Xgard Tipo 3: La ventaja mV

Xgard Tipo 3 es la solución ideal para detectar gases inflamables más ligeros que el aire, como metano e hidrógeno. En este tipo de aplicaciones, los detectores suelen montarse en lugares elevados, en techos o encima de equipos cuyo acceso para calibración y mantenimiento puede plantear problemas.

Los detectores de gas requieren calibración (normalmente cada seis meses) y puede ser necesario sustituir los sensores cada 3-5 años. Estas actividades suelen requerir el acceso directo al detector para realizar ajustes y sustituir piezas. Las normativas nacionales, como la "Work at Height Regulations 2005" del Reino Unido, estipulan prácticas de trabajo seguras cuando se trabaja con equipos en altura, y su cumplimiento suele requerir el uso de andamios o "cherry pickers" móviles, lo que conlleva importantes costes y molestias in situ.

La ventaja de los detectores de mV de tipo pellistor

Los términos 'mV' y '4-20mA' describen el tipo de señal que se transmite a través del cable entre el detector de gas y el sistema de control (por ejemplo, un Crowcon Gasmaster). La calibración de un detector de 4-20 mA (por ejemplo, Xgard Tipo 5) implica quitar la tapa y poner a cero/calibrar el amplificador utilizando un medidor, puntos de prueba y potenciómetros. Incluso los detectores más sofisticados con pantalla y calibración no intrusiva siguen necesitando un acceso directo para manejar el sistema de menús mediante un imán con el fin de realizar la calibración.

Xgard Tipo 3 es un detector basado en pellistores de mV que no tiene electrónica interna (es decir, no tiene amplificador); sólo terminales para conectar mediante tres hilos al sistema de control (por ejemplo, Gasmaster). La puesta en servicio consiste simplemente en medir la "tensión de cabeza" en los terminales del detector y realizar ajustes de cero y calibración en el módulo de entrada Gasmaster . Las calibraciones semestrales continuas se realizan aplicando gas a distancia (mediante un accesorio de "deflector de pulverización" o "cono colector"), y cualquier ajuste necesario se realiza a nivel del suelo mediante el módulo de entrada del sistema de control.

Por lo tanto, una vez puestos en servicio, no es necesario acceder a los detectores de tipo pellistor mV hasta que sea necesario sustituir el sensor, normalmente entre 3 y 5 años después de su instalación. De este modo se evita la necesidad rutinaria de costosos equipos de acceso, como andamios o carretillas elevadoras.

Xgard Tipo 3 puede conectarse directamente a los sistemas Gasmaster y Gasmonitor , y aVortex a través de un accesorio 'Accessory Enclosure' que convierte las señales de mV a 4-20mA.

Calibración a distancia de un detector de mV de tipo pellistor
Calibración a distancia de un detector tipo pellistor de mV.

La importancia de la detección de gases en la industria energética

La industria energética es la espina dorsal de nuestro mundo industrial y doméstico, ya que suministra energía esencial a clientes industriales, manufactureros, comerciales y residenciales de todo el planeta. Con la inclusión de las industrias de combustibles fósiles (petróleo, carbón, GNL); la generación, distribución y venta de electricidad; la energía nuclear y las energías renovables, el sector de la generación de energía es esencial para apoyar la creciente demanda de energía de los países emergentes y una población mundial cada vez mayor.

Peligros del gas en el sector eléctrico

Los sistemas de detección de gases se han instalado ampliamente en la industria energética para minimizar las posibles consecuencias mediante la detección de la exposición a gases, ya que las personas que trabajan en este sector están expuestas a una gran variedad de riesgos relacionados con los gases de las centrales eléctricas.

Monóxido de carbono

El transporte y la pulverización del carbón suponen un alto riesgo de combustión. El fino polvo de carbón queda suspendido en el aire y es altamente explosivo. La más mínima chispa, por ejemplo de los equipos de la planta, puede encender la nube de polvo y provocar una explosión que arrastre más polvo, que explote a su vez, y así sucesivamente en una reacción en cadena. Las centrales eléctricas de carbón exigen ahora una certificación de polvo combustible, además de la certificación de gases peligrosos.

