¿Qué hay que saber sobre el hidrógeno?

El hidrógeno, junto con otras energías renovables y el gas natural, desempeña un papel cada vez más importante en el panorama de las energías limpias. El hidrógeno se encuentra en diversos elementos, como la luz, el agua, el aire, las plantas y los animales, pero a menudo se combina con otras sustancias químicas.

¿Qué es el hidrógeno y cuáles son sus beneficios?

Históricamente, el hidrógeno gaseoso se ha utilizado como componente del combustible para cohetes, así como en turbinas de gas para producir electricidad o para quemar para hacer funcionar motores de combustión para la generación de energía. En la industria del petróleo y el gas, el exceso de hidrógeno procedente del reformado catalítico de la nafta se ha utilizado como combustible para otras operaciones unitarias.

El gas hidrógeno es un gas incoloro, inodoro e insípido más ligero que el aire. Al ser más ligero que el aire, flota por encima de nuestra atmósfera, lo que significa que no se encuentra de forma natural, sino que hay que crearlo. Esto se hace separándolo de otros elementos y recogiendo el vapor. La electrólisis se lleva a cabo tomando el líquido, normalmente agua, y separándolo de las sustancias químicas que contiene. En el agua, las moléculas de hidrógeno y oxígeno se separan dejando dos enlaces de hidrógeno y uno de oxígeno. Los átomos de hidrógeno forman un gas que se captura y se almacena hasta que se necesite, los átomos de oxígeno se liberan en el aire, ya que no hay más uso. El gas de hidrógeno que se produce no tiene ningún impacto perjudicial en el medio ambiente, por lo que muchos expertos creen que es el futuro.

Por qué el hidrógeno se considera un futuro más limpio.

Para producir energía se quema un combustible que es una sustancia química. Este proceso suele implicar la ruptura de enlaces químicos y su combinación con el oxígeno. Tradicionalmente, el gas metano ha sido el gas natural elegido, ya que el 85% de los hogares y el 40% de la electricidad del Reino Unido dependen del gas. El metano se consideraba un gas más limpio que el carbón, pero cuando se quema se produce dióxido de carbono como producto de desecho, lo que contribuye al cambio climático. El gas hidrógeno, cuando se quema, sólo produce vapor de agua como producto de desecho, ya que éste es un recurso natural.

La diferencia entre el hidrógeno azul y el verde.

El hidrógeno azul se produce a partir de fuentes de energía no renovables, a través de dos métodos: Vapor o Autotérmico. El reformado de metano por vapor es el más común para producir hidrógeno a granel. Este método utiliza un reformador que produce vapor a alta temperatura y presión y se combina con metano y un catalizador de níquel para producir hidrógeno y monóxido de carbono. Sin embargo, el reformado autotérmico utiliza el mismo proceso con oxígeno y dióxido de carbono. Ambos métodos producen carbono como subproducto.

El hidrógeno verde se produce utilizando electricidad para alimentar un electrolizador que separa el hidrógeno de la molécula de agua produciendo oxígeno como subproducto. También permite que el exceso de electricidad a la electrólisis para crear gas hidrógeno que puede ser almacenado para el futuro.

Las características que presenta el hidrógeno han sentado un precedente para el futuro de la energía. El Gobierno del Reino Unido ha considerado que se trata de una forma de vida más ecológica y ha establecido el objetivo de una economía del hidrógeno próspera para 2030. Por su parte, Japón, Corea del Sur y China están en vías de realizar importantes avances en el desarrollo del hidrógeno y se han fijado objetivos similares a los del Reino Unido para 2030. Asimismo, la Comisión Europea ha presentado una estrategia sobre el hidrógeno en la que éste podría aportar el 24% de la energía mundial en 2050.

Para más información, visite nuestra página sobre la industria y eche un vistazo a otros recursos sobre el hidrógeno:

Los peligros del hidrógeno

Hidrógeno verde - Una visión general

Blue Hydrogen - Una visión general

Xgard Bright MPS detecta hidrógeno en aplicaciones de almacenamiento de energía

 

 

¿Cuál es la diferencia entre un pellistor y un sensor IR?

Los sensores desempeñan un papel fundamental cuando se trata de controlar los gases y vapores inflamables. El entorno, el tiempo de respuesta y el rango de temperatura son algunos de los aspectos que hay que tener en cuenta a la hora de decidir qué tecnología es la mejor.

En este blog, destacamos las diferencias entre los sensores de pellistor (catalíticos) y los sensores de infrarrojos (IR), por qué hay pros y contras en ambas tecnologías, y cómo saber cuál es la mejor para adaptarse a diferentes entornos.

Sensor de pelistor

Un sensor de gas de pellistor es un dispositivo que se utiliza para detectar gases o vapores combustibles que se encuentran dentro del rango de explosividad para advertir del aumento de los niveles de gas. El sensor es una bobina de alambre de platino con un catalizador insertado en su interior para formar una pequeña perla activa que reduce la temperatura a la que se inflama el gas a su alrededor. Cuando hay un gas combustible, la temperatura y la resistencia de la perla aumentan en relación con la resistencia de la perla de referencia inerte. La diferencia de resistencia puede medirse, lo que permite medir el gas presente. Debido a los catalizadores y a las perlas, un sensor pellistor también se conoce como sensor catalítico o de perlas catalíticas.

