Espectrómetro de propiedades moleculares™ Sensores de gases inflamables

Desarrollados por NevadaNano, los sensores Molecular Property Spectrometer™ (MPS™) representan la próxima generación de detectores de gases inflamables. El MPS™ puede detectar rápidamente más de 15 gases inflamables caracterizados a la vez. Hasta hace poco, cualquiera que necesitara supervisar gases inflamables tenía que seleccionar un detector de gases inflamables tradicional que contuviera un sensor de pellistor calibrado para un gas específico, o que contuviera un sensor de infrarrojos (IR) cuya salida también varía en función del gas inflamable que se mide y, por lo tanto, debe calibrarse para cada gas. Aunque siguen siendo soluciones ventajosas, no siempre son ideales. Por ejemplo, ambos tipos de sensores requieren una calibración periódica y los sensores de pellistor catalítico también necesitan pruebas funcionales frecuentes para garantizar que no han sido dañados por contaminantes (conocidos como agentes de "envenenamiento del sensor") o por condiciones adversas. En algunos entornos, los sensores deben cambiarse con frecuencia, lo que resulta costoso tanto en dinero como en tiempo de inactividad o disponibilidad del producto. La tecnología IR no puede detectar el hidrógeno, que no tiene firma IR, y tanto los detectores IR como los de pellistor a veces detectan incidentalmente otros gases (es decir, no calibrados), dando lecturas inexactas que pueden disparar falsas alarmas o preocupar a los operarios.

Basándose en más de 50 años de experiencia en gases, Crowcon es pionera en la avanzada tecnología de sensores MPS que detecta e identifica con precisión más de 15 gases inflamables diferentes en un solo dispositivo. Ahora disponible en los detectores Xgard Bright detector fijo y detectores portátiles Gasman y T4x.

Ventajas de los sensores de gases inflamables Molecular Property Spectrometer™.

El sensor MPS ofrece características clave que proporcionan beneficios tangibles en el mundo real a los operarios y, por tanto, a los trabajadores. Entre ellas se incluyen:

Sin calibración

Cuando se implanta un sistema que contiene un detector de cabezal fijo, es práctica común realizar el mantenimiento según un programa recomendado definido por el fabricante. Esto conlleva unos costes periódicos continuos, así como la posibilidad de interrumpir la producción o el proceso para realizar el mantenimiento o incluso acceder al detector o a varios detectores. También puede suponer un riesgo para el personal cuando los detectores se montan en entornos especialmente peligrosos. La interacción con un sensor MPS es menos estricta porque no hay modos de fallo no revelados, siempre que haya aire presente. Sería un error decir que no hay requisitos de calibración. Una calibración en fábrica, seguida de una prueba de gas en el momento de la puesta en servicio, es suficiente, porque hay una calibración interna automatizada que se realiza cada 2 segundos durante toda la vida útil del sensor. Lo que realmente se quiere decir es que no hay calibración por parte del cliente.

Gas multiespecie - 'True LEL'™

Muchas industrias y aplicaciones utilizan o tienen como subproducto múltiples gases en el mismo entorno. Esto puede suponer un reto para la tecnología de sensores tradicional, que sólo puede detectar un único gas para el que se han calibrado en el nivel correcto y puede dar lugar a lecturas inexactas e incluso falsas alarmas que pueden detener el proceso o la producción si hay otro tipo de gas inflamable presente. La falta de respuesta o la respuesta excesiva a la que se enfrentan con frecuencia los entornos con varios gases puede ser frustrante y contraproducente y comprometer la seguridad de las mejores prácticas de los usuarios. El sensor MPS™ puede detectar con precisión varios gases a la vez e identificar instantáneamente el tipo de gas. Además, el sensor MPS™ tiene una compensación ambiental integrada y no requiere un factor de corrección aplicado externamente. Las lecturas imprecisas y las falsas alarmas son cosa del pasado.

No hay envenenamiento del sensor

En determinados entornos, los tipos de sensores tradicionales pueden correr el riesgo de envenenarse. La presión, la temperatura y la humedad extremas pueden dañar los sensores, mientras que las toxinas y los contaminantes ambientales pueden "envenenar" los sensores y comprometer gravemente su rendimiento. En los entornos en los que se pueden encontrar venenos o inhibidores, la única forma de garantizar que no se degrade el rendimiento de los detectores es realizar pruebas periódicas y frecuentes. El fallo del sensor debido a la intoxicación puede ser una experiencia costosa. La tecnología del sensor MPS™ no se ve afectada por los contaminantes del entorno. Los procesos que tienen contaminantes ahora tienen acceso a una solución que funciona de forma fiable con un diseño a prueba de fallos para alertar al operador y ofrecer tranquilidad al personal y a los activos situados en entornos peligrosos. Además, el sensor MPS no se ve perjudicado por concentraciones elevadas de gases inflamables, que pueden causar grietas en los tipos de sensores catalíticos convencionales, por ejemplo. El sensor MPS sigue funcionando.

Hidrógeno (H2)

El uso de hidrógeno en procesos industriales está aumentando debido a la necesidad de encontrar una alternativa más limpia al uso de gas natural. En la actualidad, la detección de hidrógeno se limita a sensores de pellistor, semiconductores de óxido metálico, electroquímicos y de conductividad térmica, menos precisos, debido a la incapacidad de los sensores infrarrojos para detectar hidrógeno. Al enfrentarse a los problemas de envenenamiento o falsas alarmas mencionados anteriormente, la solución actual puede obligar al operador a realizar frecuentes pruebas funcionales y de mantenimiento, además de los problemas de falsas alarmas. El sensor MPS™ ofrece una solución mucho mejor para la detección de hidrógeno, eliminando los problemas a los que se enfrenta la tecnología de sensores tradicional. Un sensor de hidrógeno de larga duración y respuesta relativamente rápida que no requiere calibración durante todo el ciclo de vida del sensor, sin el riesgo de envenenamiento o falsas alarmas, puede ahorrar significativamente en el coste total de propiedad y reduce la interacción con la unidad, lo que resulta en tranquilidad y menor riesgo para los operadores que aprovechan la tecnología MPS™. Todo esto es posible gracias a la tecnología MPS™, que supone el mayor avance en la detección de gases desde hace varias décadas.

Cómo funciona el sensor de gases inflamables Molecular Property Spectrometer™.

