Traitement de l'eau : Nécessité d'une détection de gaz pour détecter le chlore

Les entreprises de distribution d'eau contribuent à fournir de l'eau propre pour la boisson, la baignade et les usages industriels et commerciaux. Les usines de traitement des eaux usées et les systèmes d'égouts contribuent à maintenir nos voies d'eau propres et hygiéniques. Dans l'industrie de l'eau, le risque d'exposition au gaz et les dangers associés au gaz sont considérables. Des gaz nocifs peuvent se trouver dans les réservoirs d'eau, les réservoirs de service, les puits de pompage, les unités de traitement, les zones de stockage et de manipulation des produits chimiques, les puisards, les égouts, les trop-pleins, les trous de forage et les trous d'homme.

Qu'est-ce que le chlore et pourquoi est-il dangereux ?

Le chlore (Cl2) gazeux, de couleur jaune-vert, est utilisé pour stériliser l'eau potable. Toutefois, la majeure partie du chlore est utilisée dans l'industrie chimique, avec des applications typiques telles que le traitement de l'eau, les plastiques et les agents de nettoyage. Le chlore gazeux est reconnaissable à son odeur piquante et irritante, qui ressemble à celle de l'eau de Javel. L'odeur forte peut avertir les gens qu'ils sont exposés. Le Cl2 lui-même n'est pas inflammable, mais il peut réagir de manière explosive ou former des composés inflammables avec d'autres produits chimiques tels que la térébenthine et l'ammoniac.

Le chlore gazeux est reconnaissable à son odeur piquante et irritante, semblable à celle de l'eau de Javel. L'odeur forte peut avertir les gens qu'ils sont exposés. Le chlore est toxique et, s'il est inhalé ou bu en quantités concentrées, il peut s'avérer mortel. Si du chlore gazeux est libéré dans l'air, les personnes peuvent être exposées par la peau, les yeux ou l'inhalation. Le chlore n'est pas combustible, mais il peut réagir avec la plupart des combustibles, ce qui présente un risque d'incendie et d'explosion. Il réagit aussi violemment avec des composés organiques tels que l'ammoniac et l'hydrogène, ce qui peut provoquer des incendies et des explosions.

À quoi sert le chlore ?

La chloration de l'eau a débuté en Suède auXVIIIe siècle dans le but d'éliminer les odeurs de l'eau. Cette méthode a continué à être utilisée uniquement pour éliminer les odeurs de l'eau jusqu'en 1890, date à laquelle le chlore a été identifié comme une substance efficace à des fins de désinfection. Le chlore a été utilisé pour la première fois à des fins de désinfection en Grande-Bretagne au début des années 1900. Au cours du siècle suivant, la chloration est devenue la méthode la plus utilisée pour le traitement de l'eau et est aujourd'hui utilisée pour le traitement de l'eau dans la plupart des pays du monde.

La chloration est une méthode qui permet de désinfecter l'eau contenant des niveaux élevés de micro-organismes. Le chlore ou une substance contenant du chlore est utilisé pour oxyder et désinfecter l'eau. Différents procédés peuvent être utilisés pour atteindre des niveaux sûrs de chlore dans l'eau potable afin de prévenir les maladies d'origine hydrique.

Pourquoi dois-je détecter le chlore ?

Le chlore, plus dense que l'air, a tendance à se disperser dans les zones basses, mal ventilées ou stagnantes. Bien qu'ininflammable en soi, le chlore peut devenir explosif au contact de substances telles que l'ammoniac, l'hydrogène, le gaz naturel et la térébenthine.

La réaction du corps humain au chlore dépend de plusieurs facteurs : la concentration de chlore présente dans l'air, la durée et la fréquence de l'exposition. Les effets dépendent également de l'état de santé de l'individu et des conditions environnementales pendant l'exposition. Par exemple, l'inhalation de petites quantités de chlore pendant de courtes périodes peut affecter le système respiratoire. Les autres effets vont de la toux et des douleurs thoraciques à l'accumulation de liquide dans les poumons, en passant par des irritations de la peau et des yeux. Il convient de noter que ces effets ne se produisent pas dans des conditions naturelles.

