Le rôle essentiel de l'entretien régulier des détecteurs de gaz

7 raisons pour lesquelles il est essentiel d'entretenir régulièrement les détecteurs de gaz

Les détecteurs de gaz jouent un rôle essentiel dans la sécurité des travailleurs et des infrastructures en détectant rapidement la présence de gaz nocifs et en les alertant. Qu'ils soient utilisés dans des environnements industriels ou des laboratoires, ces dispositifs sont conçus pour fournir des alertes précoces, prévenant ainsi des catastrophes potentielles. Cependant, comme tout autre équipement, les détecteurs de gaz nécessitent un entretien régulier pour maintenir leur efficacité et leur fiabilité.

1. Garantir l'exactitude et la fiabilité :

L'une des principales raisons de l'entretien d'un détecteur de gaz est de garantir sa précision. Au fil du temps, les capteurs et les composants peuvent se dégrader en raison d'une exposition à des conditions environnementales difficiles, à la poussière ou à des contaminants. Par exemple, le détecteur peut indiquer 46 % de LIE alors que le niveau réel est de 50 %. L'entretien régulier implique l'étalonnage du détecteur afin de maintenir sa précision dans la détection des moindres traces de gaz dangereux. Des relevés précis sont essentiels pour réagir de manière opportune et appropriée aux menaces potentielles.

2. Respect des normes de sécurité :

Le respect des normes et des réglementations en matière de sécurité est primordial dans tout environnement où des détecteurs de gaz sont présents. De nombreuses industries et institutions disposent de directives spécifiques concernant l'utilisation et la maintenance des équipements de détection de gaz. Un entretien régulier permet de s'assurer que les détecteurs respectent ou dépassent ces normes, ce qui aide les organisations à rester conformes et à éviter les ramifications juridiques. Les instruments sophistiqués enregistrent non seulement l'historique de leur étalonnage, mais aussi leur prochaine date d'échéance. Les certificats d'étalonnage sont établis au cours de la production et après l'entretien, à titre d'enregistrement.

3. Législation et réglementations spécifiques à l'industrie :

La maintenance des détecteurs de gaz est souvent régie par la législation et les réglementations spécifiques à l'industrie. Par exemple, dans l'Union européenne, la directive ATEX réglemente les équipements destinés à être utilisés dans des atmosphères explosives, y compris les détecteurs de gaz. Aux États-Unis, l'Occupational Safety and Health Administration (OSHA) souligne l'importance de maintenir un environnement de travail sûr. Bien que l'OSHA n'ait pas de réglementation spécifique sur l'entretien des détecteurs de gaz, le respect des normes de sécurité générales est crucial. De même, les normes internationales telles que celles élaborées par la Commission électrotechnique internationale (CEI) fournissent des lignes directrices pour un entretien adéquat.

4. Durée de vie prolongée de l'équipement :

Les détecteurs de gaz sont un investissement dans la sécurité. Un entretien régulier permet non seulement d'améliorer leurs performances, mais aussi de prolonger leur durée de vie. La maintenance préventive, telle que le nettoyage, l'étalonnage et le remplacement des pièces usées, peut contribuer de manière significative à la longévité de l'équipement, réduisant ainsi la fréquence des remplacements, ce qui permet d'économiser du temps et des ressources.

5. Minimiser les fausses alertes :

Un détecteur de gaz bien entretenu est moins susceptible de déclencher de fausses alarmes. Les fausses lectures entraînent une certaine complaisance ainsi qu'une diminution de la confiance dans l'équipement, ce qui peut mettre les personnes en danger. Un entretien régulier permet d'identifier et de résoudre les problèmes potentiels susceptibles de déclencher de fausses alarmes, ce qui garantit que le détecteur ne s'active qu'en présence d'une menace réelle.

6. Préparation aux situations d'urgence :

Les détecteurs de gaz jouent un rôle essentiel dans les systèmes d'intervention d'urgence.

Un entretien régulier augmente leur réactivité, en permettant une détection précoce des fuites de gaz et en autorisant une évacuation rapide ou des mesures de confinement. Dans les situations d'urgence, la fiabilité des détecteurs de gaz peut faire toute la différence pour minimiser les dégâts et assurer la sécurité des travailleurs.