Las centrales eléctricas de carbón generan grandes volúmenes de monóxido de carbono (CO), que es muy tóxico e inflamable y debe controlarse con precisión. El CO, un componente tóxico de la combustión incompleta, procede de fugas en la carcasa de la caldera y del carbón humeante. Es fundamental controlar el CO en los túneles de carbón, los depósitos, las tolvas y los volquetes, junto con la detección de gases inflamables por infrarrojos para detectar las condiciones previas a un incendio.

Hidrógeno

Con las pilas de combustible de hidrógeno ganando popularidad como alternativas a los combustibles fósiles, es importante ser consciente de los peligros del hidrógeno. Como todos los combustibles, el hidrógeno es muy inflamable y, en caso de fuga, existe un riesgo real de incendio. El hidrógeno arde con una llama azul pálido, casi invisible, que puede causar lesiones graves y graves daños en los equipos. Por lo tanto, el hidrógeno debe controlarse para evitar incendios en el sistema de aceite de sellado, paradas no programadas y para proteger al personal de los incendios.

Además, las centrales eléctricas deben disponer de baterías de reserva, para garantizar el funcionamiento continuado de los sistemas de control críticos en caso de corte del suministro eléctrico. Las salas de baterías generan una cantidad considerable de hidrógeno, por lo que su control suele realizarse junto con la ventilación. Las baterías tradicionales de plomo-ácido producen hidrógeno cuando se están cargando. Estas baterías suelen cargarse juntas, a veces en la misma sala o zona, lo que puede generar un riesgo de explosión, sobre todo si la sala no está bien ventilada.

Entrada en espacios confinados

La entrada en espacios confinados (CSE ) suele considerarse un tipo de trabajo peligroso en la generación de energía. Por lo tanto, es importante que la entrada esté estrictamente controlada y se tomen precauciones detalladas. La falta de oxígeno y los gases tóxicos e inflamables son riesgos que pueden producirse durante los trabajos en espacios confinados, que nunca deben considerarse sencillos ni rutinarios. Sin embargo, los peligros de trabajar en espacios confinados pueden predecirse, controlarse y mitigarse mediante el uso de dispositivos portátiles de detección de gases. Normativa sobre espacios confinados de 1997. Approved Code of Practice, Regulations and guidance es para empleados que trabajan en Espacios Confinados, aquellos que emplean o forman a dichas personas y aquellos que los representan.

Nuestras soluciones

La eliminación de estos peligros gaseosos es prácticamente imposible, por lo que los trabajadores fijos y los contratistas deben depender de equipos fiables de detección de gases para protegerse. La detección de gases puede serfijaoportátil. Nuestros detectores de gas portátiles protegen contra una amplia gama de peligros de gas, entre los que se incluyenT4x,Gasman,Tetra 3,Gas-Pro,T4, yDetective+. Nuestros detectores de gas fijos se utilizan en muchas aplicaciones en las que la fiabilidad, la fiabilidad y la ausencia de falsas alarmas son fundamentales para una detección de gas eficiente y eficaz, entre las que se incluyenXgard,Xgard Bright, XgardIQ y IRmax. Combinados con una variedad de nuestros detectores fijos, nuestros paneles de control de detección de gases ofrecen una gama flexible de soluciones que miden gases inflamables, tóxicos y oxígeno, informan de su presencia y activan alarmas o equipos asociados, para la industria energética nuestros paneles incluyen Vortex y Gasmonitor.

Si desea más información sobre los riesgos del gas en la industria energética, visite nuestrapágina sobre la industria.

Introducción a la industria del petróleo y el gas 

La industria del petróleo y el gas es una de las mayores del mundo y contribuye significativamente a la economía mundial. Este vasto sector se divide a menudo en tres sectores principales: upstream, midstream y downstream. Cada sector tiene sus propios riesgos relacionados con el gas.