Notre solution

L'utilisation d'un détecteur de chlore gazeux permet de détecter et de mesurer cette substance dans l'air afin d'éviter tout accident. Équipé d'un capteur électrochimique de chlore, un détecteur de Cl2 fixe ou portable, monogaz ou multigaz, surveillera la concentration de chlore dans l'air ambiant. Nous disposons d'une large gamme de produits de détection de gaz pour vous aider à répondre aux exigences de l'industrie du traitement de l'eau.

Les détecteurs de gaz fixes sont idéaux pour surveiller et alerter les responsables et les travailleurs des usines de traitement des eaux de la présence de tous les principaux dangers liés aux gaz. Les détecteurs de gaz fixes peuvent être placés en permanence à l'intérieur des réservoirs d'eau, des systèmes d'égouts et de toute autre zone présentant un risque élevé d'exposition au gaz.

Les détecteurs de gaz portables sont des dispositifs de détection de gaz portables légers et robustes. Les détecteurs de gaz portables émettent un son et un signal d'alerte aux travailleurs lorsque les niveaux de gaz atteignent des concentrations dangereuses, ce qui permet de prendre des mesures. Nos Gasmanet Gas-Pro sont dotés d'options de capteurs de chlore fiables, pour la surveillance d'un seul gaz et la surveillance de plusieurs gaz.

Les panneaux de contrôle peuvent être utilisés pour coordonner de nombreux dispositifs fixes de détection de gaz et déclencher des systèmes d'alarme.

Pour plus d'informations sur la détection de gaz dans l'eau et le traitement de l'eau, ou pour découvrir la gamme de détection de gaz de Crowcon, veuillez nous contacter.

Aperçu du secteur : Alimentation et boissons 

L'industrie alimentaire et des boissons (F&B) comprend toutes les entreprises impliquées dans la transformation des matières premières alimentaires, ainsi que celles qui les conditionnent et les distribuent. Cela comprend les aliments frais et préparés ainsi que les aliments emballés, et les boissons alcoolisées et non alcoolisées.

L'industrie alimentaire et des boissons se divise en deux grands segments, à savoir la production et la distribution de produits comestibles. Le premier groupe, la production, comprend la transformation des viandes et des fromages et la création de boissons gazeuses, de boissons alcoolisées, d'aliments emballés et d'autres aliments modifiés. Tout produit destiné à la consommation humaine, à l'exception des produits pharmaceutiques, passe par ce secteur. La production couvre également la transformation des viandes, des fromages et des aliments emballés, des produits laitiers et des boissons alcoolisées. Le secteur de la production exclut les aliments et les produits frais qui sont directement produits par l'agriculture, car ils relèvent de l'agriculture.

La fabrication et le traitement des aliments et des boissons créent des risques importants d'incendie et d'exposition aux gaz toxiques. De nombreux gaz sont utilisés pour la cuisson, la transformation et la réfrigération des aliments. Ces gaz peuvent être très dangereux - soit toxiques, soit inflammables, soit les deux.

Risques liés aux gaz

Transformation des aliments

Les méthodes de traitement secondaire des aliments comprennent la fermentation, le chauffage, la réfrigération, la déshydratation ou la cuisson sous une forme ou une autre. De nombreux types de traitement alimentaire commercial consistent en une cuisson, notamment les chaudières à vapeur industrielles. Les chaudières à vapeur sont généralement alimentées au gaz (gaz naturel ou GPL) ou utilisent une combinaison de gaz et de fioul. Pour les chaudières à vapeur alimentées au gaz, le gaz naturel se compose principalement de méthane (CH4), un gaz hautement combustible, plus léger que l'air, qui est acheminé directement dans les chaudières. En revanche, le GPL se compose principalement de propane (C3H8), et nécessite généralement un réservoir de stockage de carburant sur site. Lorsque des gaz inflammables sont utilisés sur le site, une ventilation mécanique forcée doit être prévue dans les zones de stockage, en cas de fuite. Cette ventilation est généralement déclenchée par des détecteurs de gaz installés près des chaudières et dans les salles de stockage.

Désinfection chimique

Le secteur F&B prend l'hygiène très au sérieux, car la moindre contamination des surfaces et des équipements peut constituer un terreau idéal pour toutes sortes de germes. Le secteur F&B exige donc un nettoyage et une désinfection rigoureux, qui doivent répondre aux normes du secteur.