7. Maintenance rentable :

Alors que l'entretien peut être perçu comme une dépense supplémentaire, il est essentiel de le considérer comme une mesure proactive et rentable. Un entretien régulier permet d'identifier les problèmes potentiels avant qu'ils ne s'aggravent, évitant ainsi des réparations ou des remplacements coûteux. Investir dans l'entretien est un prix mineur à payer par rapport aux conséquences potentielles d'une défaillance de l'équipement.

Garantir la sécurité et la fiabilité

L'importance de l'entretien régulier des détecteurs de gaz est incontestable. Qu'ils soient utilisés dans des environnements industriels ou commerciaux, ces instruments jouent un rôle crucial dans la protection de la vie des travailleurs et de l'infrastructure de l'entreprise. Un détecteur de gaz correctement entretenu garantit non seulement des performances précises et fiables, mais contribue également au respect des normes de sécurité, à la prolongation de la durée de vie de l'équipement et à la réduction des fausses alarmes. Donner la priorité à l'entretien régulier des détecteurs de gaz contribue incontestablement à la protection de la vie des travailleurs et de l'infrastructure.

Pour plus d'informations sur l'entretien ou l'étalonnage, contactez notre équipe ou visitez nos distributeurs dans le monde entier pour découvrir votre centre d'entretien et d'étalonnage local.

Les dangers du gaz saisonnier

En matière de sécurité gazière, il n'y a pas de saison morte, mais il est important de savoir qu'il existe une sécurité gazière saisonnière. Lorsque les températures montent et descendent, ou que la pluie tombe en déluge, cela peut avoir des impacts uniques sur vos appareils à gaz. Pour vous aider à mieux comprendre la sécurité saisonnière du gaz, voici tout ce que vous devez savoir sur les principaux défis à relever tout au long de l'année.

Sécurité du gaz en vacances

Lorsque vous partez en vacances, la dernière chose à laquelle vous pensez est la sécurité du gaz, mais il est essentiel que vous vous protégiez. Qu'il s'agisse de longues vacances d'été ou d'un week-end d'hiver, avez-vous mis un détecteur de monoxyde de carbone dans votre valise ? Si ce n'est pas le cas, vous devriez le faire. La sécurité en matière de gaz est tout aussi importante en vacances qu'à la maison, car lorsque vous êtes en vacances, vous avez moins de connaissances ou de contrôle sur l'état des appareils à gaz.

Bien qu'il n'y ait pas de grande différence entre la sécurité du gaz dans une caravane ou sur un bateau, la sécurité du gaz en camping sous une tente est différente. Les réchauds de camping à gaz, les chauffages à gaz (comme les chauffages de table et de terrasse) et même les barbecues à combustible solide peuvent produire du monoxyde de carbone (CO), ce qui peut entraîner une intoxication. Par conséquent, s'ils sont introduits dans une tente, une caravane ou tout autre espace clos, pendant ou après leur utilisation, ils peuvent émettre du CO nocif, mettant en danger toute personne se trouvant à proximité.

Il est également important de se rappeler que réglementation en matière de sécurité du gaz dans d'autres pays peuvent différer de celles en vigueur en dehors du Royaume-Uni. Bien que l'on ne puisse pas s'attendre à ce que vous sachiez ce qui est légal et ce qui ne l'est pas partout où vous allez, vous pouvez assurer votre sécurité et celle de votre entourage en suivant quelques conseils simples.

Conseils pour la sécurité du gaz en vacances

  • Demandez si les appareils à gaz de votre logement ont été entretenus et contrôlés.
  • Emportez un avertisseur sonore de monoxyde de carbone.
  • À votre arrivée, les appareils électroménagers peuvent ne pas fonctionner de la même manière que ceux que vous avez chez vous. Si aucune instruction n'est fournie, contactez votre représentant de vacances ou le propriétaire du logement pour obtenir de l'aide si vous n'êtes pas sûr.
    • Soyez conscient des signes d'appareils à gaz dangereux.
    • Des marques et des taches noires autour de l'appareil
    • Des flammes orange ou jaunes paresseuses au lieu de flammes bleues vives.
    • Des niveaux élevés de condensation dans votre logement
  • N'utilisez jamais de cuisinières à gaz, de réchauds ou de barbecues pour vous chauffer, et assurez-vous qu'ils disposent d'une ventilation adéquate lorsqu'ils sont utilisés.