Creados originalmente en la década de 1960 por el científico e inventor británico Alan Baker, los sensores de pellistor se diseñaron inicialmente como solución a las técnicas de lámparas de seguridad de llama y de canario, de larga duración. Más recientemente, los dispositivos se utilizan en aplicaciones industriales y subterráneas, como minas o túneles, refinerías de petróleo y plataformas petrolíferas.

Los sensores de pelistor tienen un coste relativamente menor debido a las diferencias en el nivel de tecnología en comparación con los sensores de infrarrojos, sin embargo, puede ser necesario sustituirlos con más frecuencia.

Con una salida lineal correspondiente a la concentración de gas, se pueden utilizar factores de corrección para calcular la respuesta aproximada de los pellistores a otros gases inflamables, lo que puede hacer que los pellistores sean una buena opción cuando hay varios vapores inflamables presentes.

No sólo esto, sino que los pellistores dentro de los detectores fijos con salidas de puente de mV, como el Xgard tipo 3, son muy adecuados para zonas de difícil acceso, ya que los ajustes de calibración pueden realizarse en el panel de control local.

Por otro lado, los pellistores tienen dificultades en entornos donde hay poco o muy poco oxígeno, ya que el proceso de combustión por el que funcionan requiere oxígeno. Por esta razón, los instrumentos para espacios confinados que contienen sensores LEL de tipo pellistor catalítico suelen incluir un sensor para medir el oxígeno.

En entornos en los que los compuestos contienen silicio, plomo, azufre y fosfatos, el sensor es susceptible de envenenamiento (pérdida irreversible de sensibilidad) o de inhibición (pérdida reversible de sensibilidad), lo que puede suponer un peligro para las personas en el lugar de trabajo.

Si se exponen a altas concentraciones de gas, los sensores de pellistor pueden resultar dañados. En tales situaciones, los pellistores no son "a prueba de fallos", lo que significa que no se emite ninguna notificación cuando se detecta un fallo en el instrumento. Cualquier fallo sólo puede identificarse mediante una prueba de choque antes de cada uso para garantizar que no se degrada el rendimiento.

 

Sensor IR

La tecnología de los sensores de infrarrojos se basa en el principio de que la luz infrarroja (IR) de una determinada longitud de onda será absorbida por el gas objetivo. Normalmente hay dos emisores dentro de un sensor que generan haces de luz IR: un haz de medición con una longitud de onda que será absorbida por el gas objetivo, y un haz de referencia que no será absorbido. Cada haz tiene la misma intensidad y es desviado por un espejo dentro del sensor hacia un fotorreceptor. La diferencia de intensidad resultante, entre el haz de referencia y el de medición, en presencia del gas objetivo se utiliza para medir la concentración de gas presente.

En muchos casos, la tecnología de sensores de infrarrojos (IR) puede presentar una serie de ventajas sobre los pellistores o ser más fiable en áreas en las que el rendimiento de los sensores basados en pellistores puede verse perjudicado, como los entornos con poco oxígeno e inertes. Sólo el haz de infrarrojos interactúa con las moléculas de gas circundantes, lo que da al sensor la ventaja de no enfrentarse a la amenaza de envenenamiento o inhibición.

La tecnología de infrarrojos ofrece pruebas a prueba de fallos. Esto significa que si el rayo infrarrojo fallara, el usuario sería notificado de este fallo.

Gas-Pro TK utiliza un sensor IR doble: la mejor tecnología para entornos especializados en los que los detectores de gas estándar no funcionan, ya sea para purgar depósitos o para liberar gases.

Un ejemplo de uno de nuestros detectores basados en IR es el Crowcon Gas-Pro IR, ideal para la industria del petróleo y el gas, con la disponibilidad de detectar metano, pentano o propano en entornos potencialmente explosivos y con poco oxígeno donde los sensores de pellistor pueden tener problemas. También utilizamos un sensor de %LEL y %Volumen de doble rango en nuestro Gas-Pro TK, que es adecuado para medir y alternar entre ambas mediciones, por lo que siempre funciona de forma segura con el parámetro correcto.

Sin embargo, los sensores IR no son todos perfectos, ya que sólo tienen una salida lineal al gas objetivo; la respuesta de un sensor IR a otros vapores inflamables que no sean el gas objetivo será no lineal.

Al igual que los pellistores son susceptibles de envenenamiento, los sensores IR son susceptibles de sufrir fuertes choques mecánicos y térmicos y también se ven muy afectados por los cambios brutos de presión. Además, los sensores infrarrojos no pueden utilizarse para detectar el gas hidrógeno, por lo que sugerimos utilizar pellistores o sensores electromecánicos en esta circunstancia.

El objetivo principal de la seguridad es seleccionar la mejor tecnología de detección para minimizar los riesgos en el lugar de trabajo. Esperamos que, al identificar claramente las diferencias entre estos dos sensores, podamos concienciar sobre cómo se puede mantener la seguridad en diversos entornos industriales y peligrosos.

Para obtener más información sobre los sensores de pellistor e IR, puede descargar nuestro documento técnico que incluye ilustraciones y diagramas para ayudarle a determinar la mejor tecnología para su aplicación.

