Panorama del sector: De residuos a energía

La industria de conversión de residuos en energía utiliza varios métodos de tratamiento de residuos. Los residuos sólidos urbanos e industriales se convierten en electricidad y, a veces, en calor para el procesamiento industrial y los sistemas de calefacción urbana. El proceso principal es, por supuesto, la incineración, pero a veces se utilizan etapas intermedias de pirólisis, gasificación y digestión anaeróbica para convertir los residuos en subproductos útiles que luego se utilizan para generar energía mediante turbinas u otros equipos. Esta tecnología está ganando un amplio reconocimiento mundial como forma de energía más ecológica y limpia que la quema tradicional de combustibles fósiles, y como medio de reducir la producción de residuos.

Tipos de conversión de residuos en energía

Incineración

La incineración es un proceso de tratamiento de residuos que implica la combustión de sustancias ricas en energía contenidas en los materiales de desecho, normalmente a altas temperaturas, en torno a los 1.000 grados C. Las plantas industriales de incineración de residuos suelen denominarse instalaciones de conversión de residuos en energía y a menudo son centrales eléctricas de tamaño considerable por derecho propio. La incineración y otros sistemas de tratamiento de residuos a alta temperatura suelen describirse como "tratamiento térmico". Durante el proceso, los residuos se convierten en calor y vapor que pueden utilizarse para mover una turbina y generar electricidad. En la actualidad, este método tiene una eficiencia de entre el 15 y el 29%, aunque tiene potencial para mejorar.

Pirólisis

La pirólisis es un proceso diferente de tratamiento de residuos en el que la descomposición de residuos sólidos de hidrocarburos, normalmente plásticos, tiene lugar a altas temperaturas sin presencia de oxígeno, en una atmósfera de gases inertes. Este tratamiento suele realizarse a 500 °C o más, lo que proporciona calor suficiente para descomponer las moléculas de cadena larga, incluidos los biopolímeros, en hidrocarburos más simples de menor masa.

Gasificación

Este proceso se utiliza para fabricar combustibles gaseosos a partir de combustibles más pesados y de residuos que contienen material combustible. En este proceso, las sustancias carbonosas se convierten en dióxido de carbono (CO2), monóxido de carbono (CO) y una pequeña cantidad de hidrógeno a alta temperatura. En este proceso se genera gas, que es una buena fuente de energía utilizable. Este gas puede utilizarse para producir electricidad y calor.

Gasificación por arco de plasma

En este proceso, se utiliza una antorcha de plasma para ionizar material rico en energía. Se produce gas de síntesis que puede utilizarse para fabricar fertilizantes o generar electricidad. Este método es más una técnica de eliminación de residuos que un medio serio de generar gas, ya que a menudo consume tanta energía como la que puede proporcionar el gas que produce.

Razones para convertir residuos en energía

Esta tecnología está adquiriendo un amplio reconocimiento en todo el mundo en relación con la producción de residuos y la demanda de energía limpia.

  • Evita las emisiones de metano de los vertederos
  • Compensa las emisiones de gases de efecto invernadero (GEI) procedentes de la producción eléctrica con combustibles fósiles.
  • Recupera y recicla recursos valiosos, como metales
  • Produce energía y vapor limpios y fiables con carga base
  • Utiliza menos terreno por megavatio que otras fuentes de energía renovables
  • Fuente de combustible renovable sostenible y constante (en comparación con la eólica y la solar)
  • Destruye residuos químicos
  • Da lugar a bajos niveles de emisiones, normalmente muy por debajo de los niveles permitidos
  • Destruye catalíticamente los óxidos de nitrógeno (NOx), las dioxinas y los furanos mediante una reducción catalítica selectiva (SCR)

¿Cuáles son los riesgos del gas?

Existen muchos procesos para convertir los residuos en energía, entre ellos, las plantas de biogás, el uso de residuos, la piscina de lixiviados, la combustión y la recuperación de calor. Todos estos procesos entrañan riesgos gaseosos para quienes trabajan en ellos.