Sécurité des barbecues

L'été est l'occasion d'être en plein air et de profiter des longues soirées. Qu'il pleuve ou qu'il fasse beau, nous allumons nos barbecues, les seules inquiétudes étant de savoir s'il va pleuvoir ou si les saucisses sont bien cuites. La sécurité du gaz n'est pas seulement réservée à la maison ou aux environnements industriels, les barbecues nécessitent une attention particulière pour garantir leur sécurité.

Le monoxyde de carbone est un gaz dont les risques pour la santé sont largement connus. Nous sommes nombreux à installer des détecteurs dans nos maisons et nos entreprises. Cependant, l'association du monoxyde de carbone à nos barbecues est inconnue. Si le temps est mauvais, nous pouvons décider de faire un barbecue dans l'entrée du garage ou sous une tente ou un auvent. Certains d'entre nous peuvent même apporter leurs barbecues dans la tente après utilisation. Toutes ces situations peuvent être potentiellement mortelles car le monoxyde de carbone s'accumule dans ces espaces confinés. Il faut noter que la zone de cuisson doit être éloignée des bâtiments et bien ventilée avec de l'air frais, sinon vous risquez une intoxication au monoxyde de carbone. Il est essentiel de connaître les signes d'une intoxication au monoxyde de carbone : maux de tête, nausées, essoufflement, vertiges, effondrement ou perte de conscience.

De même qu'avec une bonbonne de gaz propane ou butane, nous la stockons dans nos garages, nos remises et même nos maisons sans savoir qu'il existe un risque de combinaison potentiellement mortelle entre un espace clos, une fuite de gaz et une étincelle provenant d'un appareil électrique. Tous ces éléments peuvent provoquer une explosion.

La sécurité du gaz en hiver

Lorsque le froid s'installe, les chaudières à gaz et le gaz sont allumés pour la première fois depuis plusieurs mois, afin de nous tenir chaud. Cependant, cette utilisation accrue peut exercer une pression supplémentaire sur les appareils et les faire tomber en panne. Par conséquent, il faut se préparer à l'hiver en s'assurant que les appareils à gaz - y compris les chaudières, les réchauffeurs d'air chaud, les cuisinières et les feux - ont été régulièrement contrôlés et entretenus par un ingénieur agréé Gas Safe, qui dispose de détecteurs de gaz.

Que faire si vous soupçonnez une fuite de gaz

Si vous sentez une odeur de gaz ou si vous pensez qu'il pourrait y avoir une fuite de gaz dans une propriété, un bateau ou une caravane, il est important d'agir rapidement. Une fuite de gaz présente un risque d'incendie, voire d'explosion.

Vous devriez :

  • Éteignez toute flamme nue pour éviter tout risque d'incendie ou d'explosion.
  • Coupez le gaz au niveau du compteur si possible (et si vous pouvez le faire en toute sécurité).
  • Ouvrez les fenêtres pour permettre la ventilation et faire en sorte que le gaz se dissipe.
  • Évacuez immédiatement la zone pour éviter tout risque pour la vie.
  • Informez immédiatement votre représentant de vacances ou le propriétaire du logement ou l'équivalent.
  • Consultez un médecin si vous vous sentez mal ou si vous présentez des signes d'empoisonnement au monoxyde de carbone.

Symptômes d'empoisonnement au monoxyde de carbone

Les signes et les symptômes de l'intoxication au monoxyde de carbone sont souvent confondus avec d'autres maladies, telles qu'une intoxication alimentaire ou une grippe. Les symptômes comprennent :

  • Maux de tête
  • Vertiges
  • Essoufflement
  • Nausée ou sensation de malaise
  • Collapse
  • Perte de conscience

Toute personne qui pense souffrir d'une intoxication au monoxyde de carbone doit immédiatement sortir à l'air libre et consulter d'urgence un médecin.

Détecteurs de gaz personnels

Le site Clip SDG est conçu pour résister aux conditions de travail industrielles les plus difficiles et offre une durée d'alarme, des niveaux d'alarme modifiables et un enregistrement des événements à la pointe de l'industrie, ainsi que des solutions conviviales de test de déclenchement et d'étalonnage.