Il existe trois méthodes de désinfection couramment utilisées dans le secteur F&B : thermique, par rayonnement et chimique. La désinfection chimique avec des composés à base de chlore est de loin la méthode la plus courante et la plus efficace pour désinfecter des équipements ou d'autres surfaces. En effet, les composés à base de chlore sont peu coûteux, agissent rapidement et sont efficaces contre une grande variété de micro-organismes. Plusieurs composés chlorés différents sont couramment utilisés, dont l'hypochlorite, les chloramines organiques et inorganiques et le dioxyde de chlore. La solution d'hypochlorite de sodium (NaOCl) est stockée dans des réservoirs tandis que le dioxyde de chlore (ClO2) est généralement généré sur place.

Quelle que soit leur combinaison, les composés chlorés sont dangereux et l'exposition à de fortes concentrations de chlore peut entraîner de graves problèmes de santé. Les gaz de chlore sont généralement stockés sur le site et un système de détection de gaz doit être installé, avec une sortie relais pour déclencher les ventilateurs de ventilation lorsqu'un niveau élevé de chlore est détecté.

Emballage alimentaire

L'emballage des aliments a de nombreuses fonctions : il permet de transporter et de stocker les aliments en toute sécurité, de les protéger, d'indiquer la taille des portions et de fournir des informations sur le produit. Pour conserver les aliments en toute sécurité pendant une longue période, il est nécessaire d'éliminer l'oxygène du récipient car, sinon, une oxydation se produit lorsque l'aliment entre en contact avec l'oxygène. La présence d'oxygène favorise également la prolifération des bactéries, ce qui est nocif lors de la consommation. Toutefois, si l'emballage est rincé à l'azote, la durée de conservation des aliments emballés peut être prolongée.

Les conditionneurs utilisent souvent des méthodes de rinçage à l'azote (N2) pour conserver et stocker leurs produits. L'azote est un gaz non réactif, non odorant et non toxique. Il empêche l'oxydation des aliments frais contenant des sucres ou des graisses, stoppe le développement de bactéries dangereuses et inhibe la détérioration. Enfin, il empêche les emballages de s'effondrer en créant une atmosphère pressurisée. L'azote peut être généré sur place à l'aide de générateurs ou livré en bouteilles. Les générateurs de gaz sont rentables et assurent une alimentation ininterrompue en gaz. L'azote est un asphyxiant, capable de déplacer l'oxygène de l'air. Comme il n'a pas d'odeur et n'est pas toxique, les travailleurs peuvent ne pas se rendre compte d'un manque d'oxygène avant qu'il ne soit trop tard.

Un taux d'oxygène inférieur à 19 % provoque des étourdissements et une perte de conscience. Pour éviter cela, la teneur en oxygène doit être surveillée à l'aide d'un capteur électrochimique. L'installation de détecteurs d'oxygène dans les zones de conditionnement garantit la sécurité des travailleurs et la détection précoce des fuites.

Installations frigorifiques

Les installations frigorifiques dans l'industrie F&B sont utilisées pour maintenir les aliments au frais pendant de longues périodes. Les installations de stockage alimentaire à grande échelle utilisent souvent des systèmes de refroidissement basés sur l'ammoniac (> 50% NH3), car il est efficace et économique. Cependant, l'ammoniac est à la fois toxique et inflammable ; il est également plus léger que l'air et remplit rapidement les espaces clos. L'ammoniac peut devenir inflammable s'il est libéré dans un espace clos où se trouve une source d'inflammation, ou si un récipient d'ammoniac anhydre est exposé au feu.

L'ammoniac est détecté à l'aide de capteurs électrochimiques (toxiques) et catalytiques (inflammables). La détection portable, y compris les détecteurs mono- ou multigaz, peut surveiller l'exposition instantanée et TWA aux niveaux toxiques de NH3. Il a été démontré que les moniteurs personnels multigaz améliorent la sécurité des travailleurs lorsqu'une gamme basse de ppm est utilisée pour les contrôles de routine du système et une gamme inflammable est utilisée pendant la maintenance du système. Les systèmes de détection fixes comprennent une combinaison de détecteurs de niveaux toxiques et inflammables reliés à des panneaux de commande locaux - ils sont généralement fournis dans le cadre d'un système de refroidissement. Les systèmes fixes peuvent également être utilisés pour le contrôle des processus et de la ventilation.