Un transductor del sistema microelectromecánico (MEMS), compuesto por una membrana inerte a escala micrométrica con un calentador y un termómetro incorporados, mide los cambios en las propiedades térmicas del aire y los gases en su proximidad. Las múltiples mediciones, similares a un "espectro" térmico, así como los datos ambientales, se procesan para clasificar el tipo y la concentración de gas(es) inflamable(s) presente(s), incluidas las mezclas de gases. Esto se denomina TrueLEL.

  1. El gas se desvanece rápidamente a través de la pantalla de malla del sensor y se introduce en la cámara del sensor, entrando en el módulo del sensor MEMS.
  2. El calentador Joule calienta rápidamente la placa caliente.
  3. Las condiciones ambientales en tiempo real (temperatura, presión y humedad) se miden mediante el sensor ambiental integrado.
  4. La energía necesaria para calentar la muestra se mide con precisión utilizando un termómetro de resistencia.
  5. El nivel de gas, corregido en función de la categoría de gas y las condiciones ambientales, se calcula y se envía al detector de gas.

MPS en nuestros productos

Xgard Bright

Muchas industrias y aplicaciones utilizan o tienen como subproducto múltiples gases en el mismo entorno. Esto puede suponer un reto para la tecnología de sensores tradicional, que solo puede detectar un único gas para el que se ha calibrado en el nivel correcto, lo que puede dar lugar a lecturas imprecisas. 

Xgard Bright con tecnología de sensor MPS™ proporciona un'TrueLEL™'lectura para todos los gases inflamables en cualquier entorno de especies múltiples sinrequerir calibraciónomantenimiento programadodurante suciclo de vida de más de 5 añoslo que reduce las interrupciones de sus operaciones y aumenta el tiempo de actividad. Esto, a su vez, reduce la interacción con el detector, lo que se traduce en unmenor coste total de propiedada lo largo del ciclo de vida del sensor y un menor riesgo para el personal y la salida de producción para completar el mantenimiento regular.Xgard Bright MPS™ estáhecho a medida para la detección de hidrógenoCon el sensor MPS™, sólo se necesita un dispositivo, lo que ahorra espacio sin comprometer la seguridad.

Gasman

Nuestra tecnología de sensores MPS™ ha sido diseñada para los entornos multigas actuales, resiste la contaminación y evita la intoxicación de los sensores. Proporcione tranquilidad a sus equipos con un dispositivo diseñado para cualquier entorno. La tecnología MPS de nuestros monitores de gas portátiles detecta automáticamente hidrógeno e hidrocarburos comunes en un solo sensor. Nuestro fiable y fiable Gasman con la tecnología de sensores líder del sector que exigen sus aplicaciones.

Gasman MPS™ proporciona un'TrueLEL™'lectura para todos los gases inflamables en cualquier entorno de especies múltiples sinrequerir calibraciónomantenimiento programadodurante suciclo de vida de más de 5 añosreduciendo las interrupciones de sus operaciones y aumentando el tiempo de actividad.Enresistente al venenoy condoble duración de la bateríaes más probable que los operadores nunca se queden sin dispositivo.Gasman MPS™ está homologado ATEXZona 0lo que permite a los operarios entrar en un área en la que exista una atmósfera de gas explosivo de forma continua o durante largos periodos de tiempo sin temor a que su Gasman incendie el entorno.

T4x

T4xDado que el sector exige continuamente mejoras en la seguridad, un menor impacto medioambiental y un menor coste de propiedad, nuestros fiables y fiables equipos portátiles son la solución perfecta. T4x satisface esas necesidades con sus tecnologías de sensores líderes en el sector. Está diseñado específicamente para satisfacer las demandas de sus aplicaciones. 

T4x ayuda a los equipos de operaciones a centrarse en tareas de mayor valor añadido alreduciendo el número de sustituciones de sensoresen un 75% y aumentando la fiabilidad de los sensores.

Al garantizar el cumplimiento en todas las instalaciones, T4x ayuda a los responsables de salud y seguridad aleliminando la necesidad de asegurarse de que cada dispositivo está calibradopara el gas inflamable correspondiente, ya que detecta con precisión más de 15 a la vez.Al ser resistente al venenoy conduración de la batería duplicadaes más probable que los operadores nunca se queden sin dispositivo.T4x reduce elcoste total de propiedad a 5 añosen más de un 25% yahorra 12 g de plomo por detectorlo que facilita su reciclaje al final de su vida útil y es mejor para el planeta.

Para más información sobre Crowcon, visite https://www.crowcon.com o para más información sobre MPS visite https://www.crowcon.com/mpsinfixed/

Peligros del gas en el almacenamiento de energía en baterías

Las baterías son eficaces para reducir los cortes de electricidad, ya que también pueden almacenar el exceso de energía de la red tradicional. La energía almacenada en las baterías puede liberarse siempre que se necesite un gran volumen de energía, por ejemplo durante un corte de electricidad en un centro de datos para evitar la pérdida de datos, o como suministro eléctrico de reserva en un hospital o una aplicación militar para garantizar la continuidad de servicios vitales. Las baterías a gran escala también pueden utilizarse para cubrir brechas a corto plazo en la demanda de la red. Estas composiciones de baterías también pueden utilizarse en tamaños más pequeños para alimentar coches eléctricos y pueden reducirse aún más para alimentar productos comerciales, como teléfonos, tabletas, ordenadores portátiles, altavoces y, por supuesto, detectores de gas personales.

Peligros del gas

El principal riesgo de gas emitido por las baterías, en concreto las de plomo-ácido, es el hidrógeno. Es posible que tanto el hidrógeno como el oxígeno evolucionen durante la carga; sin embargo, es probable que una batería de plomo-ácido tenga internamente piezas de recombinación catalítica, por lo que el oxígeno es un riesgo menor. El hidrógeno siempre es motivo de preocupación, ya que puede acumularse. Una situación que obviamente empeora cuando se cargan en un espacio con poca circulación de aire.

Cuando se cargan, las baterías de plomo-ácido están formadas por plomo y óxido en el borne positivo, y por plomo esponjoso en el ánodo negativo, utilizando ácido sulfúrico concentrado como electrolito. La presencia de ácido sulfúrico es otro motivo de preocupación si la batería tiene fugas o se daña en algún momento, porque los ácidos concentrados dañan a las personas, los metales y el medio ambiente.

Al cargarse, las baterías también emiten oxígeno e hidrógeno debido al proceso de electrólisis. Los niveles de hidrógeno producidos se disparan cuando una célula de batería de plomo-ácido "explota" o no se puede cargar correctamente. La cantidad de gas presente es relevante porque los altos niveles de hidrógeno lo hacen altamente explosivo, aunque no sea tóxico. El hidrógeno tiene un límite inferior de explosividad del 4,0% en volumen, a partir del cual una fuente de ignición provocaría incendios o, en el caso del hidrógeno, explosiones. Los incendios y las explosiones son un problema no sólo para los trabajadores dentro del espacio, sino también para los equipos e infraestructuras circundantes.