No encontrará sensores Crowcon durmiendo en el trabajo

Los sensores MOS (semiconductores de óxido metálico) se han revelado como una de las soluciones más recientes para abordar la detección de sulfuro de hidrógeno (H2S) en temperaturas fluctuantes que van desde los 50 °C hasta los 20 °C, así como en climas húmedos como el de Oriente Medio.

Sin embargo, los usuarios y los profesionales de la detección de gases se han dado cuenta de que los sensores MOS no son la tecnología de detección más fiable. En este blog se explica por qué esta tecnología puede resultar difícil de mantener y a qué problemas pueden enfrentarse los usuarios.

Uno de los principales inconvenientes de la tecnología es la responsabilidad de que el sensor "se duerma" cuando no encuentra gas durante un periodo de tiempo. Por supuesto, esto supone un enorme riesgo para la seguridad de los trabajadores de la zona... nadie quiere enfrentarse a un detector de gas que finalmente no detecta el gas.

Los sensores MOS necesitan un calentador para ecualizarse, lo que les permite producir una lectura consistente. Sin embargo, cuando se enciende por primera vez, el calentador tarda en calentarse, lo que provoca un retraso considerable entre el encendido de los sensores y su respuesta al gas peligroso. Por ello, los fabricantes de MOS recomiendan a los usuarios que dejen que el sensor se equilibre durante 24-48 horas antes de la calibración. Para algunos usuarios, esto puede suponer un obstáculo para la producción, así como un tiempo prolongado para la revisión y el mantenimiento.

El retraso del calentador no es el único problema. Utiliza mucha energía, lo que plantea el problema adicional de los cambios drásticos de temperatura en el cable de alimentación de CC, que provocan cambios de tensión en la cabeza del detector e inexactitudes en la lectura del nivel de gas. 

Como sugiere su nombre de semiconductor de óxido metálico, los sensores se basan en semiconductores que se sabe que se desvían con los cambios de humedad, algo que no es ideal para el clima húmedo de Oriente Medio. En otras industrias, los semiconductores suelen estar recubiertos de resina epoxi para evitarlo, pero en un sensor de gas este recubrimiento podría afectar al mecanismo de detección del gas, ya que éste no podría llegar al semiconductor. Además, el dispositivo está expuesto al ambiente ácido creado por la arena local de Oriente Medio, lo que afecta a la conductividad y a la precisión de la lectura del gas.

Otra importante implicación de seguridad de un sensor MOS es que con la salida a niveles cercanos a cero de H2S puede haber falsas alarmas. A menudo, el sensor se utiliza con un nivel de "supresión de cero" en el panel de control. Esto significa que el panel de control puede mostrar una lectura cero durante algún tiempo después de que los niveles de H2S hayan comenzado a aumentar. Este registro tardío de la presencia de gas de bajo nivel puede entonces retrasar el aviso de una fuga de gas grave, la oportunidad de evacuación y el riesgo extremo de vidas.

Los sensores MOS destacan por su rápida reacción al H2S, por lo que la necesidad de un sinterizado contrarresta esta ventaja. Debido a que el H2S es un gas "pegajoso", es capaz de adsorberse en las superficies, incluidas las de los sinterizadores, lo que ralentiza la velocidad a la que el gas llega a la superficie de detección.

Para hacer frente a los inconvenientes de los sensores MOS, hemos revisado y mejorado la tecnología electroquímica con nuestro nuevo sensor de H2Sde alta temperatura (HT) para XgardIQ. Los nuevos desarrollos de nuestro sensor permiten un funcionamiento de hasta 70 °C a 0-95%rh, una diferencia significativa frente a otros fabricantes que afirman una detección de hasta 60 °C, especialmente en los duros entornos de Oriente Próximo.

Nuestro nuevo sensor HT H2S ha demostrado ser una solución fiable y resistente para la detección de H2S a altas temperaturas, una solución que no se duerme en el trabajo.

Haga clic aquí para obtener más información sobre nuestro nuevo sensor de H2Sde alta temperatura (HT) para XgardIQ.

Una ingeniosa solución al problema del H2S a alta temperatura

Debido al calor extremo en Oriente Medio, que alcanza los 50 °C en pleno verano, la necesidad de una detección de gases fiable es fundamental. En este blog, nos centramos en la necesidad de detectar el sulfuro de hidrógeno (H2S), un reto que lleva mucho tiempo en el sector de la detección de gases de Oriente Medio.

Combinando un nuevo truco con una tecnología antigua, tenemos la respuesta a la detección fiable de gases para entornos en el duro clima de Oriente Medio. Nuestro nuevo sensor de H2Sde alta temperatura (HT) para XgardIQ ha sido revisado y mejorado por nuestro equipo de expertos de Crowcon mediante una combinación de dos ingeniosas adaptaciones de su diseño original.

En los sensores tradicionales de H2S, la detección se basa en la tecnología electroquímica, en la que se utilizan electrodos para detectar los cambios inducidos en un electrolito por la presencia del gas objetivo. Sin embargo, las altas temperaturas combinadas con la baja humedad hacen que el electrolito se seque, lo que perjudica el rendimiento del sensor y obliga a sustituirlo periódicamente, lo que supone un elevado coste de sustitución, tiempo y esfuerzo.

Lo que hace que el nuevo sensor sea tan avanzado respecto a su predecesor es su capacidad para retener los niveles de humedad dentro del sensor, evitando la evaporación incluso en climas de alta temperatura. El sensor actualizado se basa en un gel electrolítico, adaptado para hacerlo más higroscópico y evitar la deshidratación durante más tiempo.