En una planta de biogás se produce biogás. Éste se forma cuando los materiales orgánicos, como los residuos agrícolas y alimentarios, son descompuestos por bacterias en un entorno carente de oxígeno. Se trata de un proceso denominado digestión anaeróbica. Una vez capturado, el biogás puede utilizarse para producir calor y electricidad para motores, microturbinas y pilas de combustible. Evidentemente, el biogás tiene un alto contenido en metano, así como una cantidad considerable de sulfuro de hidrógeno (H2S), lo que genera múltiples y graves riesgos gaseosos. (Lea nuestro blog para obtener más información sobre el biogás). Sin embargo, existe un riesgo elevado de incendio y explosión, peligro de espacios confinados, asfixia, agotamiento del oxígeno e intoxicación por gas, normalmente por H2So amoníaco (NH3). Los trabajadores de una planta de biogás deben disponer de detectores de gas personales que detecten y controlen los gases inflamables, el oxígeno y los gases tóxicos como elH2S y el CO.

En una recogida de basuras es habitual encontrar gas inflamable metano (CH4) y gases tóxicos H2S, CO y NH3. Esto se debe a que los depósitos de basura están construidos a varios metros bajo tierra y los detectores de gas suelen estar montados en zonas altas, lo que dificulta su mantenimiento y calibración. En muchos casos, un sistema de muestreo es una solución práctica, ya que las muestras de aire pueden llevarse a un lugar conveniente y medirse.

El lixiviado es un líquido que drena (lixivia) de una zona en la que se recogen residuos, y las balsas de lixiviado presentan una serie de peligros gaseosos. Estos incluyen el riesgo de gas inflamable (riesgo de explosión), H2S(veneno, corrosión), amoníaco (veneno, corrosión), CO (veneno) y niveles adversos de oxígeno (asfixia). La piscina de lixiviados y los pasillos que conducen a la piscina de lixiviados requieren la monitorización de CH4, H2S, CO, NH3, oxígeno (O2) yCO2. Deben colocarse varios detectores de gas a lo largo de las rutas a la piscina de lixiviados, con salida conectada a paneles de control externos.

La combustión y la recuperación de calor requieren la detección de O2 y de los gases tóxicos dióxido de azufre (SO2) y CO. Todos estos gases suponen una amenaza para quienes trabajan en zonas de salas de calderas.

Otro proceso clasificado como gas peligroso es un depurador de aire de escape. El proceso es peligroso porque los gases de combustión de la incineración son muy tóxicos. Esto se debe a que contiene contaminantes como dióxido de nitrógeno (NO2), SO2, cloruro de hidrógeno (HCL) y dioxina. El NO2 y el SO2 son importantes gases de efecto invernadero, mientras que el HCL todos estos tipos de gases aquí mencionados son perjudiciales para la salud humana.

Para saber más sobre el sector de la conversión de residuos en energía, visite nuestra página sobre el sector.

Introducción a la industria del petróleo y el gas 

La industria del petróleo y el gas es una de las mayores del mundo y contribuye significativamente a la economía mundial. Este vasto sector se divide a menudo en tres sectores principales: upstream, midstream y downstream. Cada sector tiene sus propios riesgos relacionados con el gas.

Aguas arriba

El sector upstream de la industria del petróleo y el gas, a veces denominado exploración y producción (o E&P), se ocupa de localizar yacimientos para la extracción de petróleo y gas y la posterior perforación, recuperación y producción de crudo y gas natural. La producción de petróleo y gas es una industria increíblemente intensiva en capital, que requiere el uso de costosos equipos de maquinaria, así como trabajadores altamente cualificados. El sector upstream es muy amplio y abarca operaciones de perforación tanto en tierra como en alta mar.

El principal peligro gaseoso en la extracción de petróleo y gas es el sulfuro de hidrógeno (H2S), un gas incoloro conocido por su característico olor a huevo podrido. El H2S es un gas altamente tóxico e inflamable que puede tener efectos nocivos para la salud, provocar la pérdida de conciencia e incluso la muerte en niveles elevados.

La solución de Crowcon para la detección de sulfuro de hidrógeno viene en forma del XgardIQun detector de gas inteligente que aumenta la seguridad al minimizar el tiempo que los operarios deben pasar en zonas peligrosas. XgardIQ está disponible con sensor de H2Sde alta temperaturadiseñado específicamente para los entornos hostiles de Oriente Próximo.