Importancia de la tecnología de detección de gases

La detección de gases es una tecnología de seguridad inestimable que suele equipar las salas de carga de baterías. También se aconseja la ventilación y, aunque es útil, no es infalible, ya que los motores de los ventiladores pueden fallar y no debe confiarse en ellos como única medida de seguridad para las zonas de carga de baterías. Los ventiladores enmascaran el problema, mientras que la detección de gases avisa al personal para que actúe antes de que los problemas se agraven. Los sistemas de detección de gas son cruciales para informar al personal de las crecientes fugas de gas antes de que se conviertan en peligrosas. Las unidades de detección de gas cumplen los códigos de construcción locales y la NFPA 111, la norma de la Asociación Nacional de Protección contra Incendios sobre sistemas de energía eléctrica almacenada de emergencia y de reserva. Incluyen disposiciones de mantenimiento, funcionamiento, instalación y comprobación del funcionamiento del sistema. Además de los sistemas permanentes de detección de gases, existen unidades portátiles. Los productos de referencia son suministrados por Crowcon y se enumeran a continuación.

Detectores de gas portátiles

Los detectores de gas portátiles de Crowcon (Gasman, Gas-Pro, T4x, Tetra 3 y T4) protegen contra una amplia gama de peligros de gases industriales, con monitores de un solo gas y de varios gases disponibles. Con una amplia gama de tamaños y complejidades, puede encontrar la solución de detección de gases portátil adecuada para satisfacer el número y tipo de sensores de gas que necesita y sus requisitos de visualización y certificación.

Detectores de gas fijos

Los sistemas fijos de detección de gases de Crowcon ofrecen una gama flexible de soluciones que pueden medir gases inflamables, tóxicos y oxígeno, informar de su presencia y activar alarmas o equipos asociados. Los sistemas fijos de control de gases de Crowcon(XgardXgard Bright y XgardIQ) están diseñados para interconectarse con avisadores manuales, detectores de incendios y gases, y sistemas de control distribuido (DCS).

Paneles de control

Los paneles de control de detección de gases de Crowcon ofrecen una gama flexible de soluciones que pueden medir gases inflamables, tóxicos y oxígeno, informar de su presencia y activar alarmas o equipos asociados. El gas fijo Crowcon (Vortex, GM Addressable Controllers, Gasmaster) de Crowcon están diseñados para interconectarse con avisadores manuales, detectores de incendios y gases y sistemas de control distribuido (DCS). Además, cada sistema puede diseñarse para controlar anunciadores remotos y paneles mímicos. Crowcon tiene un producto de detección de gases que se adapta a su aplicación, independientemente de su operación.

Medición de la temperatura

Crowcon tiene una amplia experiencia en medición de temperatura. Dispone de varios modelos de medición de temperatura, desde termómetros de bolsillo hasta kits industriales que van de -99,9 a 299,9 °C con sondas y pinzas. Están mejorando sus capacidades de detección fija añadiendo la detección electroquímica de dióxido de azufre a alta temperatura para la fabricación de baterías y estaciones de carga. Esto es fundamental durante la primera carga de una batería, ya que en ese momento es más probable que se produzca un fallo. Sus sistemas de acción rápida detectan los precursores del desbordamiento térmico y cortan rápidamente la alimentación de las baterías para evitar daños.

Para saber más sobre los peligros de los gases en la energía de las baterías, visite nuestrapágina del sectorpara obtener más información.

Xgard Tipo 3: La ventaja mV

Xgard Tipo 3 es la solución ideal para detectar gases inflamables más ligeros que el aire, como metano e hidrógeno. En este tipo de aplicaciones, los detectores suelen montarse en lugares elevados, en techos o encima de equipos cuyo acceso para calibración y mantenimiento puede plantear problemas.

Los detectores de gas requieren calibración (normalmente cada seis meses) y puede ser necesario sustituir los sensores cada 3-5 años. Estas actividades suelen requerir el acceso directo al detector para realizar ajustes y sustituir piezas. Las normativas nacionales, como la "Work at Height Regulations 2005" del Reino Unido, estipulan prácticas de trabajo seguras cuando se trabaja con equipos en altura, y su cumplimiento suele requerir el uso de andamios o "cherry pickers" móviles, lo que conlleva importantes costes y molestias in situ.

La ventaja de los detectores de mV de tipo pellistor

Los términos 'mV' y '4-20mA' describen el tipo de señal que se transmite a través del cable entre el detector de gas y el sistema de control (por ejemplo, un Crowcon Gasmaster). La calibración de un detector de 4-20 mA (por ejemplo, Xgard Tipo 5) implica quitar la tapa y poner a cero/calibrar el amplificador utilizando un medidor, puntos de prueba y potenciómetros. Incluso los detectores más sofisticados con pantalla y calibración no intrusiva siguen necesitando un acceso directo para manejar el sistema de menús mediante un imán con el fin de realizar la calibración.

Xgard Tipo 3 es un detector basado en pellistores de mV que no tiene electrónica interna (es decir, no tiene amplificador); sólo terminales para conectar mediante tres hilos al sistema de control (por ejemplo, Gasmaster). La puesta en servicio consiste simplemente en medir la "tensión de cabeza" en los terminales del detector y realizar ajustes de cero y calibración en el módulo de entrada Gasmaster . Las calibraciones semestrales continuas se realizan aplicando gas a distancia (mediante un accesorio de "deflector de pulverización" o "cono colector"), y cualquier ajuste necesario se realiza a nivel del suelo mediante el módulo de entrada del sistema de control.

Por lo tanto, una vez puestos en servicio, no es necesario acceder a los detectores de tipo pellistor mV hasta que sea necesario sustituir el sensor, normalmente entre 3 y 5 años después de su instalación. De este modo se evita la necesidad rutinaria de costosos equipos de acceso, como andamios o carretillas elevadoras.

Xgard Tipo 3 puede conectarse directamente a los sistemas Gasmaster y Gasmonitor , y aVortex a través de un accesorio 'Accessory Enclosure' que convierte las señales de mV a 4-20mA.

Calibración a distancia de un detector de mV de tipo pellistor
Calibración a distancia de un detector tipo pellistor de mV.