Aguas arriba

El sector upstream de la industria del petróleo y el gas, a veces denominado exploración y producción (o E&P), se ocupa de localizar yacimientos para la extracción de petróleo y gas y la posterior perforación, recuperación y producción de crudo y gas natural. La producción de petróleo y gas es una industria increíblemente intensiva en capital, que requiere el uso de costosos equipos de maquinaria, así como trabajadores altamente cualificados. El sector upstream es muy amplio y abarca operaciones de perforación tanto en tierra como en alta mar.

El principal peligro gaseoso en la extracción de petróleo y gas es el sulfuro de hidrógeno (H2S), un gas incoloro conocido por su característico olor a huevo podrido. El H2S es un gas altamente tóxico e inflamable que puede tener efectos nocivos para la salud, provocar la pérdida de conciencia e incluso la muerte en niveles elevados.

La solución de Crowcon para la detección de sulfuro de hidrógeno viene en forma del XgardIQun detector de gas inteligente que aumenta la seguridad al minimizar el tiempo que los operarios deben pasar en zonas peligrosas. XgardIQ está disponible con sensor de H2Sde alta temperaturadiseñado específicamente para los entornos hostiles de Oriente Próximo.

Medio de la corriente

El sector intermedio de la industria del petróleo y el gas abarca el almacenamiento, el transporte y la transformación del crudo y el gas natural. El transporte de crudo y gas natural se realiza tanto por tierra como por mar, con grandes volúmenes transportados en petroleros y buques marinos. En tierra, los métodos de transporte utilizados son los petroleros y los oleoductos. Los retos del sector midstream incluyen, entre otros, el mantenimiento de la integridad de los buques de almacenamiento y transporte y la protección de los trabajadores que participan en las actividades de limpieza, purga y llenado.

La vigilancia de los tanques de almacenamiento es esencial para garantizar la seguridad de los trabajadores y la maquinaria.

Aguas abajo

El sector downstream se refiere al refinado y transformación del gas natural y el petróleo crudo y a la distribución de productos acabados. Es la fase del proceso en la que estas materias primas se transforman en productos que se utilizan para diversos fines, como abastecer de combustible a los vehículos y calentar los hogares.

El proceso de refinado del petróleo crudo suele dividirse en tres etapas básicas: separación, conversión y tratamiento. El tratamiento del gas natural consiste en separar los distintos hidrocarburos y fluidos para producir un gas de "calidad de gasoducto".

Los riesgos de gas típicos del sector de la transformación son el sulfuro de hidrógeno, el dióxido de azufre, el hidrógeno y una amplia gama de gases tóxicos. El sistema Xgard y Xgard Bright de Crowcon ofrecen una amplia gama de opciones de sensores para cubrir todos los peligros de gas presentes en esta industria. Xgard Bright también está disponible con el sensor de nueva generación sensor MPSde última generación, para la detección de más de 15 gases inflamables en un solo detector. También hay disponibles monitores personales de uno o varios gases para garantizar la seguridad de los trabajadores en estos entornos potencialmente peligrosos. Estos incluyen el Gas-Pro y T4xcon Gas-Pro , que ofrece soporte para 5 gases en una solución compacta y robusta.

La minería del oro: ¿Qué detección de gases necesito? 

¿Cómo se extrae el oro?

El oro es una sustancia rara que equivale a 3 partes por billón de la capa exterior de la tierra, y la mayor parte del oro disponible en el mundo procede de Australia. El oro, como el hierro, el cobre y el plomo, es un metal. Existen dos formas principales de extracción de oro: a cielo abierto y subterránea. La minería a cielo abierto implica el uso de equipos de movimiento de tierras para retirar la roca de desecho del yacimiento mineral que se encuentra encima, y luego se realiza la extracción de la sustancia restante. Este proceso requiere que los residuos y el mineral sean golpeados en grandes volúmenes para romper los residuos y el mineral en tamaños adecuados para su manipulación y transporte tanto a los vertederos como a las trituradoras de mineral. La otra forma de extracción de oro es el método más tradicional de minería subterránea. En este método, los pozos verticales y los túneles en espiral transportan a los trabajadores y al equipo dentro y fuera de la mina, proporcionando ventilación y transportando la roca estéril y el mineral a la superficie.