Gasman Le capteur de CO spécialisé est un détecteur de gaz simple, robuste et compact, conçu pour être utilisé dans les environnements les plus difficiles. Sa conception compacte et légère en fait le choix idéal pour la détection des gaz industriels.

Sécurité connectée - Surveillance de l'état de la flotte pour les flottes multi-sites 

Comme vous le savez sans doute, la plupart des détecteurs de gaz nécessitent une maintenance et des tests périodiques, si leurs propriétaires veulent se conformer aux réglementations en matière de sécurité du gaz et assurer la sécurité de leur personnel. Vous n'êtes pas sans savoir non plus que certaines organisations possèdent un grand nombre de détecteurs de gaz (souvent appelés parc ou parcs d'appareils) et que le suivi des exigences de maintenance pour chacun d'entre eux peut devenir un véritable casse-tête. Si l'entreprise opère sur plusieurs sites, et surtout si les détecteurs de gaz se déplacent entre ces sites, ce problème est considérablement amplifié.

Qu'est-ce que le contrôle de la santé de la flotte ?

De nombreuses entreprises gèrent encore leur parc d'appareils manuellement, en utilisant des feuilles de calcul pour suivre l'emplacement, l'état et le calendrier d'étalonnage de chaque détecteur. Il s'agit d'un travail répétitif et souvent fastidieux qui détourne le personnel de tâches plus productives. La gestion manuelle est aussi, franchement, inefficace. Elle peut tout juste suffire pour les éléments de base comme le suivi de l'emplacement d'un appareil (bien que même cela devienne fastidieux lorsque de très grands nombres sont impliqués). Mais lorsque les responsables ont également besoin de savoir quels appareils n'ont plus de batterie et ne peuvent donc pas être utilisés pour l'équipe suivante, et quels appareils montrent des signes d'usure (et ils le devraient), la gestion manuelle n'est pas la solution. devraient (et ils devraient le savoir), les données deviennent trop volumineuses pour que les méthodes manuelles puissent les traiter.

Dans ces circonstances, il n'est que trop facile que des appareils disparaissent ou que quelqu'un arrive en poste et découvre que le détecteur qui lui a été attribué est à court de batterie. La bonne nouvelle, c'est qu'aujourd'hui, les initiatives de sécurité connectée, telles que les applications logicielles en nuage, peuvent éliminer complètement ces problèmes et rendre la gestion des appareils de la flotte beaucoup plus simple et efficace, même sur plusieurs sites.

Comment cela fonctionne-t-il et quelles sont les exigences ?

Applications logicielles en nuage pour les parcs de détecteurs de gaz, telles que Crowcon Connecttransfèrent et traitent automatiquement les données sur les gaz provenant des détecteurs de gaz, et les stockent en toute sécurité dans le nuage dans des formats utiles. Ces données comprennent non seulement des informations sur l'exposition, les relevés et les heures, mais aussi des informations plus détaillées sur la manière dont les appareils sont utilisés (c'est-à-dire le degré de conformité aux réglementations) et sur la personne qui utilisait l'appareil à chaque moment (il est très facile d'associer un utilisateur spécifique à un appareil spécifique dans Crowcon Connect, par exemple, même si cet appareil fait partie d'une flotte ou d'un pool).

Crowcon Connect peut également être adapté aux besoins spécifiques d'une entreprise ou d'un site, et les utilisateurs autorisés peuvent accéder au tableau de bord depuis n'importe quel endroit, à tout moment. Tout ce dont vous avez besoin, c'est d'un appareil connecté (y compris les appareils mobiles ; beaucoup de gens utilisent leurs smartphones ou leurs tablettes). L'accès peut également être restreint par flotte ou par équipe, afin de préserver la confidentialité, le cas échéant.

Quels sont les avantages ?

Crowcon Connect dispose d'un tableau de bord convivial qui affiche les informations relatives à l'utilisateur, les données d'alarme et d'exposition, l'emplacement des appareils, les dates d'étalonnage/de maintenance, les informations relatives à l'utilisateur et une multitude d'autres données, le tout dans un format facile à utiliser. Il donne aux gestionnaires une vue panoramique de l'ensemble de la flotte, quel que soit l'endroit où chaque appareil est situé ou a été utilisé, et ces informations peuvent être utilisées pour réaliser des gains de sécurité, de conformité et de productivité et identifier les domaines à améliorer.