La importancia de la detección de gases en la industria energética

La industria energética es la espina dorsal de nuestro mundo industrial y doméstico, ya que suministra energía esencial a clientes industriales, manufactureros, comerciales y residenciales de todo el planeta. Con la inclusión de las industrias de combustibles fósiles (petróleo, carbón, GNL); la generación, distribución y venta de electricidad; la energía nuclear y las energías renovables, el sector de la generación de energía es esencial para apoyar la creciente demanda de energía de los países emergentes y una población mundial cada vez mayor.

Peligros del gas en el sector eléctrico

Los sistemas de detección de gases se han instalado ampliamente en la industria energética para minimizar las posibles consecuencias mediante la detección de la exposición a gases, ya que las personas que trabajan en este sector están expuestas a una gran variedad de riesgos relacionados con los gases de las centrales eléctricas.

Monóxido de carbono

El transporte y la pulverización del carbón suponen un alto riesgo de combustión. El fino polvo de carbón queda suspendido en el aire y es altamente explosivo. La más mínima chispa, por ejemplo de los equipos de la planta, puede encender la nube de polvo y provocar una explosión que arrastre más polvo, que explote a su vez, y así sucesivamente en una reacción en cadena. Las centrales eléctricas de carbón exigen ahora una certificación de polvo combustible, además de la certificación de gases peligrosos.

Las centrales eléctricas de carbón generan grandes volúmenes de monóxido de carbono (CO), que es muy tóxico e inflamable y debe controlarse con precisión. El CO, un componente tóxico de la combustión incompleta, procede de fugas en la carcasa de la caldera y del carbón humeante. Es fundamental controlar el CO en los túneles de carbón, los depósitos, las tolvas y los volquetes, junto con la detección de gases inflamables por infrarrojos para detectar las condiciones previas a un incendio.

Hidrógeno

Con las pilas de combustible de hidrógeno ganando popularidad como alternativas a los combustibles fósiles, es importante ser consciente de los peligros del hidrógeno. Como todos los combustibles, el hidrógeno es muy inflamable y, en caso de fuga, existe un riesgo real de incendio. El hidrógeno arde con una llama azul pálido, casi invisible, que puede causar lesiones graves y graves daños en los equipos. Por lo tanto, el hidrógeno debe controlarse para evitar incendios en el sistema de aceite de sellado, paradas no programadas y para proteger al personal de los incendios.

Además, las centrales eléctricas deben disponer de baterías de reserva, para garantizar el funcionamiento continuado de los sistemas de control críticos en caso de corte del suministro eléctrico. Las salas de baterías generan una cantidad considerable de hidrógeno, por lo que su control suele realizarse junto con la ventilación. Las baterías tradicionales de plomo-ácido producen hidrógeno cuando se están cargando. Estas baterías suelen cargarse juntas, a veces en la misma sala o zona, lo que puede generar un riesgo de explosión, sobre todo si la sala no está bien ventilada.

Entrada en espacios confinados

La entrada en espacios confinados (CSE ) suele considerarse un tipo de trabajo peligroso en la generación de energía. Por lo tanto, es importante que la entrada esté estrictamente controlada y se tomen precauciones detalladas. La falta de oxígeno y los gases tóxicos e inflamables son riesgos que pueden producirse durante los trabajos en espacios confinados, que nunca deben considerarse sencillos ni rutinarios. Sin embargo, los peligros de trabajar en espacios confinados pueden predecirse, controlarse y mitigarse mediante el uso de dispositivos portátiles de detección de gases. Normativa sobre espacios confinados de 1997. Approved Code of Practice, Regulations and guidance es para empleados que trabajan en Espacios Confinados, aquellos que emplean o forman a dichas personas y aquellos que los representan.

Nuestras soluciones

La eliminación de estos peligros gaseosos es prácticamente imposible, por lo que los trabajadores fijos y los contratistas deben depender de equipos fiables de detección de gases para protegerse. La detección de gases puede serfijaoportátil. Nuestros detectores de gas portátiles protegen contra una amplia gama de peligros de gas, entre los que se incluyenT4x,Gasman,Tetra 3,Gas-Pro,T4, yDetective+. Nuestros detectores de gas fijos se utilizan en muchas aplicaciones en las que la fiabilidad, la fiabilidad y la ausencia de falsas alarmas son fundamentales para una detección de gas eficiente y eficaz, entre las que se incluyenXgard,Xgard Bright, XgardIQ y IRmax. Combinados con una variedad de nuestros detectores fijos, nuestros paneles de control de detección de gases ofrecen una gama flexible de soluciones que miden gases inflamables, tóxicos y oxígeno, informan de su presencia y activan alarmas o equipos asociados, para la industria energética nuestros paneles incluyen Vortex y Gasmonitor.

Si desea más información sobre los riesgos del gas en la industria energética, visite nuestrapágina sobre la industria.

Introducción a la industria del petróleo y el gas 

La industria del petróleo y el gas es una de las mayores del mundo y contribuye significativamente a la economía mundial. Este vasto sector se divide a menudo en tres sectores principales: upstream, midstream y downstream. Cada sector tiene sus propios riesgos relacionados con el gas.

Aguas arriba

El sector upstream de la industria del petróleo y el gas, a veces denominado exploración y producción (o E&P), se ocupa de localizar yacimientos para la extracción de petróleo y gas y la posterior perforación, recuperación y producción de crudo y gas natural. La producción de petróleo y gas es una industria increíblemente intensiva en capital, que requiere el uso de costosos equipos de maquinaria, así como trabajadores altamente cualificados. El sector upstream es muy amplio y abarca operaciones de perforación tanto en tierra como en alta mar.

El principal peligro gaseoso en la extracción de petróleo y gas es el sulfuro de hidrógeno (H2S), un gas incoloro conocido por su característico olor a huevo podrido. El H2S es un gas altamente tóxico e inflamable que puede tener efectos nocivos para la salud, provocar la pérdida de conciencia e incluso la muerte en niveles elevados.

La solución de Crowcon para la detección de sulfuro de hidrógeno viene en forma del XgardIQun detector de gas inteligente que aumenta la seguridad al minimizar el tiempo que los operarios deben pasar en zonas peligrosas. XgardIQ está disponible con sensor de H2Sde alta temperaturadiseñado específicamente para los entornos hostiles de Oriente Próximo.

Medio de la corriente

El sector intermedio de la industria del petróleo y el gas abarca el almacenamiento, el transporte y la transformación del crudo y el gas natural. El transporte de crudo y gas natural se realiza tanto por tierra como por mar, con grandes volúmenes transportados en petroleros y buques marinos. En tierra, los métodos de transporte utilizados son los petroleros y los oleoductos. Los retos del sector midstream incluyen, entre otros, el mantenimiento de la integridad de los buques de almacenamiento y transporte y la protección de los trabajadores que participan en las actividades de limpieza, purga y llenado.