Medio de la corriente

El sector intermedio de la industria del petróleo y el gas abarca el almacenamiento, el transporte y la transformación del crudo y el gas natural. El transporte de crudo y gas natural se realiza tanto por tierra como por mar, con grandes volúmenes transportados en petroleros y buques marinos. En tierra, los métodos de transporte utilizados son los petroleros y los oleoductos. Los retos del sector midstream incluyen, entre otros, el mantenimiento de la integridad de los buques de almacenamiento y transporte y la protección de los trabajadores que participan en las actividades de limpieza, purga y llenado.

La vigilancia de los tanques de almacenamiento es esencial para garantizar la seguridad de los trabajadores y la maquinaria.

Aguas abajo

El sector downstream se refiere al refinado y transformación del gas natural y el petróleo crudo y a la distribución de productos acabados. Es la fase del proceso en la que estas materias primas se transforman en productos que se utilizan para diversos fines, como abastecer de combustible a los vehículos y calentar los hogares.

El proceso de refinado del petróleo crudo suele dividirse en tres etapas básicas: separación, conversión y tratamiento. El tratamiento del gas natural consiste en separar los distintos hidrocarburos y fluidos para producir un gas de "calidad de gasoducto".

Los riesgos de gas típicos del sector de la transformación son el sulfuro de hidrógeno, el dióxido de azufre, el hidrógeno y una amplia gama de gases tóxicos. El sistema Xgard y Xgard Bright de Crowcon ofrecen una amplia gama de opciones de sensores para cubrir todos los peligros de gas presentes en esta industria. Xgard Bright también está disponible con el sensor de nueva generación sensor MPSde última generación, para la detección de más de 15 gases inflamables en un solo detector. También hay disponibles monitores personales de uno o varios gases para garantizar la seguridad de los trabajadores en estos entornos potencialmente peligrosos. Estos incluyen el Gas-Pro y T4xcon Gas-Pro , que ofrece soporte para 5 gases en una solución compacta y robusta.

¿Por qué se emiten gases en la producción de cemento?

¿Cómo se fabrica el cemento?

El hormigón es uno de los materiales más importantes y utilizados en la construcción mundial. El hormigón se utiliza ampliamente en la construcción de edificios residenciales y comerciales, puentes, carreteras y mucho más.

El componente clave del hormigón es el cemento, una sustancia aglutinante que une todos los demás componentes del hormigón (generalmente grava y arena). Cada año se utilizan en el mundo más de 4.000 millones de toneladas de cemento.lo que ilustra la enorme envergadura de la industria mundial de la construcción.

La fabricación de cemento es un proceso complejo, que comienza con materias primas como la piedra caliza y la arcilla, que se introducen en grandes hornos de hasta 120 m de longitud, que se calientan a una temperatura de hasta 1.500ºC. Cuando se calientan a temperaturas tan altas, las reacciones químicas hacen que estas materias primas se unan, formando el cemento.

Como ocurre con muchos procesos industriales, la producción de cemento no está exenta de peligros. La producción de cemento puede liberar gases nocivos para los trabajadores, las comunidades locales y el medio ambiente.

¿Qué riesgos de gas existen en la producción de cemento?

Los gases generalmente emitidos en las cementeras son el dióxido de carbono (CO2), óxidos nitrosos (NOx) y dióxido de azufre (SO2), siendo elCO2 representa la mayor parte de las emisiones.

El dióxido de azufre presente en las fábricas de cemento procede generalmente de las materias primas que se utilizan en el proceso de producción del cemento. El principal gas peligroso que hay que tener en cuenta es el dióxido de carbono. 8% de las emisiones mundialesde CO2 mundial.

La mayor parte de las emisiones de dióxido de carbono proceden de un proceso químico llamado calcinación. Se produce cuando la piedra caliza se calienta en los hornos y se descompone enCO2 y óxido de calcio. La otra fuente principal deCO2 es la combustión de combustibles fósiles. Los hornos utilizados en la producción de cemento suelen calentarse con gas natural o carbón, lo que añade otra fuente de dióxido de carbono a la generada por la calcinación.

Detección de gas en la producción de cemento

En una industria que es gran productora de gases peligrosos, la detección es clave. Crowcon ofrece una amplia gama de soluciones de detección fijas y portátiles.

Xgard Bright es nuestro detector de gas de punto fijo direccionable con pantalla, que ofrece facilidad de funcionamiento y costes de instalación reducidos. Xgard Bright tiene opciones para la detección de dióxido de carbono y dióxido de azufrelos gases más preocupantes en la mezcla de cemento.