Detección de gases en la minería

En relación con la detección de gases, el proceso de salud y seguridad en las minas ha evolucionado considerablemente a lo largo del último siglo, desde el uso rudimentario de las pruebas de mechas de metano, los canarios cantores y la seguridad de las llamas hasta las tecnologías y los procesos de detección de gases modernos que conocemos. Garantizar la utilización del tipo correcto de equipo de detección, ya sea fijo o portátilantes de entrar en estos espacios. La utilización adecuada del equipo garantizará que los niveles de gas se controlen con precisión, y que los trabajadores sean alertados de las concentraciones peligrosas concentraciones peligrosas en la atmósfera a la primera oportunidad.

¿Cuáles son los riesgos del gas y cuáles son los peligros?

Los peligros a los que se enfrentan quienes trabajan en la industria minera son varios riesgos y enfermedades profesionales potenciales, así como la posibilidad de sufrir lesiones mortales. Por ello, es importante conocer los entornos y los peligros a los que pueden estar expuestos.

Oxígeno (O2)

El oxígeno (O2), normalmente presente en el aire en un 20,9%, es esencial para la vida humana. Hay tres razones principales por las que el oxígeno supone una amenaza para los trabajadores de la industria minera. Entre ellas se encuentran Deficiencias o enriquecimiento de oxígenoLa falta de oxígeno puede impedir que el cuerpo humano funcione y que el trabajador pierda el conocimiento. A menos que el nivel de oxígeno pueda restablecerse a un nivel medio, el trabajador corre el riesgo de morir. Una atmósfera es deficitaria cuando la concentración de O2 es inferior al 19,5%. En consecuencia, un ambiente con demasiado oxígeno es igualmente peligroso, ya que constituye un riesgo muy elevado de incendio y explosión. Se considera que existe cuando el nivel de concentración de O2 es superior al 23,5%.

Monóxido de carbono (CO)

En algunos casos, puede haber altas concentraciones de monóxido de carbono (CO). Entre los entornos en los que esto puede ocurrir se encuentra el incendio de una casa, por lo que el servicio de bomberos corre el riesgo de intoxicación por CO. En este entorno puede haber hasta un 12,5% de CO en el aire, que cuando el monóxido de carbono se eleva hasta el techo con otros productos de la combustión y cuando la concentración alcanza el 12,5% en volumen, esto sólo conducirá a una cosa, llamada flashover. Esto es cuando todo el conjunto se enciende como combustible. Aparte de los objetos que caen sobre el servicio de bomberos, éste es uno de los peligros más extremos a los que se enfrentan cuando trabajan dentro de un edificio en llamas. Debido a que las características del CO son tan difíciles de identificar, es decir, es un gas incoloro, inodoro, insípido y venenoso, es posible que tarde en darse cuenta de que tiene una intoxicación por CO. Los efectos del CO pueden ser peligrosos, ya que el CO impide que el sistema sanguíneo transporte eficazmente el oxígeno por el cuerpo, concretamente a los órganos vitales como el corazón y el cerebro. Por lo tanto, altas dosis de CO pueden causar la muerte por asfixia o por falta de oxígeno en el cerebro. Según las estadísticas del Ministerio de Sanidad, el indicio más común de intoxicación por CO es el dolor de cabeza, ya que el 90% de los pacientes lo declaran como un síntoma, y el 50% declara tener náuseas y vómitos, así como vértigo. La confusión y los cambios de conciencia y la debilidad representan el 30% y el 20% de los informes.

Sulfuro de hidrógeno (H2S)

El sulfuro de hidrógeno (H2S) es un gas incoloro e inflamable con un olor característico a huevos podridos. Puede entrar en contacto con la piel y los ojos. Sin embargo, el sistema nervioso y el sistema cardiovascular son los más afectados por el sulfuro de hidrógeno, que puede provocar una serie de síntomas. Una sola exposición a altas concentraciones puede provocar rápidamente dificultades respiratorias y la muerte.