La vigilancia de los tanques de almacenamiento es esencial para garantizar la seguridad de los trabajadores y la maquinaria.

Aguas abajo

El sector downstream se refiere al refinado y transformación del gas natural y el petróleo crudo y a la distribución de productos acabados. Es la fase del proceso en la que estas materias primas se transforman en productos que se utilizan para diversos fines, como abastecer de combustible a los vehículos y calentar los hogares.

El proceso de refinado del petróleo crudo suele dividirse en tres etapas básicas: separación, conversión y tratamiento. El tratamiento del gas natural consiste en separar los distintos hidrocarburos y fluidos para producir un gas de "calidad de gasoducto".

Los riesgos de gas típicos del sector de la transformación son el sulfuro de hidrógeno, el dióxido de azufre, el hidrógeno y una amplia gama de gases tóxicos. El sistema Xgard y Xgard Bright de Crowcon ofrecen una amplia gama de opciones de sensores para cubrir todos los peligros de gas presentes en esta industria. Xgard Bright también está disponible con el sensor de nueva generación sensor MPSde última generación, para la detección de más de 15 gases inflamables en un solo detector. También hay disponibles monitores personales de uno o varios gases para garantizar la seguridad de los trabajadores en estos entornos potencialmente peligrosos. Estos incluyen el Gas-Pro y T4xcon Gas-Pro , que ofrece soporte para 5 gases en una solución compacta y robusta.

Visión general del sector: La energía de las baterías

Las baterías son eficaces para reducir los cortes de energía, ya que también pueden almacenar el exceso de energía de la red tradicional. La energía almacenada en las baterías puede liberarse siempre que se necesite un gran volumen de energía, por ejemplo, durante un corte de energía en un centro de datos para evitar la pérdida de datos, o como suministro de energía de reserva en un hospital o una aplicación militar para garantizar la continuidad de los servicios vitales. Las baterías a gran escala también pueden utilizarse para cubrir los vacíos a corto plazo en la demanda de la red. Estas composiciones de baterías también pueden utilizarse en tamaños más pequeños para alimentar coches eléctricos y pueden reducirse aún más para alimentar productos comerciales, como teléfonos, tabletas, ordenadores portátiles, altavoces y, por supuesto, detectores de gas personales.

Las aplicaciones incluyen el almacenamiento en baterías, el transporte y la soldadura, y pueden dividirse en cuatro categorías principales: Químicas: amoníaco, hidrógeno, metanol y combustible sintético; electroquímicas: plomo-ácido, iones de litio, Na-Cd, iones de Na; eléctricas: supercondensadores, almacenamiento magnético superconductor; y mecánicas: aire comprimido, hidráulica bombeada y gravedad.

Peligros del gas

Incendios de baterías de iones de litio

Un problema importante surge cuando la electricidad estática o un cargador defectuoso dañan el circuito de protección de la batería. Este daño puede provocar que los interruptores de estado sólido se pongan en posición ON, sin que el usuario lo sepa. Una batería con un circuito de protección defectuoso puede funcionar con normalidad, sin embargo, puede no proporcionar protección contra el cortocircuito. Un sistema de detección de gases puede establecer si hay un fallo y puede utilizarse en un bucle de retroalimentación para cortar la energía, sellar el espacio y liberar un gas inerte (como el nitrógeno) en la zona para evitar cualquier incendio o explosión.

Fuga de gases tóxicos antes del desbordamiento térmico

El desbordamiento térmico de las pilas de litio-metal y de iones de litio ha provocado varios incendios. Las investigaciones demuestran que durante el desbordamiento térmico de las baterías se producen incendios alimentados por gases inflamables. El electrolito de una batería de iones de litio es inflamable y suele contener hexafluorofosfato de litio (LiPF6) u otras sales de Li que contienen flúor. En caso de sobrecalentamiento, el electrolito se evapora y acaba saliendo de las celdas de la batería. Los investigadores han descubierto que las baterías de iones de litio comerciales pueden emitir cantidades considerables de fluoruro de hidrógeno (HF) durante un incendio, y que los índices de emisión varían según los distintos tipos de batería y los niveles de estado de carga (SOC). El fluoruro de hidrógeno puede penetrar en la piel y afectar al tejido cutáneo profundo e incluso a los huesos y la sangre. Incluso con una exposición mínima, el dolor y los síntomas pueden no presentarse durante varias horas, momento en el que el daño es extremo.

Hidrógeno y riesgo de explosión

Dado que las pilas de combustible de hidrógeno están ganando popularidad como alternativas a los combustibles fósiles, es importante ser consciente de los peligros del hidrógeno. Al igual que todos los combustibles, el hidrógeno es altamente inflamable y si tiene fugas existe un riesgo real de incendio. Las baterías tradicionales de plomo-ácido producen hidrógeno cuando se cargan. Estas baterías suelen cargarse juntas, a veces en la misma habitación o zona, lo que puede generar un riesgo de explosión, especialmente si la habitación no está bien ventilada. La mayoría de las aplicaciones de hidrógeno no pueden utilizar odorantes por seguridad, ya que el hidrógeno se dispersa más rápido que los odorantes. Existen normas de seguridad aplicables a las estaciones de abastecimiento de hidrógeno, por las que se requiere un equipo de protección adecuado para todos los trabajadores. Esto incluye detectores personales, capaces de detectar el nivel de hidrógeno en ppm, así como el nivel de %LEL. Los niveles de alarma por defecto se fijan en el 20% y el 40% de LEL, que es el 4% del volumen, pero algunas aplicaciones pueden desear tener un rango de PPM y niveles de alarma personalizados para detectar rápidamente las acumulaciones de hidrógeno.

Para saber más sobre los peligros de los gases en la energía de las baterías, visite nuestrapágina de la industriapara obtener más información.

Nuestra asociación con Gasway

Antecedentes

Fundada en Norwich en 1982 Gasway Services Ltd tiene más de 40 años de experiencia en la industria, con más de 200 ingenieros contratados. Son expertos en todo tipo de calderas. Gasway es la mayor empresa de calefacción en el este de Inglaterra. Con 4 oficinas, 2 en Norwich y las otras 2 en Colchester (Gasway es una empresa subsidiaria de Flagship Group y ha adquirido Blueflame Services, con sede en Colchester).