Además, se ha reducido el poro de la carcasa del sensor, lo que limita la salida de la humedad. Este gráfico indica la pérdida de peso, que es un indicador de la pérdida de humedad. Cuando se almacena a 55°C o 65°C durante un año, sólo se pierde un 3% de su peso. Otro sensor típico perdería el 50% de su peso en 100 días en las mismas condiciones.

Para una óptima detección de fugas, nuestro nuevo y extraordinario sensor también cuenta con una carcasa de sensor remota opcional, mientras que la pantalla del transmisor y los controles de los botones están colocados para un acceso seguro y fácil para los operadores hasta 15 metros de distancia.

 

Los resultados de nuestro nuevo sensor HT H2Spara XgardIQ hablan por sí solos, con un entorno operativo de hasta 70 °C a 0-95%rh, así como un tiempo de respuesta de 0-200ppm y T90 inferior a 30 segundos. A diferencia de otros sensores para la detección de H2S, ofrece una esperanza de vida de más de 24 meses, incluso en climas difíciles como Oriente Medio.

La respuesta a los retos de detección de gases en Oriente Medio está en manos de nuestro nuevo sensor, que ofrece a sus usuarios un rendimiento rentable y fiable.

Haga clic aquí para más información sobre el Crowcon HT H2S senso.

¿Ha pensado alguna vez en los peligros que encierra su bebida favorita?

Es natural que asociemos la necesidad de detección de gases en las industrias del petróleo y el gas, y del acero, pero ¿ha pensado en la necesidad de detectar gases peligrosos como el dióxido de carbono y el nitrógeno en la industria cervecera y de bebidas?

Quizá sea porque el nitrógeno (N2) y el dióxido de carbono (CO2) están presentes de forma natural en la atmósfera. Puede ser que elCO2 siga estando infravalorado como gas peligroso. Aunque en la atmósferael CO2 se mantiene en concentraciones muy bajas -alrededor de 400 partes por millón (ppm)-, hay que tener más cuidado en los entornos de las fábricas de cerveza y las bodegas, donde, en espacios reducidos, el riesgo de que se produzcan fugas en los botes de gas o en los equipos asociados podría dar lugar a niveles elevados. Tan sólo un 0,5% de volumen (5.000 ppm) deCO2 es un peligro tóxico para la salud. Por otro lado, el nitrógeno puede desplazar al oxígeno.

ElCO2 es incoloro, inodoro y tiene una densidad más pesada que el aire, lo que significa que las bolsas deCO2 se acumulan en el suelo y aumentan gradualmente de tamaño. ElCO2 se genera en grandes cantidades durante la fermentación y puede suponer un riesgo en espacios confinados como cubas, bodegas o zonas de almacenamiento de botellas, lo que puede ser fatal para los trabajadores del entorno, por lo que los responsables de salud y seguridad deben asegurarse de que se dispone del equipo y los detectores adecuados.

Los cerveceros suelen utilizar el nitrógeno en varias fases del proceso de elaboración y distribución para dar burbujas a la cerveza, sobre todo a las cervezas tipo stout, pale ales y porters, además de garantizar que la cerveza no se oxide ni contamine el siguiente lote con sabores fuertes. El nitrógeno ayuda a empujar el líquido de un tanque a otro, además de ofrecer la posibilidad de inyectarlo en barriles o barricas, presurizándolos para su almacenamiento y envío. Este gas no es tóxico, pero desplaza el oxígeno de la atmósfera, lo que puede suponer un peligro si se produce una fuga de gas, por lo que es fundamental una detección precisa del mismo.

La detección de gases puede ser fija o portátil. La instalación de un detector de gas fijo puede beneficiar a un espacio más grande, como las salas de planta, para proporcionar una protección continua del área y del personal las 24 horas del día. Sin embargo, para la seguridad de los trabajadores dentro y alrededor de la zona de almacenamiento de cilindros y en los espacios designados como espacios confinados, un detector portátil puede ser más adecuado. Esto es especialmente cierto en el caso de los bares y los puntos de venta de bebidas para la seguridad de los trabajadores y de aquellos que no están familiarizados con el entorno, como los conductores de reparto, los equipos de ventas o los técnicos de los equipos. La unidad portátil puede engancharse fácilmente al cinturón o a la ropa y detectará las bolsas deCO2 mediante alarmas y señales visuales, indicando que el usuario debe desalojar inmediatamente la zona.

En Crowcon, nos dedicamos a hacer crecer un futuro más seguro, más limpio y más saludable para todos, cada día, proporcionando las mejores soluciones de seguridad de gas de su clase. Es vital que, una vez que los detectores de gas estén instalados, los empleados no se conformen y hagan de las comprobaciones necesarias una parte esencial de cada día de trabajo, ya que la detección temprana puede ser la diferencia entre la vida y la muerte.

Datos y consejos rápidos sobre la detección de gases en las fábricas de cerveza:

  • El nitrógeno y elCO2 son incoloros e inodoros. ElCO2 es 5 veces más pesado que el aire, por lo que es un gas silencioso y mortal.
  • Cualquier persona que entre en un tanque u otro espacio confinado debe estar equipada con un detector de gas adecuado.
  • La detección temprana puede ser la diferencia entre la vida y la muerte.