Dióxido de azufre (SO2)

El dióxido de azufre (SO2) puede causar varios efectos nocivos en los sistemas respiratorios, en particular en el pulmón. También puede causar irritación de la piel. El contacto de la piel con (SO2) provoca dolor punzante, enrojecimiento de la piel y ampollas. El contacto de la piel con el gas comprimido o el líquido puede provocar congelación. El contacto con los ojos provoca lagrimeo y, en casos graves, ceguera.

Metano (CH4)

El metano (CH4) es un gas incoloro y altamente inflamable cuyo componente principal es el gas natural. Los niveles elevados de (CH4) pueden reducir la cantidad de oxígeno respirado del aire, lo que puede provocar cambios de humor, dificultad para hablar, problemas de visión, pérdida de memoria, náuseas, vómitos, enrojecimiento facial y dolor de cabeza. En casos graves, puede haber cambios en la respiración y el ritmo cardíaco, problemas de equilibrio, entumecimiento y pérdida de conocimiento. Aunque, si la exposición es durante un periodo más largo, puede resultar mortal.

Hidrógeno (H2)

El gas hidrógeno es un gas incoloro, inodoro e insípido más ligero que el aire. Al ser más ligero que el aire, flota por encima de nuestra atmósfera, lo que significa que no se encuentra de forma natural, sino que debe crearse. El hidrógeno supone un riesgo de incendio o explosión, así como un riesgo de inhalación. Las altas concentraciones de este gas pueden provocar un ambiente con falta de oxígeno. Las personas que respiran una atmósfera así pueden experimentar síntomas como dolores de cabeza, zumbidos en los oídos, mareos, somnolencia, pérdida de conocimiento, náuseas, vómitos y depresión de todos los sentidos.

Amoníaco (NH3)

El amoníaco (NH3) es uno de los productos químicos más utilizados a nivel mundial que se produce tanto en el cuerpo humano como en la naturaleza. Aunque se crea de forma natural (NH3) es corrosivo, lo que supone una preocupación para la salud. Una alta exposición en el aire puede provocar quemaduras inmediatas en los ojos, la nariz, la garganta y las vías respiratorias. Los casos más graves pueden provocar ceguera.

Otros riesgos del gas

Aunque el cianuro de hidrógeno (HCN) no persiste en el medio ambiente, el almacenamiento, la manipulación y la gestión de residuos inadecuados pueden suponer un grave riesgo para la salud humana, así como efectos en el medio ambiente. El cianuro interfiere en la respiración humana a niveles celulares que pueden provocar efectos agudos y de servicio, como respiración rápida, temblores y asfixia.

La exposición a las partículas diésel puede producirse en las minas subterráneas como resultado de los equipos móviles con motor diésel utilizados para la perforación y el transporte. Aunque las medidas de control incluyen el uso de combustible diésel con bajo contenido de azufre, el mantenimiento de los motores y la ventilación, las implicaciones para la salud incluyen un riesgo excesivo de cáncer de pulmón.

Productos que pueden ayudar a protegerse

Crowcon ofrece una gama de detección de gases que incluye productos portátiles y fijos, todos ellos adecuados para la detección de gases en la industria minera.

Para saber más, visite nuestra página sobre el sector aquí.

¿Qué hay que saber sobre el hidrógeno?

El hidrógeno, junto con otras energías renovables y el gas natural, desempeña un papel cada vez más importante en el panorama de las energías limpias. El hidrógeno se encuentra en diversos elementos, como la luz, el agua, el aire, las plantas y los animales, pero a menudo se combina con otras sustancias químicas.

¿Qué es el hidrógeno y cuáles son sus beneficios?

Históricamente, el hidrógeno gaseoso se ha utilizado como componente del combustible para cohetes, así como en turbinas de gas para producir electricidad o para quemar para hacer funcionar motores de combustión para la generación de energía. En la industria del petróleo y el gas, el exceso de hidrógeno procedente del reformado catalítico de la nafta se ha utilizado como combustible para otras operaciones unitarias.