Su equipo de ingenieros ayuda a miles de personas con su calefacción. Gasway se especializa en aparatos de gas y calderas, proporcionando servicios para todo tipo de sistemas de calefacción, incluyendo gas, petróleo, electricidad y GLP. Así como tecnologías renovables, calefacción comercial y servicios eléctricos. Gasway instala, repara, mantiene e incluso le ofrece un plan de cobertura de calderas para proteger su sistema de calefacción.

Opiniones sobre la climatización

Las soluciones de calefacción renovable son cada vez más populares, con la nueva agenda de bajas emisiones de carbono del Gobierno británico. La quema de gas es responsable de más dióxido de carbono que cualquier otra fuente de combustible. Para llegar a cero en 2050 hay que conseguirlo de varias maneras. Hay muchas maneras de cambiar nuestras vidas para ayudar a conseguirlo. Gasway reconoce que tiene un papel que desempeñar para ayudar a conseguir el cero neto en 2050. Tienen un departamento dedicado exclusivamente a las energías renovables, con el objetivo de ampliarlo en el futuro. Además, Gasway pretende ofrecer más puestos de aprendizaje dedicados a las energías renovables. Estas iniciativas ponen de manifiesto que creen en las energías renovables y en la posibilidad de que el hidrógeno desempeñe un papel en ellas.

Trabajar con AntonbyCrowcon

Gasway Services Ltd es socio de AntonbyCrowcon desde hace más de 3 años. Han proporcionado a sus ingenieros un equipo en el que pueden confiar cuando realizan el mantenimiento de calderas de gas y de gasóleo. A través de la comunicación continua con su equipo de servicio, nuestra asociación ha proporcionado a Gasway la confianza para proporcionar asesoramiento experto a sus clientes. "AntonbyCrowcon proporciona a nuestros ingenieros un equipo fiable y polivalente que no sólo garantiza la seguridad de nuestros trabajadores y clientes. Sino que también permite a nuestros ingenieros llevar menos equipo y trabajar de forma más eficiente."

El Registro de Seguridad del Gas se introdujo para proteger al público de los gasistas y fontaneros deshonestos. Cada año, millones de vidas corren peligro por culpa de las instalaciones de gas defectuosas y los trabajos ilegales cuestan millones de libras al año. Gas Safe se asegura de que todas las personas inscritas en su registro son competentes para llevar a cabo el tipo de trabajo con gas para el que están registradas, y su registro se actualiza cada año. De este modo, es muy fácil comprobar si el técnico que realiza el trabajo en su nombre es auténtico. Si un contratista registrado en Gas Safe incumple los términos de su registro, Gas Safe puede investigarlo y puede revocar su registro. Gasway invierte en la fabricación en el Reino Unido para ofrecer a los clientes y a los técnicos la seguridad que necesitan y en la que pueden confiar.

Las ventajas de los sensores MPS 

Desarrollado porNevadaNano, los sensores Molecular Property Spectrometer™ (MPS™) representan la nueva generación de detectores de gases inflamables. EL MPS™ puede detectar rápidamente más de 15 gases inflamables caracterizados a la vez. Hasta hace poco, quien necesitaba controlar los gases inflamables tenía que seleccionar un detector de gases inflamables tradicional que contuviera un pellistor calibrado para un gas específico, o con un sensor de infrarrojo (IR) que también varía su potencia según el gas inflamable que se mide y, por tanto, debe calibrarse para cada gas. Aunque estas soluciones son beneficiosas, no siempre son ideales. Por ejemplo, ambos tipos de sensores requieren una calibración periódica y los sensores catalíticos de pellistor también necesitan frecuentes pruebas de choque para garantizar que no han sido dañados por contaminantes (conocidos como agentes de "envenenamiento del sensor") o por condiciones adversas. En algunos entornos, los sensores deben cambiarse con frecuencia, lo que resulta costoso tanto en términos de dinero como de tiempo de inactividad o de disponibilidad del producto. La tecnología de infrarrojos no puede detectar el hidrógeno, que no tiene firma de infrarrojos, y tanto los detectores de infrarrojos como los de pellistores a veces detectan incidentalmente otros gases (es decir, no calibrados), dando lecturas inexactas que pueden provocar falsas alarmas o preocupar a los operarios.

El MPS™ ofrece características clave que proporcionan beneficios tangibles en el mundo real al operador y, por tanto, a los trabajadores. Estas incluyen:

No hay calibración

Cuando se implementa un sistema que contiene un detector de cabezal fijo, es una práctica habitual realizar el mantenimiento según el programa recomendado por el fabricante. Esto conlleva unos costes regulares continuos, así como la posibilidad de interrumpir la producción o el proceso para realizar el mantenimiento o incluso acceder al detector o a varios detectores. También puede haber un riesgo para el personal cuando los detectores se montan en entornos especialmente peligrosos. La interacción con un sensor MPS es menos estricta porque no hay modos de fallo no revelados, siempre que haya aire. Sería un error decir que no hay requisitos de calibración. Una calibración en fábrica, seguida de una prueba de gas en el momento de la puesta en marcha es suficiente, porque hay una calibración interna automatizada que se realiza cada 2 segundos durante toda la vida útil del sensor. Lo que realmente se quiere decir es que no hay calibración por parte del cliente.

El sitio Xgard Bright con MPS™ no requiere calibración. Esto, a su vez, reduce la interacción con el detector, lo que se traduce en un menor coste total de propiedad a lo largo del ciclo de vida del sensor y un menor riesgo para el personal y el rendimiento de la producción para completar el mantenimiento periódico. Sigue siendo aconsejable comprobar la limpieza del detector de gas de vez en cuando, ya que el gas no puede atravesar acumulaciones gruesas de material obstructivo y entonces no llegaría al sensor.

Gas multiespecie - 'True LEL'™

Muchas industrias y aplicaciones utilizan o tienen como subproducto múltiples gases dentro del mismo entorno. Esto puede suponer un reto para la tecnología de sensores tradicional, que sólo puede detectar un único gas para el que se ha calibrado en el nivel correcto y puede dar lugar a lecturas inexactas e incluso a falsas alarmas que pueden detener el proceso o la producción si hay otro tipo de gas inflamable. La falta de respuesta o la respuesta excesiva a la que se enfrentan con frecuencia los entornos de varios gases puede ser frustrante y contraproducente, comprometiendo la seguridad de las mejores prácticas de los usuarios. El sensor MPS™ puede detectar con precisión varios gases a la vez e identificar instantáneamente el tipo de gas. Además, el sensor MPS™ tiene una compensación ambiental integrada y no requiere un factor de corrección aplicado externamente. Las lecturas inexactas y las falsas alarmas son cosa del pasado.