Industrie de la brasserie et des boissons

Le risque lié à la fabrication de l'alcool implique des équipements de fabrication de grande taille qui peuvent être potentiellement dangereux, tant pour leur fonctionnement qu'en raison des fumées et des vapeurs qui peuvent être émises dans l'atmosphère et avoir un impact sur l'environnement. Les fumées et les vapeurs produites par l'éthanol constituent le principal danger combustible que l'on trouve dans les distilleries et les brasseries. Pouvant être émises par des fuites dans les réservoirs, les fûts, les pompes de transfert, les tuyaux et les flexibles, les vapeurs d'éthanol représentent un risque réel d'incendie et d'explosion pour les distilleries. Une fois que le gaz et la vapeur sont libérés dans l'atmosphère, ils peuvent rapidement s'accumuler et constituer un danger pour la santé des travailleurs. Il convient toutefois de noter que la concentration requise pour nuire à la santé des travailleurs doit être très élevée. Dans cette optique, le risque le plus important lié à la présence d'éthanol dans l'air est celui de l'explosion. Ce fait renforce l'importance des équipements de détection de gaz pour reconnaître et remédier immédiatement à toute fuite, afin d'éviter des conséquences désastreuses.

Conditionnement, transport et distribution

Une fois le vin mis en bouteille et la bière emballée, ils doivent être livrés aux points de vente concernés. Il s'agit généralement d'entreprises de distribution, d'entrepôts et, dans le cas des brasseries, de transporteurs. La bière et les boissons rafraîchissantes utilisent du dioxyde de carbone ou un mélange de dioxyde de carbone et d'azote pour acheminer la boisson jusqu'au "robinet". Ces gaz donnent également à la bière une mousse plus durable et améliorent sa qualité et son goût.

Même lorsque la boisson est prête à être livrée, les risques liés au gaz demeurent. Ceux-ci surviennent lors de toute activité dans des locaux contenant des bouteilles de gaz comprimé, en raison du risque d'augmentation des niveaux de dioxyde de carbone ou de diminution des niveaux d'oxygène (en raison de niveaux élevés d'azote). Le dioxyde de carbone (CO2) est présent naturellement dans l'atmosphère (0,04 %). LECO2 est incolore et inodore, plus lourd que l'air et, s'il s'échappe, il aura tendance à tomber sur le sol. LECO2 s'accumule dans les caves et au fond des conteneurs et des espaces confinés tels que les réservoirs et les silos. LECO2 est généré en grande quantité pendant la fermentation. Il est également injecté dans les boissons pendant la carbonatation.

Pour en savoir plus sur les risques liés aux gaz dans la production d'aliments et de boissons, visitez notrepage sur l'industriepour plus d'informations.

Protocoles de sécurité pour les gaz dans le traitement de l'eau

L'eau est vitale dans notre vie quotidienne, tant pour l'usage personnel et domestique que pour les applications industrielles/commerciales. Elle est partout, favorisant certaines réactions chimiques et en inhibant d'autres. Elle est utilisée pour nettoyer les surfaces, transporter les produits chimiques là où ils sont utilisés et évacuer les produits chimiques indésirables. Si vous faites quoi que ce soit, vous créez un gaz quelque part, en une certaine quantité. Si vous faites quoi que ce soit avec de l'eau, il y a tellement de permutations de choses qui peuvent s'assembler et réagir, de gaz dissous qui peuvent sortir de la solution, de liquides et de solides dissous qui peuvent réagir pour générer des gaz. De plus, vous devez déterminer quels gaz vous générez lorsque vous collectez, nettoyez, stockez, transportez ou utilisez de l'eau. Les détecteurs de gaz doivent être choisis en fonction de l'environnement spécifique dans lequel ils fonctionnent, en l'occurrence très humide, souvent sale, mais rarement en dehors de la plage de température de 4 à 30 degrés C. Tous les risques sont présents dans ces environnements complexes, avec de multiples dangers liés aux gaz toxiques et inflammables et souvent le risque supplémentaire d'appauvrissement en oxygène.

Risques liés aux gaz

Outre les risques gazeux courants connus dans l'industrie, à savoir le méthane, le sulfure d'hydrogène et l'oxygène, il existe des risques gazeux liés aux sous-produits et aux produits de nettoyage, qui proviennent des produits chimiques purifiants tels que l'ammoniac, le chlore, le dioxyde de chlore ou l'ozone, utilisés pour la décontamination des eaux usées et des effluents, ou pour éliminer les microbes de l'eau propre. Les produits chimiques utilisés dans l'industrie de l'eau sont susceptibles de dégager de nombreux gaz toxiques ou explosifs. À cela s'ajoutent les produits chimiques qui peuvent être déversés ou déversés dans le système d'évacuation par l'industrie, l'agriculture ou les travaux de construction.