El gas hidrógeno es un gas incoloro, inodoro e insípido más ligero que el aire. Al ser más ligero que el aire, flota por encima de nuestra atmósfera, lo que significa que no se encuentra de forma natural, sino que hay que crearlo. Esto se hace separándolo de otros elementos y recogiendo el vapor. La electrólisis se lleva a cabo tomando el líquido, normalmente agua, y separándolo de las sustancias químicas que contiene. En el agua, las moléculas de hidrógeno y oxígeno se separan dejando dos enlaces de hidrógeno y uno de oxígeno. Los átomos de hidrógeno forman un gas que se captura y se almacena hasta que se necesite, los átomos de oxígeno se liberan en el aire, ya que no hay más uso. El gas de hidrógeno que se produce no tiene ningún impacto perjudicial en el medio ambiente, por lo que muchos expertos creen que es el futuro.

Por qué el hidrógeno se considera un futuro más limpio.

Para producir energía se quema un combustible que es una sustancia química. Este proceso suele implicar la ruptura de enlaces químicos y su combinación con el oxígeno. Tradicionalmente, el gas metano ha sido el gas natural elegido, ya que el 85% de los hogares y el 40% de la electricidad del Reino Unido dependen del gas. El metano se consideraba un gas más limpio que el carbón, pero cuando se quema se produce dióxido de carbono como producto de desecho, lo que contribuye al cambio climático. El gas hidrógeno, cuando se quema, sólo produce vapor de agua como producto de desecho, ya que éste es un recurso natural.

La diferencia entre el hidrógeno azul y el verde.

El hidrógeno azul se produce a partir de fuentes de energía no renovables, a través de dos métodos: Vapor o Autotérmico. El reformado de metano por vapor es el más común para producir hidrógeno a granel. Este método utiliza un reformador que produce vapor a alta temperatura y presión y se combina con metano y un catalizador de níquel para producir hidrógeno y monóxido de carbono. Sin embargo, el reformado autotérmico utiliza el mismo proceso con oxígeno y dióxido de carbono. Ambos métodos producen carbono como subproducto.

El hidrógeno verde se produce utilizando electricidad para alimentar un electrolizador que separa el hidrógeno de la molécula de agua produciendo oxígeno como subproducto. También permite que el exceso de electricidad a la electrólisis para crear gas hidrógeno que puede ser almacenado para el futuro.

Las características que presenta el hidrógeno han sentado un precedente para el futuro de la energía. El Gobierno del Reino Unido ha considerado que se trata de una forma de vida más ecológica y ha establecido el objetivo de una economía del hidrógeno próspera para 2030. Por su parte, Japón, Corea del Sur y China están en vías de realizar importantes avances en el desarrollo del hidrógeno y se han fijado objetivos similares a los del Reino Unido para 2030. Asimismo, la Comisión Europea ha presentado una estrategia sobre el hidrógeno en la que éste podría aportar el 24% de la energía mundial en 2050.

Para más información, visite nuestra página sobre la industria y eche un vistazo a otros recursos sobre el hidrógeno:

Los peligros del hidrógeno

Hidrógeno verde - Una visión general

Blue Hydrogen - Una visión general

Xgard Bright MPS detecta hidrógeno en aplicaciones de almacenamiento de energía

 

 

Sensibilidad cruzada de los sensores tóxicos: Chris investiga los gases a los que se expone el sensor

Al trabajar en el Servicio de Asistencia Técnica, una de las preguntas más habituales de los clientes es la de las configuraciones a medida de los sensores de gases tóxicos. Esto suele llevar a una investigación sobre la sensibilidad cruzada de los diferentes gases a los que se expondrá el sensor.

Las respuestas de sensibilidad cruzada variarán de un tipo de sensor a otro, y los proveedores suelen expresar la sensibilidad cruzada en porcentajes mientras que otros la especificarán en niveles reales de partes por millón (ppm).

Continuar leyendo "Sensibilidad cruzada de los sensores tóxicos: Chris investiga los gases a los que se expone el sensor"