Para la detección portátil de gases, el Gasmanes la solución perfecta para la producción de cemento, disponible en una versión deCO2 para zonas seguras que ofrece una medición de 0-5% de dióxido de carbono.

Para una mayor protección, el Gas-Pro puede equiparse con hasta 5 sensores, incluidos los más comunes en la producción de cemento, CO2SO2 y NO2.

La importancia de la detección de gases en la industria del agua y las aguas residuales 

El agua es vital para nuestra vida diaria, tanto para uso personal y doméstico como para aplicaciones industriales y comerciales. Tanto si una instalación se centra en la producción de agua limpia y potable como en el tratamiento de efluentes, Crowcon se enorgullece de servir a una amplia variedad de clientes de la industria del agua, proporcionando equipos de detección de gases que mantienen a los trabajadores seguros en todo el mundo.

Peligros del gas

Aparte de los peligros de los gases comunes conocidos en la industria, como el metano, el sulfuro de hidrógeno y el oxígeno, existen peligros de los gases de los subproductos y de los gases de los materiales de limpieza que se producen a partir de los productos químicos de purificación, como el amoníaco, el cloro, el dióxido de cloro o el ozono, que se utilizan en la descontaminación del agua residual y de los efluentes, o para eliminar los microbios del agua limpia. Los productos químicos utilizados en la industria del agua pueden producir muchos gases tóxicos o explosivos. Y a ellos se suman los productos químicos que pueden derramarse o verterse en el sistema de residuos procedentes de la industria, la agricultura o las obras de construcción.

Consideraciones de seguridad

Entrada en espacios confinados

Las tuberías utilizadas para el transporte de agua requieren una limpieza periódica y controles de seguridad; durante estas operaciones, se utilizan monitores portátiles multigás para proteger al personal. Antes de entrar en cualquier espacio confinado se deben realizar comprobaciones previas y, por lo general, se controla el O2CO, H2S y CH4.Los espacios confinadosson pequeños, por lo quemonitores portátilesdeben ser compactos y discretos para el usuario, pero capaces de soportar los entornos húmedos y sucios en los que deben actuar. Una indicación clara y rápida de cualquier aumento del gas monitorizado (o de cualquier disminución en el caso del oxígeno) es de suma importancia: las alarmas ruidosas y brillantes son eficaces para dar la alarma al usuario.

Evaluación de riesgos

La evaluación de riesgos es fundamental, ya que hay que ser consciente del entorno en el que se entra y, por tanto, se trabaja. Por lo tanto, hay que entender las aplicaciones e identificar los riesgos en relación con todos los aspectos de seguridad. Centrándonos en el control de gases, como parte de la evaluación de riesgos, hay que tener claro qué gases pueden estar presentes.

Adecuado para el propósito

Existe una gran variedad de aplicaciones dentro del proceso de tratamiento del agua, lo que hace necesario controlar múltiples gases, como el dióxido de carbono, el sulfuro de hidrógeno, el cloro, el metano, el oxígeno, el ozono y el dióxido de cloro.Los detectores de gasestán disponibles para la monitorización de uno o varios gases, lo que los hace prácticos para diferentes aplicaciones, además de garantizar que, si las condiciones cambian (por ejemplo, si se agitan los lodos, lo que provoca un aumento repentino de los niveles de sulfuro de hidrógeno y gases inflamables), el trabajador sigue estando protegido.

Legislación

La Directiva 2017/164 de la Comisión Europeapublicada en enero de 2017, estableció una nueva lista de valores límite de exposición profesional indicativos (VLEPI). Los VLEPI son valores no vinculantes basados en la salud, derivados de los datos científicos más recientes disponibles y teniendo en cuenta la disponibilidad de técnicas de medición fiables. La lista incluye el monóxido de carbono, el monóxido de nitrógeno, el dióxido de nitrógeno, el dióxido de azufre, el cianuro de hidrógeno, el manganeso, el diacetilo y muchas otras sustancias químicas. La lista se basa enDirectiva 98/24/CE del Consejoque contempla la protección de la salud y la seguridad de los trabajadores frente a los riesgos relacionados con los agentes químicos en el lugar de trabajo. Para cualquier agente químico para el que se haya fijado un VLEPI a nivel de la Unión, los Estados miembros deben establecer un valor límite de exposición profesional nacional. También deben tener en cuenta el valor límite de la Unión, determinando la naturaleza del valor límite nacional de acuerdo con la legislación y la práctica nacionales. Los Estados miembros podrán beneficiarse de un período transitorio que finalizará, a más tardar, el 21 de agosto de 2023.