Le chlore (Cl2) gazeux, de couleur jaune-vert, est utilisé pour stériliser l'eau potable. Toutefois, la majeure partie du chlore est utilisée dans l'industrie chimique, avec des applications typiques telles que le traitement de l'eau, les plastiques et les agents de nettoyage. Le chlore gazeux est reconnaissable à son odeur piquante et irritante, qui ressemble à celle de l'eau de Javel. L'odeur forte peut avertir les gens qu'ils sont exposés. Le Cl2 lui-même n'est pas inflammable, mais il peut réagir de manière explosive ou former des composés inflammables avec d'autres produits chimiques tels que la térébenthine et l'ammoniac.

L'ammoniac (NH3 ) est un composé d'azote et d'hydrogène. C'est un gaz incolore et piquant, également connu pour être très soluble au contact de l'eau. Cela signifie que le NH3 se dissout rapidement dans l'eau. Il est présent en très faibles quantités chez l'homme et dans la nature. Il est également souvent utilisé dans certaines solutions de nettoyage domestique. Bien que le NH3 présente de nombreux avantages, il peut être corrosif et dangereux dans certaines circonstances. L'ammoniac peut pénétrer dans les eaux usées à partir de plusieurs sources différentes, notamment l'urine, le fumier, les produits chimiques de nettoyage, les produits chimiques de traitement et les produits à base d'acides aminés. Si le NH3 pénètre dans un système de tuyauterie en cuivre, il peut provoquer une corrosion importante. Si le NH3 pénètre dans l'eau, sa toxicité varie en fonction du pH exact de l'eau. L'ammoniac peut se décomposer en ions ammonium, qui peuvent réagir avec d'autres composés présents.

Le dioxyde de chlore (ClO2 ) est un gaz oxydant couramment utilisé pour désinfecter l'eau potable. Utilisé en très petites quantités, il est sans danger et n'entraîne pas de risques importants pour la santé. Mais le ClO2 est un désinfectant puissant qui tue les bactéries, les virus et les champignons. Utilisé à fortes doses, il peut être dangereux pour l'homme car il peut endommager les globules rouges et la paroi du tractus gastro-intestinal (GI).

L'ozone (O3 ) est un gaz à l'odeur antiseptique et incolore qui se forme généralement de manière naturelle dans l'environnement. Lorsqu'il est inhalé, l'ozone peut avoir toute une série d'effets nocifs sur l'organisme. Comme il s'agit d'un gaz incolore, il est difficile de le repérer sans un système de détection efficace. Même lorsque des quantités relativement faibles sont inhalées, le gaz peut avoir un impact néfaste sur les voies respiratoires, provoquant une inflammation et des douleurs thoraciques, ainsi que de la toux, un essoufflement et une irritation de la gorge. Il peut également agir comme un déclencheur et aggraver des maladies telles que l'asthme.

Entrée dans un espace confiné

Les canalisations utilisées pour le transport de l'eau nécessitent des nettoyages et des contrôles de sécurité réguliers. Au cours de ces opérations, des moniteurs multigaz portables sont utilisés pour protéger la main-d'œuvre. Des contrôles préalables doivent être effectués avant de pénétrer dans un espace confiné et, en général, l'O2, le CO, leH2Set le CH4 sont surveillés. Les espaces confinés étant petits, les moniteurs portables doivent être compacts et discrets pour l'utilisateur, mais capables de résister aux environnements humides et sales dans lesquels ils doivent fonctionner. Une indication claire et rapide de toute augmentation du gaz surveillé (ou de toute diminution pour l'oxygène) est d'une importance capitale - des alarmes sonores et lumineuses sont efficaces pour alerter l'utilisateur.