Una vez más, Gas-Pro es el "detector elegido" para la expedición medioambiental al volcán

Todos estamos familiarizados con el término calentamiento global y a menudo vemos estadísticas sobre los posibles efectos que podría tener en nuestro planeta. Una de esas predicciones es que a finales de este siglo la temperatura del globo aumentará entre 0,8 y 4 grados.

Lo que muchos no sabemos es que los volcanes, que son un fenómeno completamente natural, aportan una cantidad importante de gases a nuestra atmósfera. Y estos gases no se tienen en cuenta actualmente en los modelos climáticos mundiales, lo que significa que existe un margen de error potencialmente grande.

Sin embargo, esto podría estar a punto de cambiar, ya que Yves Moussallam, un inspirador vulcanólogo francés, que con el apoyo de Rolex y de los Premios Rolex a la Empresa 2019, se ha propuesto entender los volcanes y su impacto en nuestro planeta. Se aventura en estos dramáticos y peligrosos entornos para realizar mediciones que son utilizadas por científicos y climatólogos para mejorar sus modelos de predicción.

Mediante la observación de volcanes y la recopilación de estos datos de vital importancia, está ayudando al mundo a comprender el impacto de los volcanes en el cambio climático.

Yves no es ajeno a las expediciones volcánicas. En 2015, dirigió un pequeño equipo a la zona de subducción de Nazca, en Sudamérica. Su misión era proporcionar la primera estimación precisa y a gran escala del flujo de varias especies de gases volátiles.

Para mantener la seguridad del equipo, Yves eligió el equipo de detección Crowcon y quedó encantado con el funcionamiento ligero, limpio y seguro de Gas man y Gas-Pro.

Ahora Yves ha vuelto con una nueva expedición y ha recurrido de nuevo a Crowcon. Esta vez, Yves se dirige a la región de Melanesia, en Italia. Los satélites, que se utilizan para seguir el comportamiento volcánico, han demostrado que esta región es responsable de aproximadamente un tercio de las emisiones mundiales de gases volcánicos.

Su expedición subirá a estos volcanes y realizará mediciones directamente en la pluma volcánica.

Hay dos métodos principales para medir los gases en los volcanes. El primero es mediante un satélite que toma imágenes desde el espacio. El segundo es ir directamente al campo y medir el gas liberado en su origen.

Los expertos consideran que el método de trabajo directo sobre el terreno es el más preciso, ya que se sitúa mucho más cerca de la fuente, por lo que se reduce el riesgo de error.

Para llevar a cabo estas mediciones se necesitan equipos probados y fiables, y con la probada trayectoria de Crowcon, Yves recurrió de nuevo a Gas-Pro.

Crowcon Gas-Pro incluye una función de registro de datos a bordo que proporcionará una línea adicional de datos y una idea de la exposición media, lo cual es importante para expediciones que abarcan periodos más largos. También es ligero, lo que resulta muy ventajoso cuando hay que transportar equipos voluminosos.

Todo el mundo en Crowcon desea a Yves una expedición segura y exitosa, y esperamos que los datos que recoja nos ayuden a entender el impacto que los volcanes tienen en nuestro mundo.

#Rolex #RolexAwards #PerpetualPlanet #Perpetual

Le ayudamos a mantenerse seguro durante la temporada de barbacoas

¿A quién no le gusta una barbacoa de verano? Llueva o haga sol, encendemos nuestras barbacoas y lo único que nos preocupa es si va a llover o si las salchichas están bien hechas.

Aunque son importantes (sobre todo asegurarse de que las salchichas están cocidas), muchos de nosotros desconocemos por completo los riesgos potenciales.

El monóxido de carbono es un gas al que se le ha dado bastante publicidad y muchos de nosotros hemos instalado detectores en nuestras casas y negocios, pero desconocemos por completo que el monóxido de carbono está asociado a nuestras barbacoas.

Si el tiempo es malo, podemos decidir hacer la barbacoa en la puerta del garaje o bajo una carpa o toldo. Algunos incluso pueden llevar la barbacoa a la tienda después de usarla. Todo esto puede ser potencialmente mortal, ya que el monóxido de carbono se acumula en estos espacios reducidos.

Lo mismo ocurre con una bombona de gas propano o butano, que almacenamos en nuestros garajes, cobertizos e incluso en nuestras casas sin saber que existe el riesgo de una combinación potencialmente mortal de un espacio cerrado, una fuga de gas y una chispa de un aparato eléctrico. Todo ello podría provocar una explosión.

Dicho esto, las barbacoas están aquí para quedarse y, si las utilizamos de forma segura, son una forma estupenda de pasar una tarde de verano. Por ello, a continuación le ofrecemos una selección de datos y consejos de nuestro equipo de seguridad en Crowcon que esperamos le ayuden a disfrutar de un verano seguro y delicioso.