El Ejecutivo de Salud y Seguridad (HSE)afirma que cada año varios trabajadores sufrirán al menos un episodio de enfermedad relacionada con el trabajo. Aunque la mayoría de las enfermedades son casos relativamente leves de gastroenteritis, también existe el riesgo de enfermedades potencialmente mortales, como la leptospirosis (enfermedad de Weil) y la hepatitis. Aunque estos casos se comunican al HSE, podría haber una importante infradeclaración, ya que a menudo no se reconoce la relación entre la enfermedad y el trabajo.

Según la legislación nacional de laLey de Salud y Seguridad en el Trabajo, etc., de 1974los empresarios son responsables de garantizar la seguridad de sus empleados y de otras personas. Esta responsabilidad se ve reforzada por la normativa.

La normativa sobre espacios confinados de 1997se aplica cuando la evaluación identifica riesgos de lesiones graves por trabajar en espacios confinados. Esta normativa contiene las siguientes obligaciones clave:

  • Evitar la entrada en espacios confinados, por ejemplo, realizando el trabajo desde el exterior.
  • Si la entrada a un espacio confinado es inevitable, siga un sistema de trabajo seguro.
  • Establezca disposiciones de emergencia adecuadas antes de que se inicien los trabajos.

La normativa sobre gestión de la salud y la seguridad en el trabajo de 1999exige a los empresarios y autónomos que realicen una evaluación adecuada y suficiente de los riesgos de todas las actividades laborales con el fin de decidir qué medidas son necesarias para la seguridad. En el caso del trabajo en espacios confinados, esto significa identificar los peligros presentes, evaluar los riesgos y determinar las precauciones que deben tomarse.

Nuestras soluciones

La eliminación de estos peligros de gas es prácticamente imposible, por lo que los trabajadores permanentes y los contratistas deben depender de equipos fiables de detección de gas para protegerse. La detección de gases puede proporcionarse tanto enfijocomo enportátilportátiles. Nuestros detectores de gas portátiles protegen contra una amplia gama de peligros de gas, entre los que se incluyenT4x,Clip SGD,Gasman,Tetra 3,Gas-Pro,T4yDetective+. Nuestros detectores de gas fijos se utilizan en muchas aplicaciones en las que la fiabilidad, la fiabilidad y la ausencia de falsas alarmas son fundamentales para una detección de gas eficiente y eficaz.Xgard,Xgard BrightyIRmax. Combinados con una variedad de nuestros detectores fijos, nuestros paneles de control de detección de gases ofrecen una gama flexible de soluciones que miden gases inflamables, tóxicos y oxígeno, informan de su presencia y activan alarmas o equipos asociados, para la industria de aguas residuales nuestros paneles incluyenGasmaster.

Para saber más sobre los riesgos de los gases en el tratamiento de aguas residuales y del agua, visite nuestrapágina del sectorpara obtener más información.

Los peligros de la exposición al gas en las bodegas

Las bodegas se enfrentan a un conjunto único de retos cuando se trata de proteger a los trabajadores de los posibles daños causados por los gases peligrosos. La exposición a los gases puede producirse en todas las fases del proceso de producción del vino, desde el momento en que la uva llega a las instalaciones de la bodega hasta las actividades de fermentación y embotellado. Hay que tener cuidado en cada etapa para garantizar que los trabajadores no se expongan a un riesgo innecesario. Existen varios entornos específicos dentro de las instalaciones de la bodega que suponen un riesgo de fuga y exposición a gases, como las salas de fermentación, los pozos, las bodegas de barricas, los sumideros, los depósitos de almacenamiento y las salas de embotellado. Los principales riesgos de gas que se encuentran durante el proceso de elaboración del vino son el dióxido de carbono y el desplazamiento de oxígeno, pero también el sulfuro de hidrógeno, el dióxido de azufre, el alcohol etílico y el monóxido de carbono.