Législation

La directive 2017/164 de la Commission européenne a établi une liste accrue de valeurs limites indicatives d'exposition professionnelle (VLIEP). Les VLIEP sont des valeurs non contraignantes, fondées sur la santé, dérivées des données scientifiques disponibles les plus récentes et tenant compte de la disponibilité de techniques de mesure fiables. Non contraignantes mais constituant une bonne pratique. La liste comprend le monoxyde de carbone, le monoxyde d'azote, le dioxyde d'azote, le dioxyde de soufre, le cyanure d'hydrogène, le manganèse, le diacétyle et de nombreux autres produits chimiques. La liste est basée sur la directive 98/24/CE du Conseil qui considère la protection de la santé et de la sécurité des travailleurs contre les risques liés aux agents chimiques sur le lieu de travail. Pour tout agent chimique pour lequel une VLIEP a été fixée au niveau de l'Union, les États membres sont tenus d'établir une valeur limite d'exposition professionnelle nationale. Ils sont également tenus de prendre en compte la valeur limite de l'Union, en déterminant la nature de la valeur limite nationale conformément à la législation et aux pratiques nationales. Les États membres pourront bénéficier d'une période transitoire se terminant au plus tard le 21 août 2023.

Le Health and Safety Executive(HSE) indique que, chaque année, plusieurs travailleurs souffriront d'au moins un épisode de maladie liée au travail. Bien que la plupart des maladies soient des cas relativement bénins de gastro-entérite, il existe également un risque de maladies potentiellement mortelles, telles que la leptospirose (maladie de Weil) et l'hépatite. Bien que ces maladies soient déclarées au HSE, il pourrait y avoir une sous-déclaration importante, car le lien entre la maladie et le travail est souvent méconnu.

En vertu de la loi nationale de 1974 sur la santé et la sécurité au travail, les employeurs sont tenus de garantir la sécurité de leurs employés et des autres personnes. Cette responsabilité est renforcée par des règlements.

Le règlement de 1997 sur les espaces confinés s'applique lorsque l'évaluation identifie des risques de blessures graves liées au travail dans des espaces confinés. Ce règlement contient les principales obligations suivantes :

  • Évitez de pénétrer dans des espaces confinés, par exemple en effectuant le travail depuis l'extérieur.
  • Si l'entrée dans un espace confiné est inévitable, suivez un système de travail sûr.
  • Mettez en place des dispositifs d'urgence adéquats avant le début des travaux.

La réglementation de 1999 sur la gestion de la santé et de la sécurité au travail exige des employeurs et des travailleurs indépendants qu'ils procèdent à une évaluation adéquate et suffisante des risques pour toutes les activités professionnelles afin de décider des mesures nécessaires à la sécurité. Pour le travail dans des espaces confinés, cela signifie identifier les dangers présents, évaluer les risques et déterminer les précautions à prendre.

Notre solution

Il est pratiquement impossible d'éliminer ces dangers, c'est pourquoi les travailleurs permanents et les entrepreneurs doivent pouvoir compter sur un équipement de détection de gaz fiable pour les protéger. La détection de gaz peut être fournie sous forme fixe ou portable. Nos détecteurs de gaz portables protègent les personnes contre un large éventail de risques liés aux gaz, notamment T4x, Clip SGD, Gasman,Tetra 3, Gas-Pro, T4 et Detective+. Nos détecteurs de gaz fixes sont utilisés là où la fiabilité et l'absence de fausses alarmes sont essentielles à une protection efficace et effective des biens et des zones, et comprennent les détecteurs Xgard, Xgard Bright et IRmax . Ils comprennent les gammes de produits Xgard, et Combinées à une variété de nos détecteurs fixes, nos centrales de détection de gaz offrent une gamme flexible de solutions qui mesurent les gaz inflammables, toxiques et l'oxygène, signalent leur présence et activent les alarmes ou l'équipement associé. Gasmaster pour l'industrie des eaux usées, nous recommandons souvent notre panneau de contrôle.

Pour en savoir plus sur les risques liés aux gaz dans les eaux usées, consultez notre page sur l'industrie pour plus d'informations.

Sensibilité croisée des capteurs toxiques : Chris étudie les gaz auxquels le capteur est exposé.

Au sein du service d'assistance technique, l'une des questions les plus fréquentes des clients concerne les configurations sur mesure des capteurs de gaz toxiques. Cela conduit souvent à une enquête sur la sensibilité croisée des différents gaz auxquels le capteur sera exposé.

Les réponses à la sensibilité croisée varient d'un type de capteur à l'autre, et les fournisseurs expriment souvent la sensibilité croisée en pourcentages, tandis que d'autres la spécifient en niveaux réels de parties par million (ppm).

Continuer la lecture "Sensibilité croisée des capteurs toxiques : Chris étudie les gaz auxquels le capteur est exposé""