO (Organización Internacional de Normalización) se divide en varios certificados diferentes, todos los cuales reconocen diversos elementos de seguridad, eficiencia y calidad dentro de una organización. Las normas abarcan las mejores prácticas en materia de seguridad, sanidad, transporte, gestión medioambiental y familia.

Aunque no son un requisito legal, las normas ISO están ampliamente reconocidas por hacer de la industria de la construcción un sector más seguro al establecer definiciones globales de diseño y fabricación para casi todos los procesos. Esbozan las especificaciones de las mejores prácticas y los requisitos de seguridad dentro de la industria de la construcción desde la base.

En el Reino Unido, otras certificaciones de seguridad reconocidas son las siguientes NEBOSH, IOSH y CIOB que ofrecen una formación variada en materia de salud y seguridad para que los profesionales del sector profundicen en sus conocimientos sobre el trabajo seguro en su campo.

Para saber más sobre los retos del gas en la construcción, visite nuestrapágina de la industriapara obtener más información.

Las ventajas de los sensores intercambiables en caliente

¿Qué son los sensores intercambiables en caliente?

Los sensores intercambiables en caliente permiten sustituir o añadir componentes a un dispositivo sin necesidad de detener, apagar o reiniciar el proceso de producción, lo que permite una alta productividad y eficiencia.

Otras ventajas de los sensores intercambiables en caliente

Otra ventaja es que elimina la necesidad de permisos de trabajo en caliente. Los trabajos en caliente se llevan a cabo regularmente durante los proyectos de construcción y mantenimiento y son una actividad de alto riesgo que requiere una gestión cuidadosa y activa de los riesgos. Estos entornos suponen un importante riesgo de incendio, así como de seguridad. Los sensores intercambiables en caliente están diseñados para evitar por completo estos posibles problemas.

¿Por qué son importantes?

Algunos productos de detección de gases están diseñados para entrar en áreas zonificadas donde puede haber gas inflamable (explosivo). Por lo tanto, en entornos como una refinería, si se desconectara la electrónica normal, normalmente se produciría una pequeña chispa, y esto es un riesgo, ya que podría provocar un incendio o una explosión. Sin embargo, si los componentes electrónicos han sido diseñados para que no se produzcan chispas y han sido aprobados como "no susceptibles de provocar una chispa" por la autoridad certificadora, estos productos pueden desconectarse y volverse a conectar incluso en una atmósfera explosiva sin temor a que se produzcan chispas, lo que garantiza la seguridad de quienes trabajan en estos entornos.

Es posible calibrar los sensores intercambiables en caliente fuera de un área zonificada y permitir así un ejercicio de intercambio rápido en lugar de un proceso de calibración mucho más largo. De este modo, el operario sólo tiene que pasar una fracción del tiempo en el área zonificada, lo que evita sustancialmente el riesgo personal.

Productos con sensores intercambiables en caliente

XgardIQ es un detector y transmisor fijo compatible con toda la gama de tecnologías de sensores de Crowcon. Disponible con una variedad de sensores para la detección fija de gases inflamables, tóxicos, oxígeno o H2S. Proporciona señales analógicas de 4-20 mA y RS-485 Modbus de serie, XgardIQ está disponible opcionalmente con relés de alarma y fallo y comunicaciones HART. El acero inoxidable 316 está disponible con tres entradas de cable M20 o 1/2 "NPT. (SIL-2) Detector fijo con certificación de integridad de seguridad de nivel 2.

Más información

Sensores IR de gases inflamables: cómo funcionan

Este es nuestro último vídeo de la serie que ilustra el funcionamiento de los sensores de detección de gases de hidrocarburos. En esta ocasión, mostramos el modo de funcionamiento básico de un sensor de infrarrojos (IR) para gases inflamables.

Cada uno de los emisores de infrarrojos del sensor genera haces de luz IR. Cada haz tiene la misma intensidad y es desviado por un espejo dentro del sensor hacia un fotorreceptor, que mide el nivel de IR recibido. El haz de "medición", con una frecuencia de alrededor de 3,3μm, es absorbido por las moléculas de gas de hidrocarburo, por lo que la intensidad del haz se reduce. El haz de "referencia" (alrededor de 3,0μm) no es absorbido, por lo que llega al receptor con toda su intensidad. El %LEL de gas presente se determina por la diferencia de intensidad entre los haces medidos por el fotorreceptor.

Seguir leyendo "Sensores IR de gases inflamables: cómo funcionan"

¿Los implantes de silicona degradan su detección de gases?

En términos de detección de gases, los pellistores han sido la tecnología principal para detectar gases inflamables desde los años 60. En la mayoría de las circunstancias, con un mantenimiento correcto, los pellistores son un medio fiable y rentable de controlar los niveles de combustible de los gases inflamables. Sin embargo, hay circunstancias en las que esta tecnología puede no ser la mejor opción, y en su lugar debe considerarse la tecnología de infrarrojos (IR).

Seguir leyendo "¿Los implantes de silicona degradan su detección de gases?"

Sulfuro de hidrógeno: tóxico y mortal - Chris explica más sobre este peligroso gas

Muchos de ustedes se habrán encontrado con el sulfuro de hidrógeno (H2S). Si alguna vez han roto un huevo podrido, el olor característico es el H2S.

El H2S es un gas peligroso que se encuentra en muchos entornos de trabajo, e incluso en bajas concentraciones es tóxico. Puede ser un producto de un proceso artificial o un subproducto de la descomposición natural. Desde la producción de petróleo en alta mar hasta las obras de alcantarillado, pasando por las plantas petroquímicas, las granjas y los barcos de pesca, el H2S representa un peligro real para los trabajadores.

Seguir leyendo "Sulfuro de hidrógeno: tóxico y mortal - Chris nos explica más sobre este peligroso gas"