¿Cuáles son los riesgos del gas?

Sulfuro de hidrógeno (H2S)

El sulfuro de hidrógeno es un gas que puede estar presente durante el proceso de fermentación. Su presencia es más frecuente en condiciones de humedad donde la acción bacteriana ha actuado sobre los aceites naturales. Se esconde disuelto en el agua estancada hasta que se le molesta. El caso más peligroso es cuando se limpia un espacio confinado, por ejemplo, un tanque, donde los gases liberados no pueden escapar fácilmente. Una comprobación previa a la entrada resulta limpia, y el agua estancada se perturba al entrar. Los riesgos asociados al H2S son que es potencialmente peligroso para la salud, alterando los patrones de respiración. El sulfuro de hidrógeno plantea graves riesgos respiratorios, incluso a una concentración relativamente baja en el aire. El gas se absorbe muy fácil y rápidamente en el torrente sanguíneo a través del tejido pulmonar, lo que significa que se distribuye por todo el cuerpo muy rápidamente.

Dióxido de azufre (SO2)

El dióxido de azufre es un subproducto natural de la fermentación, pero también se utiliza habitualmente como aditivo en el proceso de elaboración del vino ecológico. Durante el proceso de elaboración del vino se añade SO2 adicional para evitar el crecimiento de levaduras y microbios indeseables en el vino. El dióxido de azufre puede ser muy peligroso para la salud y es un gas muy tóxico que provoca numerosas irritaciones en el cuerpo al entrar en contacto con él. El dióxido de azufre es un gas que puede causar irritación en las vías respiratorias, la nariz y la garganta. Los trabajadores expuestos a altos niveles de dióxido de azufre pueden experimentar vómitos, náuseas, calambres estomacales e irritación o daños corrosivos en los pulmones y las vías respiratorias.

Etanol (alcohol etílico)

El etanol es el principal producto alcohólico de la fermentación del vino ecológico. Ayuda a mantener el sabor del vino y estabiliza el proceso de envejecimiento. El etanol se crea durante la fermentación cuando la levadura convierte el azúcar de la uva. El vino suele contener entre un 7% y un 15% de etanol, lo que da a la bebida su porcentaje de alcohol por volumen (ABV). La cantidad de etanol que se produce depende del contenido de azúcar de las uvas, la temperatura de fermentación y el tipo de levadura que se utilice. El etanol es un líquido incoloro e inodoro que desprende vapores inflamables y potencialmente peligrosos. Los vapores que desprende el etanol o el alcohol etílico pueden irritar las vías respiratorias y los pulmones si se inhalan, con la posibilidad de provocar tos intensa y asfixia.

¿Dónde están los peligros?

Tanques de fermentación abiertos

Cualquier trabajador cuyo trabajo implique realizar operaciones sobre un recipiente o tanque de fermentación abierto puede correr un alto riesgo de exposición a gases, especialmente alCO2, o al agotamiento del oxígeno. Se ha demostrado que un trabajador que se inclina sobre la parte superior de un fermentador abierto en plena producción, aunque esté a 3 metros del suelo, puede estar potencialmente expuesto al 100% deCO2. Por lo tanto, se debe tener especial cuidado y atención a la detección de gases en estas áreas.

Exposición por ventilación inadecuada

El proceso de fermentación debe tener lugar en entornos bien ventilados para evitar la acumulación de gases tóxicos y asfixiantes. Las salas de fermentación, las salas de tanques y las bodegas son lugares que pueden suponer un riesgo. Durante el tiempo frío o la noche, pueden acumularse mayores niveles de gas, ya que las rejillas de ventilación de puertas y ventanas pueden estar cerradas.

Espacios confinados

Los espacios confinados, como las fosas y los sumideros, suelen ser problemáticos y bien conocidos por la posible acumulación de gases peligrosos. La definición de espacio confinado en una bodega es aquella que contiene, o puede contener, una atmósfera peligrosa, tiene el potencial de ser engullida por material, o una persona que entra en el entorno puede quedar atrapada o asfixiada.

Unidades Múltiples

A medida que una bodega crece y amplía sus operaciones, puede querer añadir nuevas unidades de producción para satisfacer la demanda. Sin embargo, es importante recordar que los riesgos potenciales de exposición al gas difieren entre los distintos entornos, por ejemplo, el riesgo de gas en una bodega de fermentación no es el mismo que en una sala de barricas. Por lo tanto, es posible que se necesiten distintos tipos de detectores de gas en diferentes áreas.