No hay envenenamiento del sensor

En determinados entornos, los tipos de sensores tradicionales pueden correr el riesgo de envenenarse. La presión, la temperatura y la humedad extremas pueden dañar los sensores, mientras que las toxinas y los contaminantes ambientales pueden "envenenar" los sensores, lo que puede comprometer gravemente su rendimiento. Los detectores que se encuentran en entornos en los que se pueden encontrar venenos o inhibidores, la única forma de garantizar que no se degrade su rendimiento es realizar pruebas periódicas y frecuentes. El fallo del sensor debido a la intoxicación puede ser una experiencia costosa. La tecnología del sensor MPS™ no se ve afectada por los contaminantes del entorno. Los procesos que tienen contaminantes ahora tienen acceso a una solución que funciona de forma fiable con un diseño a prueba de fallos para alertar al operador y ofrecer una tranquilidad para el personal y los activos ubicados en entornos peligrosos. Además, el sensor MPS no se ve perjudicado por las elevadas concentraciones de gases inflamables, que pueden causar grietas en los tipos de sensores catalíticos convencionales, por ejemplo. El sensor MPS sigue funcionando.

Hidrógeno (H2)

El uso de hidrógeno en procesos industriales está aumentando debido a la necesidad de encontrar una alternativa más limpia al uso de gas natural. En la actualidad, la detección de hidrógeno se limita a la tecnología de pellistores, semiconductores de óxido metálico, sensores electroquímicos y sensores de conductividad térmica menos precisos, debido a la incapacidad de los sensores de infrarrojos para detectar hidrógeno. Al enfrentarse a los problemas de envenenamiento o falsas alarmas mencionados anteriormente, la solución actual puede obligar al operador a realizar frecuentes pruebas funcionales y de mantenimiento, además de los problemas de falsas alarmas. El sensor MPS™ ofrece una solución mucho mejor para la detección de hidrógeno, eliminando los problemas a los que se enfrenta la tecnología de sensores tradicional. Un sensor de hidrógeno de larga duración y respuesta relativamente rápida que no requiere calibración durante todo el ciclo de vida del sensor, sin el riesgo de envenenamiento o falsas alarmas, puede ahorrar significativamente en el coste total de propiedad y reduce la interacción con la unidad, lo que resulta en tranquilidad y menor riesgo para los operadores que aprovechan la tecnología MPS™. Todo esto es posible gracias a la tecnología MPS™, que supone el mayor avance en detección de gases desde hace varias décadas. El Gasman con MPS está preparado para el hidrógeno (H2). Un solo sensor MPS detecta con precisión hidrógeno e hidrocarburos comunes en una solución a prueba de fallos y venenos sin necesidad de recalibración.

Para más información sobre Crowcon, visite https://www.crowcon.com o para más información sobre MPSTM visite https://www.crowcon.com/mpsinfixed/

Cumbre Mundial del Hidrógeno 2022

Crowcon expuso en la Cumbre y Exposición Mundial del Hidrógeno 2022 del 9 al 11 de mayo de 2022 como parte del evento diseñado para avanzar en el desarrollo del sector del hidrógeno. Con sede en Rotterdam y producida por el Consejo de Energía Sostenible (SEC), la exposición de este año fue la primera a la que asistió Crowcon. Nos entusiasma formar parte de una ocasión que fomenta las conexiones y la colaboración entre quienes están a la vanguardia de la industria pesada e impulsa el sector del hid rógeno.

Los representantes de nuestro equipo se reunieron con varios compañeros del sector y mostraron nuestras soluciones de hidrógeno para la detección de gases. Nuestro sensor MPS ofrece un nivel superior de detección de gases inflamables gracias a su tecnología pionera de espectrómetro de propiedades moleculares (MPS™) que puede detectar e identificar con precisión más de 15 gases inflamables diferentes. Se trata de una solución ideal para la detección de hidrógeno, ya que el hidrógeno tiene unas propiedades que permiten una fácil ignición y una mayor intensidad de combustión en comparación con la gasolina o el gasóleo, por lo que supone un verdadero riesgo de explosión. Para saber más, lea nuestro blog.

Nuestra tecnología MPS tuvo interés debido a que esta no requiere calibración a lo largo del ciclo de vida del sensor, y detecta los gases inflamables sin riesgo de intoxicación o falsas alarmas, teniendo así un importante ahorro en el coste total de propiedad y reduciendo la interacción con las unidades, proporcionando en última instancia tranquilidad y menos riesgo para los operadores.

La Cumbre nos permitió comprender el estado actual del mercado del hidrógeno, incluidos los principales actores y los proyectos en curso, lo que permitió desarrollar una mayor comprensión de las necesidades de nuestros productos para desempeñar un papel importante en el futuro de la detección de gases de hidrógeno.

Estamos deseando asistir el año que viene.

La minería del oro: ¿Qué detección de gases necesito? 

¿Cómo se extrae el oro?

El oro es una sustancia rara que equivale a 3 partes por billón de la capa exterior de la tierra, y la mayor parte del oro disponible en el mundo procede de Australia. El oro, como el hierro, el cobre y el plomo, es un metal. Existen dos formas principales de extracción de oro: a cielo abierto y subterránea. La minería a cielo abierto implica el uso de equipos de movimiento de tierras para retirar la roca de desecho del yacimiento mineral que se encuentra encima, y luego se realiza la extracción de la sustancia restante. Este proceso requiere que los residuos y el mineral sean golpeados en grandes volúmenes para romper los residuos y el mineral en tamaños adecuados para su manipulación y transporte tanto a los vertederos como a las trituradoras de mineral. La otra forma de extracción de oro es el método más tradicional de minería subterránea. En este método, los pozos verticales y los túneles en espiral transportan a los trabajadores y al equipo dentro y fuera de la mina, proporcionando ventilación y transportando la roca estéril y el mineral a la superficie.

Detección de gases en la minería

En relación con la detección de gases, el proceso de salud y seguridad en las minas ha evolucionado considerablemente a lo largo del último siglo, desde el uso rudimentario de las pruebas de mechas de metano, los canarios cantores y la seguridad de las llamas hasta las tecnologías y los procesos de detección de gases modernos que conocemos. Garantizar la utilización del tipo correcto de equipo de detección, ya sea fijo o portátilantes de entrar en estos espacios. La utilización adecuada del equipo garantizará que los niveles de gas se controlen con precisión, y que los trabajadores sean alertados de las concentraciones peligrosas concentraciones peligrosas en la atmósfera a la primera oportunidad.