 

Datos y consejos rápidos sobre los carbones para barbacoa:

  • El monóxido de carbono es un gas incoloro e inodoro, por lo que el hecho de que no podamos olerlo o verlo no significa que no esté presente.
  • El monóxido de carbono es un subproducto de la quema de combustibles fósiles, como el carbón vegetal y el gas de las barbacoas.
  • Utilice siempre la barbacoa en una zona abierta bien ventilada, ya que puede acumularse hasta niveles tóxicos en espacios cerrados
  • Nunca introduzcas un carbón en una tienda de campaña, aunque parezca que hace frío. Recuerda que una barbacoa humeante sigue emitiendo monóxido de carbono
  • Esté atento y actúe rápidamente si alguien experimenta los síntomas de la intoxicación por monóxido de carbono, que incluyen dolores de cabeza, mareos, falta de aire, náuseas, confusión, colapso y pérdida de conocimiento. Estos síntomas pueden ser potencialmente mortales

 

Datos y consejos rápidos sobre las bombonas de gas:

  • Las barbacoas de gas suelen utilizar propano, butano o GLP (que es una mezcla de ambos)
  • Las barbacoas de gas tienen agujeros en el fondo para evitar la acumulación de gas. Esto se debe a que el gas es más pesado que el aire, por lo que se acumula en las zonas bajas o llena un espacio de abajo hacia arriba.
  • Para evitar la acumulación de gas, las bombonas deben almacenarse siempre en el exterior, en posición vertical, en una zona bien ventilada, lejos de fuentes de calor y de espacios bajos cerrados
  • Si guarda su barbacoa en el garaje, asegúrese de desconectar la bombona de gas y mantenerla en el exterior
  • Cuando utilices la barbacoa, mantén el recipiente a un lado para que no esté debajo y cerca de la fuente de calor y coloca la barbacoa en un espacio abierto
  • Mantenga siempre el bote alejado de fuentes de ignición cuando cambie los botes
  • Asegúrese siempre de cerrar el gas en la barbacoa, así como en el regulador de la bombona, después de su uso

 

Chernóbil: un poderoso mensaje de seguridad para el mundo

La reciente serie de televisión Chernobyl de Sky Atlantic transmitió un poderoso mensaje sobre las consecuencias catastróficas y de largo alcance de los gases radiactivos, tanto para las personas como para el medio ambiente.

La serie se basa en los hechos reales del desastre nuclear de 1986 en la entonces URSS, el mayor vertido radiactivo incontrolado en el medio ambiente jamás registrado. El accidente provocó un número incalculable de víctimas mortales, así como graves trastornos sociales y económicos para grandes poblaciones dentro y fuera de la URSS.

La explosión de Chernóbil provocó una nube de gas radiactivo que recorrió toda Europa, incluido el Reino Unido, cayendo al suelo en forma de "lluvia nuclear".

Hay muchos datos inquietantes sobre los que leemos. No menos importante es que, según el Ministerio de Sanidad británico, 369 granjas y 190.000 ovejas de Gran Bretaña aún contienen restos de lluvia radiactiva del desastre de Chernóbil.

Tanto los errores humanos como los mecánicos contribuyeron a la catástrofe y, afortunadamente, las normas de seguridad, los reglamentos, la concienciación y las nuevas tecnologías han mejorado considerablemente desde la catástrofe.

El principio de la seguridad, ya sea una enorme instalación nuclear o una pequeña planta de fabricación, debe seguir siendo el mismo. En Crowcon nos dedicamos a mantener protegidas a las personas y al medio ambiente. Nuestras tecnologías apoyan a organizaciones de múltiples industrias, incluidas las plantas nucleares, mejorando la seguridad de las plantas y de las personas. Nuestras tecnologías ayudan a nuestros clientes a estar protegidos de los peligros de los gases.

En Crowcon, damos la bienvenida a espectáculos como Chernobyl, que documentan catástrofes históricas como ésta y ponen de relieve, de forma dramática pero real, la importancia de que las empresas comprendan la necesidad de adoptar medidas de seguridad, por grandes o pequeñas que sean. Proteger a su gente, al medio ambiente y al mundo.

#DetecciónDeGasSalvandoVidas

#SaferCleanerHealthier

Identificación de fugas en las tuberías de gas natural a una distancia segura

El uso del gas natural, cuyo componente principal es el metano, está aumentando en todo el mundo. También tiene muchos usos industriales, como la fabricación de productos químicos como el amoníaco, el metanol, el butano, el etano, el propano y el ácido acético; también es un ingrediente de productos tan diversos como los fertilizantes, los anticongelantes, los plásticos, los productos farmacéuticos y los tejidos.

El gas natural se transporta de varias maneras: a través de gasoductos en forma gaseosa; como gas natural licuado (GNL) o gas natural comprimido (GNC). El GNL es el método habitual para transportar el gas a distancias muy largas, como por ejemplo a través de los océanos, mientras que el GNC suele transportarse en camiones cisterna a distancias cortas. Los gasoductos son la opción preferida para el transporte de largas distancias por tierra (y a veces por mar), como entre Rusia y Europa central. Las empresas de distribución local también suministran gas natural a los usuarios comerciales y domésticos a través de redes de servicios públicos dentro de los países, regiones y municipios.

El mantenimiento regular de los sistemas de distribución de gas es esencial. Identificar y rectificar las fugas de gas es también una parte integral de cualquier programa de mantenimiento, pero es notoriamente difícil en muchos entornos urbanos e industriales, ya que las tuberías de gas pueden estar ubicadas bajo tierra, por encima de la cabeza, en los techos, detrás de las paredes y mamparos o en lugares inaccesibles, como edificios cerrados. Hasta hace poco, las sospechas de fugas en estas tuberías podían llevar a acordonar zonas enteras hasta encontrar el lugar de la fuga.