Para obtener más información sobre las soluciones de detección de gases para bodegas, o para hacer más preguntas, póngase en contacto con nosotros hoy mismo.

La minería del oro: ¿Qué detección de gases necesito? 

¿Cómo se extrae el oro?

El oro es una sustancia rara que equivale a 3 partes por billón de la capa exterior de la tierra, y la mayor parte del oro disponible en el mundo procede de Australia. El oro, como el hierro, el cobre y el plomo, es un metal. Existen dos formas principales de extracción de oro: a cielo abierto y subterránea. La minería a cielo abierto implica el uso de equipos de movimiento de tierras para retirar la roca de desecho del yacimiento mineral que se encuentra encima, y luego se realiza la extracción de la sustancia restante. Este proceso requiere que los residuos y el mineral sean golpeados en grandes volúmenes para romper los residuos y el mineral en tamaños adecuados para su manipulación y transporte tanto a los vertederos como a las trituradoras de mineral. La otra forma de extracción de oro es el método más tradicional de minería subterránea. En este método, los pozos verticales y los túneles en espiral transportan a los trabajadores y al equipo dentro y fuera de la mina, proporcionando ventilación y transportando la roca estéril y el mineral a la superficie.

Detección de gases en la minería

En relación con la detección de gases, el proceso de salud y seguridad en las minas ha evolucionado considerablemente a lo largo del último siglo, desde el uso rudimentario de las pruebas de mechas de metano, los canarios cantores y la seguridad de las llamas hasta las tecnologías y los procesos de detección de gases modernos que conocemos. Garantizar la utilización del tipo correcto de equipo de detección, ya sea fijo o portátilantes de entrar en estos espacios. La utilización adecuada del equipo garantizará que los niveles de gas se controlen con precisión, y que los trabajadores sean alertados de las concentraciones peligrosas concentraciones peligrosas en la atmósfera a la primera oportunidad.

¿Cuáles son los riesgos del gas y cuáles son los peligros?

Los peligros a los que se enfrentan quienes trabajan en la industria minera son varios riesgos y enfermedades profesionales potenciales, así como la posibilidad de sufrir lesiones mortales. Por ello, es importante conocer los entornos y los peligros a los que pueden estar expuestos.

Oxígeno (O2)

El oxígeno (O2), normalmente presente en el aire en un 20,9%, es esencial para la vida humana. Hay tres razones principales por las que el oxígeno supone una amenaza para los trabajadores de la industria minera. Entre ellas se encuentran Deficiencias o enriquecimiento de oxígenoLa falta de oxígeno puede impedir que el cuerpo humano funcione y que el trabajador pierda el conocimiento. A menos que el nivel de oxígeno pueda restablecerse a un nivel medio, el trabajador corre el riesgo de morir. Una atmósfera es deficitaria cuando la concentración de O2 es inferior al 19,5%. En consecuencia, un ambiente con demasiado oxígeno es igualmente peligroso, ya que constituye un riesgo muy elevado de incendio y explosión. Se considera que existe cuando el nivel de concentración de O2 es superior al 23,5%.

Monóxido de carbono (CO)

En algunos casos, puede haber altas concentraciones de monóxido de carbono (CO). Entre los entornos en los que esto puede ocurrir se encuentra el incendio de una casa, por lo que el servicio de bomberos corre el riesgo de intoxicación por CO. En este entorno puede haber hasta un 12,5% de CO en el aire, que cuando el monóxido de carbono se eleva hasta el techo con otros productos de la combustión y cuando la concentración alcanza el 12,5% en volumen, esto sólo conducirá a una cosa, llamada flashover. Esto es cuando todo el conjunto se enciende como combustible. Aparte de los objetos que caen sobre el servicio de bomberos, éste es uno de los peligros más extremos a los que se enfrentan cuando trabajan dentro de un edificio en llamas. Debido a que las características del CO son tan difíciles de identificar, es decir, es un gas incoloro, inodoro, insípido y venenoso, es posible que tarde en darse cuenta de que tiene una intoxicación por CO. Los efectos del CO pueden ser peligrosos, ya que el CO impide que el sistema sanguíneo transporte eficazmente el oxígeno por el cuerpo, concretamente a los órganos vitales como el corazón y el cerebro. Por lo tanto, altas dosis de CO pueden causar la muerte por asfixia o por falta de oxígeno en el cerebro. Según las estadísticas del Ministerio de Sanidad, el indicio más común de intoxicación por CO es el dolor de cabeza, ya que el 90% de los pacientes lo declaran como un síntoma, y el 50% declara tener náuseas y vómitos, así como vértigo. La confusión y los cambios de conciencia y la debilidad representan el 30% y el 20% de los informes.