Ce type de logiciel en nuage peut également améliorer les normes de sécurité, car les responsables peuvent désormais voir d'un coup d'œil quels sont les appareils dont la batterie est épuisée et qui ne peuvent pas être utilisés pour la prochaine équipe, et/ou ceux qui nécessitent une maintenance. Cette maintenance et cet étalonnage peuvent également être planifiés de manière à minimiser les temps d'arrêt, car le tableau de bord permet aux utilisateurs de voir les dates pertinentes à l'avance.

De plus, comme les données sont collectées automatiquement, le risque d'erreur humaine est éliminé et Crowcon Connect peut fournir des documents fiables et complets, prêts à être utilisés dans tout audit de conformité ou de sécurité.

Vous voulez en savoir plus ? Cliquez ici pour pour en savoir plus sur la solution logicielle en nuage propre à Crowcon.

 

Pourquoi ai-je besoin d'un moniteur de monoxyde de carbone personnel ?

Qu'est-ce que le monoxyde de carbone ?

Le monoxyde de carbone (CO) est un gaz incolore, inodore, insipide et toxique produit par la combustion incomplète de combustibles à base de carbone, notamment le gaz, le pétrole, le bois et le charbon. C'est seulement lorsque le combustible ne brûle pas complètement qu'un excès de CO est produit, qui est toxique. Lorsque l'excès de CO pénètre dans le corps, il empêche le sang d'apporter de l'oxygène aux cellules, aux tissus et aux organes. Le CO est toxique car vous ne pouvez pas le voir, le goûter ou le sentir, mais il peut tuer rapidement sans avertissement. Les statistiques du Health and Safety Executive (HSE) montrent que, chaque année, environ 15 personnes meurent d'une intoxication au CO causée par des appareils à gaz et des conduits de fumée qui n'ont pas été correctement installés ou entretenus ou qui sont mal ventilés. Bien que certains niveaux présents ne tuent pas, ils peuvent nuire gravement à la santé s'ils sont respirés pendant une période prolongée, avec des cas extrêmes de paralysie et de lésions cérébrales dues à une exposition prolongée au CO. Par conséquent, la compréhension du danger d'empoisonnement au CO ainsi que l'éducation du public pour qu'il prenne les précautions appropriées pourraient inévitablement réduire ce risque.

Où le CO est-il présent et pourquoi est-il dangereux ?

Le CO est présent dans plusieurs industries différentes, telles que l'industrie manufacturière, l'approvisionnement en électricité, les mines de charbon et de métaux, l'industrie alimentaire, le pétrole et le gaz, la production de produits chimiques et le raffinage du pétrole, pour n'en citer que quelques-uns.

Les effets de l'empoisonnement au CO peuvent inclure l'essoufflement, des douleurs thoraciques, des convulsions et une perte de conscience pouvant entraîner la mort, ainsi que des problèmes physiques qui peuvent survenir en fonction de la quantité de CO présente dans l'air. Par exemple :

Volume de CO (parties par million (ppm)) Effets physiques
200 ppm Maux de tête en 2-3 heures
400 ppm Maux de tête et nausées en 1 à 2 heures, danger de mort en 3 heures.
800 ppm Peut provoquer des crises, de graves maux de tête et des vomissements en moins d'une heure, une perte de conscience en deux heures.
1 500 ppm Peut provoquer des étourdissements, des nausées et une perte de conscience en moins de 20 minutes, et la mort en une heure.
6 400 ppm Peut provoquer une perte de conscience après deux ou trois respirations : mort dans les 15 minutes.

Environ 10 à 15 % des personnes qui subissent une intoxication au CO développent des complications à long terme. Celles-ci comprennent des lésions cérébrales, des pertes de vision et d'audition, la maladie de Parkinson et des maladies coronariennes.

Comment un moniteur de CO peut-il contribuer à la sécurité et à la conformité et, le cas échéant, quels sont les produits disponibles ?

Tous les opérateurs qui travaillent sur des installations commerciales ou des applications domestiques doivent être enregistrés auprès d'une association compétente, à savoir le registre Gas safe, le programme HETAS (Heating equipment testing and approval scheme) pour les applications à combustible solide et l'OFTEC (Oil firing technical association) pour les appareils à pétrole. Par conséquent, les moniteurs personnels de CO offrent la meilleure qualité et la plus grande portabilité en matière de détection de gaz CO pour protéger l'opérateur sur son lieu de travail.