Precisamente porque los detectores de gas convencionales -como los que utilizan la combustión catalítica, la ionización de llama o la tecnología de semiconductores- no son capaces de detectar el gas a distancia y, por lo tanto, no pueden detectar las fugas de gas en las tuberías de difícil acceso, se ha investigado mucho recientemente sobre las formas de detectar el gas metano a distancia.

Detección a distancia

Actualmente se dispone de tecnologías de vanguardia que permiten detectar e identificar fugas a distancia con una precisión milimétrica. Las unidades manuales, por ejemplo, pueden detectar metano a distancias de hasta 100 metros, mientras que los sistemas montados en aviones pueden identificar fugas a medio kilómetro de distancia. Estas nuevas tecnologías están transformando la forma de detectar y tratar las fugas de gas natural.

La teledetección se consigue mediante la espectroscopia de absorción láser infrarroja. Como el metano absorbe una longitud de onda específica de la luz infrarroja, estos instrumentos emiten láseres infrarrojos. El rayo láser se dirige al lugar donde se sospecha que hay una fuga, como una tubería de gas o un techo. Como parte de la luz es absorbida por el metano, la luz recibida de vuelta proporciona una medición de la absorción por el gas. Una característica útil de estos sistemas es el hecho de que el rayo láser puede penetrar superficies transparentes, como el cristal o el plexiglás, por lo que puede ser posible comprobar un espacio cerrado antes de entrar en él. Los detectores miden la densidad media del gas metano entre el detector y el objetivo. Las lecturas de las unidades portátiles se dan en ppm-m (un producto de la concentración de la nube de metano (ppm) y la longitud del trayecto (m)). De este modo, las fugas de metano pueden confirmarse rápidamente apuntando con un rayo láser hacia la presunta fuga o a lo largo de una línea de inspección, por ejemplo.

Una diferencia importante entre la nueva tecnología y los detectores de metano convencionales es que los nuevos sistemas miden la concentración media de metano, en lugar de detectar el metano en un solo punto, lo que da una indicación más precisa de la gravedad de la fuga.

Las aplicaciones para los dispositivos portátiles incluyen:

  • Estudios de oleoductos y gasoductos
  • Planta de gas
  • Estudios de propiedades industriales y comerciales
  • Llamada de emergencia
  • Control de los gases del vertedero
  • Estudio de la superficie de la carretera

Redes municipales de distribución

Las ventajas de la tecnología a distancia para la supervisión de tuberías en entornos urbanos se están haciendo realidad.

La capacidad de los dispositivos de detección remota para controlar las fugas de gas a distancia los convierte en herramientas extremadamente útiles en caso de emergencia. Los operarios pueden mantenerse alejados de fuentes de fugas potencialmente peligrosas cuando comprueban la presencia de gas en locales cerrados o espacios confinados, ya que la tecnología les permite controlar la situación sin tener que acceder realmente. Este proceso no sólo es más fácil y rápido, sino que también es seguro. Además, no se ve afectado por otros gases presentes en la atmósfera, ya que los detectores están calibrados para detectar únicamente metano, por lo que no hay peligro de obtener señales falsas, lo cual es importante en situaciones de emergencia.

El principio de la teledetección también se aplica a la inspección de las tuberías ascendentes (las tuberías aéreas que llevan el gas a las instalaciones de los clientes y que normalmente discurren a lo largo de las paredes exteriores del edificio). En este caso, los operarios apuntan el dispositivo hacia la tubería, siguiendo su recorrido; pueden hacerlo desde el nivel del suelo, sin tener que utilizar escaleras ni acceder a las propiedades de los clientes.

Zonas peligrosas

Además de detectar fugas de gas en las redes de distribución municipales, los dispositivos a prueba de explosiones y con homologación ATEX pueden utilizarse en áreas peligrosas de la zona 1, como plantas petroquímicas, refinerías de petróleo, terminales de GNL y buques, así como en determinadas aplicaciones mineras.

Al inspeccionar un tanque subterráneo de GNL/GLP, por ejemplo, se requeriría un dispositivo a prueba de explosiones a menos de 7,5 metros del propio tanque y un metro alrededor de la válvula de seguridad. Por lo tanto, los operarios deben ser plenamente conscientes de estas restricciones y estar equipados con el tipo de equipo adecuado.

Coordinación del GPS

Algunos instrumentos permiten ahora realizar lecturas puntuales de metano en varios puntos de un emplazamiento -como una terminal de GNL-, generando automáticamente un seguimiento por GPS de las lecturas y ubicaciones de las mediciones. Esto hace que los viajes de ida y vuelta para investigaciones adicionales sean mucho más eficientes, al tiempo que proporciona un registro de buena fe de la actividad de inspección confirmada, a menudo un requisito previo para el cumplimiento de la normativa.

Detección aérea

Más allá de los dispositivos manuales, existen también detectores de metano a distancia que pueden instalarse en los aviones y que detectan las fugas de los gasoductos a lo largo de cientos de kilómetros. Estos sistemas pueden detectar los niveles de metano en concentraciones tan pequeñas como 0,5 ppm hasta 500 metros de distancia e incluyen una visualización en tiempo real de las concentraciones de gas mientras se realiza el estudio.