¿Cuáles son los riesgos del gas y cuáles son los peligros?

Los peligros a los que se enfrentan quienes trabajan en la industria minera son varios riesgos y enfermedades profesionales potenciales, así como la posibilidad de sufrir lesiones mortales. Por ello, es importante conocer los entornos y los peligros a los que pueden estar expuestos.

Oxígeno (O2)

El oxígeno (O2), normalmente presente en el aire en un 20,9%, es esencial para la vida humana. Hay tres razones principales por las que el oxígeno supone una amenaza para los trabajadores de la industria minera. Entre ellas se encuentran Deficiencias o enriquecimiento de oxígenoLa falta de oxígeno puede impedir que el cuerpo humano funcione y que el trabajador pierda el conocimiento. A menos que el nivel de oxígeno pueda restablecerse a un nivel medio, el trabajador corre el riesgo de morir. Una atmósfera es deficitaria cuando la concentración de O2 es inferior al 19,5%. En consecuencia, un ambiente con demasiado oxígeno es igualmente peligroso, ya que constituye un riesgo muy elevado de incendio y explosión. Se considera que existe cuando el nivel de concentración de O2 es superior al 23,5%.

Monóxido de carbono (CO)

En algunos casos, puede haber altas concentraciones de monóxido de carbono (CO). Entre los entornos en los que esto puede ocurrir se encuentra el incendio de una casa, por lo que el servicio de bomberos corre el riesgo de intoxicación por CO. En este entorno puede haber hasta un 12,5% de CO en el aire, que cuando el monóxido de carbono se eleva hasta el techo con otros productos de la combustión y cuando la concentración alcanza el 12,5% en volumen, esto sólo conducirá a una cosa, llamada flashover. Esto es cuando todo el conjunto se enciende como combustible. Aparte de los objetos que caen sobre el servicio de bomberos, éste es uno de los peligros más extremos a los que se enfrentan cuando trabajan dentro de un edificio en llamas. Debido a que las características del CO son tan difíciles de identificar, es decir, es un gas incoloro, inodoro, insípido y venenoso, es posible que tarde en darse cuenta de que tiene una intoxicación por CO. Los efectos del CO pueden ser peligrosos, ya que el CO impide que el sistema sanguíneo transporte eficazmente el oxígeno por el cuerpo, concretamente a los órganos vitales como el corazón y el cerebro. Por lo tanto, altas dosis de CO pueden causar la muerte por asfixia o por falta de oxígeno en el cerebro. Según las estadísticas del Ministerio de Sanidad, el indicio más común de intoxicación por CO es el dolor de cabeza, ya que el 90% de los pacientes lo declaran como un síntoma, y el 50% declara tener náuseas y vómitos, así como vértigo. La confusión y los cambios de conciencia y la debilidad representan el 30% y el 20% de los informes.

Sulfuro de hidrógeno (H2S)

El sulfuro de hidrógeno (H2S) es un gas incoloro e inflamable con un olor característico a huevos podridos. Puede entrar en contacto con la piel y los ojos. Sin embargo, el sistema nervioso y el sistema cardiovascular son los más afectados por el sulfuro de hidrógeno, que puede provocar una serie de síntomas. Una sola exposición a altas concentraciones puede provocar rápidamente dificultades respiratorias y la muerte.

Dióxido de azufre (SO2)

El dióxido de azufre (SO2) puede causar varios efectos nocivos en los sistemas respiratorios, en particular en el pulmón. También puede causar irritación de la piel. El contacto de la piel con (SO2) provoca dolor punzante, enrojecimiento de la piel y ampollas. El contacto de la piel con el gas comprimido o el líquido puede provocar congelación. El contacto con los ojos provoca lagrimeo y, en casos graves, ceguera.

Metano (CH4)

El metano (CH4) es un gas incoloro y altamente inflamable cuyo componente principal es el gas natural. Los niveles elevados de (CH4) pueden reducir la cantidad de oxígeno respirado del aire, lo que puede provocar cambios de humor, dificultad para hablar, problemas de visión, pérdida de memoria, náuseas, vómitos, enrojecimiento facial y dolor de cabeza. En casos graves, puede haber cambios en la respiración y el ritmo cardíaco, problemas de equilibrio, entumecimiento y pérdida de conocimiento. Aunque, si la exposición es durante un periodo más largo, puede resultar mortal.

Hidrógeno (H2)

El gas hidrógeno es un gas incoloro, inodoro e insípido más ligero que el aire. Al ser más ligero que el aire, flota por encima de nuestra atmósfera, lo que significa que no se encuentra de forma natural, sino que debe crearse. El hidrógeno supone un riesgo de incendio o explosión, así como un riesgo de inhalación. Las altas concentraciones de este gas pueden provocar un ambiente con falta de oxígeno. Las personas que respiran una atmósfera así pueden experimentar síntomas como dolores de cabeza, zumbidos en los oídos, mareos, somnolencia, pérdida de conocimiento, náuseas, vómitos y depresión de todos los sentidos.

Amoníaco (NH3)

El amoníaco (NH3) es uno de los productos químicos más utilizados a nivel mundial que se produce tanto en el cuerpo humano como en la naturaleza. Aunque se crea de forma natural (NH3) es corrosivo, lo que supone una preocupación para la salud. Una alta exposición en el aire puede provocar quemaduras inmediatas en los ojos, la nariz, la garganta y las vías respiratorias. Los casos más graves pueden provocar ceguera.

Otros riesgos del gas

Aunque el cianuro de hidrógeno (HCN) no persiste en el medio ambiente, el almacenamiento, la manipulación y la gestión de residuos inadecuados pueden suponer un grave riesgo para la salud humana, así como efectos en el medio ambiente. El cianuro interfiere en la respiración humana a niveles celulares que pueden provocar efectos agudos y de servicio, como respiración rápida, temblores y asfixia.

La exposición a las partículas diésel puede producirse en las minas subterráneas como resultado de los equipos móviles con motor diésel utilizados para la perforación y el transporte. Aunque las medidas de control incluyen el uso de combustible diésel con bajo contenido de azufre, el mantenimiento de los motores y la ventilación, las implicaciones para la salud incluyen un riesgo excesivo de cáncer de pulmón.

Productos que pueden ayudar a protegerse

Crowcon ofrece una gama de detección de gases que incluye productos portátiles y fijos, todos ellos adecuados para la detección de gases en la industria minera.

Para saber más, visite nuestra página sobre el sector aquí.