Crowcon Clip SGD est conçu pour être utilisé dans les zones dangereuses tout en offrant une surveillance fiable et durable d'une durée de vie fixe dans un appareil compact, léger et sans entretien. Clip SGD a une durée de vie de 2 ans et est disponible pour le sulfure d'hydrogène (H2S), le monoxyde de carbone (CO) ou l'oxygène (O2). Le détecteur de gaz personnel Clip SDG est conçu pour résister aux conditions de travail industrielles les plus difficiles et offre un temps d'alarme de pointe, des niveaux d'alarme modifiables et un enregistrement des événements, ainsi que des solutions conviviales de test de déclenchement et d'étalonnage.

Crowcon Gasman Le CrowconMC avec capteur de CO spécialisé est un détecteur de gaz simple, robuste et compact, conçu pour être utilisé dans les environnements les plus difficiles. Sa conception compacte et légère en fait le choix idéal pour la détection des gaz industriels. Pesant seulement 130 g, il est extrêmement durable, avec une résistance élevée aux chocs et une protection contre la poussière et les infiltrations d'eau, des alarmes puissantes de 95 dB, un avertissement visuel rouge/bleu vif, une commande à bouton unique et un écran LCD rétroéclairé facile à lire pour garantir une visualisation claire des niveaux de gaz, des conditions d'alarme et de la durée de vie de la batterie. L'enregistrement des données et des événements est disponible en standard, et l'appareil est doté d'une fonction intégrée d'avertissement 30 jours à l'avance lorsque l'étalonnage est nécessaire.

Quelle est la différence entre un pellistor et un capteur IR ?

Les capteurs jouent un rôle essentiel lorsqu'il s'agit de surveiller les gaz et les vapeurs inflammables. L'environnement, le temps de réponse et la plage de température ne sont que quelques-uns des éléments à prendre en compte pour choisir la meilleure technologie.

Dans ce blog, nous soulignons les différences entre les capteurs à pellistors (catalytiques) et les capteurs infrarouges (IR), les avantages et les inconvénients de ces deux technologies, et comment savoir laquelle convient le mieux à différents environnements.

Capteur à pellistor

Un capteur de gaz à pellistor est un dispositif utilisé pour détecter les gaz ou les vapeurs combustibles qui se situent dans la gamme d'explosivité afin d'avertir de l'augmentation des niveaux de gaz. Le capteur est une bobine de fil de platine dans laquelle un catalyseur est inséré pour former une petite perle active qui abaisse la température à laquelle le gaz s'enflamme autour d'elle. En présence d'un gaz combustible, la température et la résistance de la perle augmentent par rapport à la résistance de la perle de référence inerte. La différence de résistance peut être mesurée, ce qui permet de mesurer le gaz présent. En raison des catalyseurs et des billes, un capteur à pellistor est également appelé capteur catalytique ou capteur à billes catalytiques.

Créés dans les années 1960 par le scientifique et inventeur britannique Alan Baker, les capteurs à pellistors ont été initialement conçus comme une solution aux techniques de longue date de la lampe de sécurité à flamme et du canari. Plus récemment, ces dispositifs sont utilisés dans des applications industrielles et souterraines telles que les mines ou les tunnels, les raffineries de pétrole et les plates-formes pétrolières.

Les capteurs à pellistors sont relativement moins coûteux que les capteurs à infrarouge en raison des différences de niveau technologique, mais ils doivent être remplacés plus fréquemment.

Avec une sortie linéaire correspondant à la concentration du gaz, des facteurs de correction peuvent être utilisés pour calculer la réponse approximative des pellistors à d'autres gaz inflammables, ce qui peut faire des pellistors un bon choix en présence de plusieurs vapeurs inflammables.

De plus, les pellistors intégrés dans les détecteurs fixes avec des sorties de pont mV, comme le type 3 de Xgard, sont très bien adaptés aux zones difficiles d'accès car les réglages de l'étalonnage peuvent être effectués sur le panneau de commande local.

D'autre part, les pellistors ont des difficultés dans les environnements où il y a peu ou pas d'oxygène, car le processus de combustion par lequel ils fonctionnent nécessite de l'oxygène. Pour cette raison, les instruments pour espaces confinés qui contiennent des capteurs LIE de type pellistor catalytique comprennent souvent un capteur pour mesurer l'oxygène.

