Electrólisis de hidrógeno

En la actualidad, la tecnología más desarrollada comercialmente para producir hidrógeno es la electrolisis. La electrólisis es una vía optimista para la producción de hidrógeno sin carbono a partir de recursos renovables y nucleares. La electrólisis del agua es la descomposición del agua (H2O) en sus componentes básicos, hidrógeno (H2) y oxígeno (O2), mediante el paso de corriente eléctrica. El agua es una fuente completa para producir hidrógeno y el único subproducto liberado durante el proceso es el oxígeno. Este proceso utiliza energía eléctrica que puede almacenarse como energía química en forma de hidrógeno.

¿Cuál es el proceso?

Para producir hidrógeno, la electrólisis convierte la energía eléctrica en energía química almacenando electrones en enlaces químicos estables. Al igual que las pilas de combustible, los electrolizadores se componen de un ánodo y un cátodo separados por un electrolito acuoso según el tipo de material electrolítico del que se trate y la especie iónica que conduzca. El electrolito es una parte obligatoria ya que el agua pura no tiene la capacidad de transportar suficiente carga al carecer de iones. En el ánodo, el agua se oxida en gas oxígeno e iones de hidrógeno. Mientras que en el cátodo, el agua se reduce a gas hidrógeno e iones de hidróxido. En la actualidad existen tres tecnologías de electrólisis principales.

Electrolizadores alcalinos (AEL)

Esta tecnología se utiliza a escala industrial desde hace más de 100 años. Los electrolizadores alcalinos funcionan mediante el transporte de iones de hidróxido (OH-) a través del electrolito desde el cátodo hasta el ánodo, generándose hidrógeno en el lado del cátodo. Los electrolizadores, que funcionan a 100°-150°C, utilizan una solución alcalina líquida de hidróxido de sodio o de potasio (KOH) como electrolito. En este proceso, el ánodo y el cátodo se separan mediante un diafragma que impide que se vuelvan a mezclar. En el cátodo, el agua se divide para formar H2 y libera aniones de hidróxido que atraviesan el diafragma para recombinarse en el ánodo, donde se produce oxígeno. Al tratarse de una tecnología bien establecida, su coste de producción es relativamente bajo y proporciona una estabilidad a largo plazo. Sin embargo, tiene un cruce de gases que puede comprometer su grado de pureza y requiere el uso de un electrolito líquido corrosivo.

Electrolizadores de membrana electrolítica de polímero (PEM)

La membrana electrolítica de polímero es la última tecnología utilizada comercialmente para producir hidrógeno. En un electrolizador PEM, el electrolito es un material plástico sólido especial. Los electrolizadores PEM funcionan a 70°-90°C. En este proceso, el agua reacciona en el ánodo para formar oxígeno e iones de hidrógeno con carga positiva (protones). Los electrones fluyen a través de un circuito externo y los iones de hidrógeno se mueven selectivamente a través del PEM hasta el cátodo. En el cátodo, los iones de hidrógeno se combinan con los electrones del circuito externo para formar gas hidrógeno. En comparación con el AEL hay varias ventajas: la pureza del gas producto es alta en una operación de carga parcial, el diseño del sistema es compacto y tiene una respuesta rápida del sistema. Sin embargo, el coste de los componentes es alto y la durabilidad es baja.

Electrolizadores de óxido sólido (SOE)

Los electrolizadores AEL y PEM se conocen como electrolizadores de baja temperatura (LTE). Sin embargo, el electrolizador de óxido sólido (SOE) se conoce como electrolizador de alta temperatura (HTE). Esta tecnología se encuentra aún en fase de desarrollo. En el SOE, se utiliza material cerámico sólido como electrolito que conduce iones de oxígeno (O2-) cargados negativamente a temperaturas elevadas, generando hidrógeno de una forma ligeramente diferente. A una temperatura de entre 700° y 800°C, el vapor del cátodo se combina con los electrones del circuito externo para formar hidrógeno gaseoso e iones de oxígeno cargados negativamente. Los iones de oxígeno atraviesan la membrana cerámica sólida y reaccionan en el ánodo para formar gas oxígeno y generar electrones para el circuito externo. Las ventajas de esta tecnología es que combina un alto rendimiento térmico y energético, además de producir bajas emisiones a un coste relativamente bajo. Aunque, debido al elevado calor y potencia necesarios, el tiempo de puesta en marcha es más largo.

¿Por qué se considera el hidrógeno como combustible alternativo?

El hidrógeno se considera un combustible alternativo según la Ley de Política Energética de 1992. El hidrógeno producido por electrólisis puede aportar cero emisiones de gases de efecto invernadero, dependiendo de la fuente de electricidad utilizada. Esta tecnología se está buscando para trabajar con opciones de energía renovable (eólica, solar, hidroeléctrica, geotérmica) y nuclear para permitir una emisión prácticamente nula de gases de efecto invernadero y otros contaminantes. Aunque, este tipo de producción requerirá que el coste se reduzca significativamente para ser competitivo con las vías más maduras basadas en el carbono, como el reformado del gas natural. Existe un potencial de sinergia con la generación de energía renovable. El combustible de hidrógeno y la generación de energía eléctrica podrían distribuirse y ubicarse en parques eólicos, lo que permitiría la flexibilidad de cambiar la producción para adaptarla mejor a la disponibilidad de recursos con las necesidades operativas del sistema y los factores del mercado.