Sulfuro de hidrógeno (H2S)

El sulfuro de hidrógeno (H2S) es un gas incoloro e inflamable con un olor característico a huevos podridos. Puede entrar en contacto con la piel y los ojos. Sin embargo, el sistema nervioso y el sistema cardiovascular son los más afectados por el sulfuro de hidrógeno, que puede provocar una serie de síntomas. Una sola exposición a altas concentraciones puede provocar rápidamente dificultades respiratorias y la muerte.

Dióxido de azufre (SO2)

El dióxido de azufre (SO2) puede causar varios efectos nocivos en los sistemas respiratorios, en particular en el pulmón. También puede causar irritación de la piel. El contacto de la piel con (SO2) provoca dolor punzante, enrojecimiento de la piel y ampollas. El contacto de la piel con el gas comprimido o el líquido puede provocar congelación. El contacto con los ojos provoca lagrimeo y, en casos graves, ceguera.

Metano (CH4)

El metano (CH4) es un gas incoloro y altamente inflamable cuyo componente principal es el gas natural. Los niveles elevados de (CH4) pueden reducir la cantidad de oxígeno respirado del aire, lo que puede provocar cambios de humor, dificultad para hablar, problemas de visión, pérdida de memoria, náuseas, vómitos, enrojecimiento facial y dolor de cabeza. En casos graves, puede haber cambios en la respiración y el ritmo cardíaco, problemas de equilibrio, entumecimiento y pérdida de conocimiento. Aunque, si la exposición es durante un periodo más largo, puede resultar mortal.

Hidrógeno (H2)

El gas hidrógeno es un gas incoloro, inodoro e insípido más ligero que el aire. Al ser más ligero que el aire, flota por encima de nuestra atmósfera, lo que significa que no se encuentra de forma natural, sino que debe crearse. El hidrógeno supone un riesgo de incendio o explosión, así como un riesgo de inhalación. Las altas concentraciones de este gas pueden provocar un ambiente con falta de oxígeno. Las personas que respiran una atmósfera así pueden experimentar síntomas como dolores de cabeza, zumbidos en los oídos, mareos, somnolencia, pérdida de conocimiento, náuseas, vómitos y depresión de todos los sentidos.

Amoníaco (NH3)

El amoníaco (NH3) es uno de los productos químicos más utilizados a nivel mundial que se produce tanto en el cuerpo humano como en la naturaleza. Aunque se crea de forma natural (NH3) es corrosivo, lo que supone una preocupación para la salud. Una alta exposición en el aire puede provocar quemaduras inmediatas en los ojos, la nariz, la garganta y las vías respiratorias. Los casos más graves pueden provocar ceguera.

Otros riesgos del gas

Aunque el cianuro de hidrógeno (HCN) no persiste en el medio ambiente, el almacenamiento, la manipulación y la gestión de residuos inadecuados pueden suponer un grave riesgo para la salud humana, así como efectos en el medio ambiente. El cianuro interfiere en la respiración humana a niveles celulares que pueden provocar efectos agudos y de servicio, como respiración rápida, temblores y asfixia.

La exposición a las partículas diésel puede producirse en las minas subterráneas como resultado de los equipos móviles con motor diésel utilizados para la perforación y el transporte. Aunque las medidas de control incluyen el uso de combustible diésel con bajo contenido de azufre, el mantenimiento de los motores y la ventilación, las implicaciones para la salud incluyen un riesgo excesivo de cáncer de pulmón.

Productos que pueden ayudar a protegerse

Crowcon ofrece una gama de detección de gases que incluye productos portátiles y fijos, todos ellos adecuados para la detección de gases en la industria minera.

Para saber más, visite nuestra página sobre el sector aquí.