El funcionamiento de estos sistemas es relativamente sencillo. Se coloca un detector remoto debajo del fuselaje de la aeronave (normalmente un helicóptero). Al igual que el dispositivo de mano, la unidad produce una señal láser infrarroja, que es desviada por cualquier fuga de metano que se encuentre en su trayectoria; los niveles más altos de metano provocan una mayor desviación del haz. Estos sistemas también utilizan el GPS, por lo que el piloto puede seguir un mapa en movimiento en tiempo real de la ruta de la tubería, con una visualización en tiempo real de la trayectoria de la aeronave, las fugas de gas y la concentración (en ppm) presentada a la tripulación en todo momento. Se puede establecer una alarma sonora para una concentración de gas deseada, lo que permite al piloto acercarse para investigar más de cerca.

Conclusión:

La gama de sistemas de detección remota de metano está aumentando rápidamente, con nuevas tecnologías que se desarrollan continuamente. Todos estos dispositivos, ya sean de mano o instalados en aviones, permiten una identificación rápida, segura y muy específica de las fugas, ya sea bajo el pavimento, en una ciudad o a lo largo de cientos de kilómetros de la tundra de Alaska. Esto no sólo ayuda a evitar emisiones costosas y de poco valor, sino que también garantiza que el personal que trabaja en las tuberías o cerca de ellas no se exponga a un peligro innecesario.

Dado que el uso del gas natural está aumentando en todo el mundo, prevemos rápidos avances tecnológicos en la detección remota de gas en aplicaciones tan diversas como la inspección de fugas, la integridad de la transmisión, la gestión de plantas e instalaciones, la agricultura y la gestión de residuos, así como en aplicaciones de ingeniería de procesos como la producción de coque y acero. Cada una de estas áreas presenta situaciones en las que el acceso puede ser difícil, junto con la necesidad de dar prioridad a la protección del personal. Por tanto, las oportunidades para los detectores de metano a distancia no dejan de crecer.

 

Riesgos de explosión en tanques inertizados y cómo evitarlos

El sulfuro de hidrógeno (H2S) es conocido por ser extremadamente tóxico, además de altamente corrosivo. En un entorno de tanques inertizados, supone un peligro adicional y grave de combustión que, se sospecha, ha sido la causa de graves explosiones en el pasado.

El sulfuro de hidrógeno puede estar presente en niveles de %vol en el petróleo o el gas "agrio". El combustible también puede volverse "agrio" por la acción de las bacterias reductoras de sulfato que se encuentran en el agua de mar, a menudo presentes en las bodegas de carga de los petroleros. Por lo tanto, es importante seguir vigilando el nivel de H2S, ya que puede cambiar, especialmente en el mar. Este H2S puede aumentar la probabilidad de un incendio si la situación no se gestiona adecuadamente.

Los depósitos suelen estar revestidos de hierro (a veces recubierto de zinc). El hierro se oxida, creando óxido de hierro (FeO). En un espacio de cabeza inerte de un tanque, el óxido de hierro puede reaccionar con el H2S para formar sulfuro de hierro (FeS). El sulfuro de hierro es un piróforo, lo que significa que puede inflamarse espontáneamente en presencia de oxígeno.

Excluyendo los elementos del fuego

Un depósito lleno de aceite o gas es un riesgo de incendio evidente si se dan las circunstancias adecuadas. Los tres elementos del fuego son el combustible, el oxígeno y una fuente de ignición. Sin estos tres elementos, el fuego no puede iniciarse. El aire tiene alrededor de un 21% de oxígeno. Por lo tanto, un medio habitual para controlar el riesgo de incendio en una cisterna es eliminar la mayor cantidad de aire posible, expulsando el aire de la cisterna con un gas inerte, como el nitrógeno o el dióxido de carbono. Durante la descarga del tanque, se procura sustituir el combustible por gas inerte en lugar de aire. Esto elimina el oxígeno y evita que se inicie el fuego.

Por definición, en un entorno inerte no hay suficiente oxígeno para que se produzca un incendio. Pero en algún momento habrá que dejar entrar aire en el tanque, por ejemplo, para que el personal de mantenimiento entre con seguridad. Ahora existe la posibilidad de que se junten los tres elementos del fuego. ¿Cómo se puede controlar?

  • Hay que dejar entrar el oxígeno
  • Puede haber presencia de FeS, que el oxígeno hará chispear
  • El elemento que se puede controlar es el combustible.

Si se ha eliminado todo el combustible y la combinación de aire y FeS provoca una chispa, no puede hacer ningún daño.

Control de los elementos

De lo anterior se desprende la importancia de controlar todos los elementos que pueden provocar un incendio en estos depósitos de combustible. El oxígeno y el combustible pueden controlarse directamente con un detector de gas adecuado, como Gas-Pro TK. Diseñado para estos entornos especializados, Gas-Pro TK hace frente automáticamente a la medición de un depósito lleno de gas (medido en %vol) y un depósito casi vacío de gas (medido en %LEL). Gas-Pro TK puede indicarle cuándo los niveles de oxígeno son lo suficientemente bajos como para que sea seguro cargar combustible o lo suficientemente altos como para que el personal pueda entrar en el depósito con seguridad. Otro uso importante de Gas-Pro TK es la monitorización de H2S, para permitirle juzgar la presencia probable del prióforo, sulfuro de hierro.