Dans les environnements où les composés contiennent du silicium, du plomb, du soufre et des phosphates, le capteur est susceptible d'être empoisonné (perte irréversible de sensibilité) ou inhibé (perte réversible de sensibilité), ce qui peut constituer un danger pour les personnes sur le lieu de travail.

S'ils sont exposés à de fortes concentrations de gaz, les capteurs à pellistors peuvent être endommagés. Dans de telles situations, les pellistors ne sont pas "à sécurité intégrée", ce qui signifie qu'aucune notification n'est donnée lorsqu'une défaillance de l'instrument est détectée. Toute défaillance ne peut être identifiée que par un test de déclenchement avant chaque utilisation pour s'assurer que les performances ne sont pas dégradées.

 

Capteur IR

La technologie des capteurs infrarouges repose sur le principe selon lequel la lumière infrarouge (IR) d'une longueur d'onde particulière est absorbée par le gaz cible. Un capteur comporte généralement deux émetteurs qui génèrent des faisceaux de lumière infrarouge : un faisceau de mesure dont la longueur d'onde est absorbée par le gaz cible, et un faisceau de référence qui n'est pas absorbé. Chaque faisceau est d'intensité égale et est dévié par un miroir à l'intérieur du capteur vers un photorécepteur. La différence d'intensité qui en résulte, entre le faisceau de référence et le faisceau de mesure, en présence du gaz cible, est utilisée pour mesurer la concentration du gaz présent.

Dans de nombreux cas, la technologie des capteurs infrarouges (IR) peut présenter un certain nombre d'avantages par rapport aux pellistors ou être plus fiable dans des domaines où les performances des capteurs à base de pellistors peuvent être altérées, notamment dans les environnements à faible teneur en oxygène et inertes. Seul le faisceau d'infrarouge interagit avec les molécules de gaz environnantes, ce qui donne au capteur l'avantage de ne pas être confronté à la menace d'empoisonnement ou d'inhibition.

La technologie IR permet d'effectuer des tests à sécurité intégrée. Cela signifie que si le faisceau infrarouge devait tomber en panne, l'utilisateur en serait informé.

Gas-Pro TK utilise un double capteur IR - la meilleure technologie pour les environnements spécialisés où les détecteurs de gaz standard ne fonctionnent tout simplement pas, qu'il s'agisse de purger un réservoir ou de libérer du gaz.

L'un de nos détecteurs IR est le Crowcon Gas-Pro IR, idéal pour l'industrie pétrolière et gazière, car il permet de détecter le méthane, le pentane ou le propane dans des environnements potentiellement explosifs et à faible teneur en oxygène, où les capteurs à pellistors peuvent avoir du mal à fonctionner. Nous utilisons également un capteur à double gamme %LEL et %Volume dans notre Gas-Pro TK, qui permet de mesurer et de basculer entre les deux mesures, de sorte qu'il fonctionne toujours en toute sécurité avec le paramètre correct.

Cependant, les capteurs IR ne sont pas tous parfaits car ils n'ont qu'une sortie linéaire par rapport au gaz cible ; la réponse d'un capteur IR à d'autres vapeurs inflammables que le gaz cible sera non linéaire.

Tout comme les pellistors sont sensibles à l'empoisonnement, les capteurs IR sont sensibles aux chocs mécaniques et thermiques sévères et sont également fortement affectés par les changements de pression importants. De plus, les capteurs infrarouges ne peuvent pas être utilisés pour détecter le gaz hydrogène, nous suggérons donc d'utiliser des pellistors ou des capteurs électromécaniques dans ce cas.

L'objectif premier en matière de sécurité est de sélectionner la meilleure technologie de détection pour minimiser les risques sur le lieu de travail. Nous espérons qu'en identifiant clairement les différences entre ces deux capteurs, nous pourrons sensibiliser les gens à la manière dont les divers environnements industriels et dangereux peuvent rester sûrs.

Pour plus d'informations sur les capteurs à pellistor et IR, vous pouvez télécharger notre livre blanc qui comprend des illustrations et des diagrammes pour vous aider à déterminer la meilleure technologie pour votre application.

Vous ne trouverez pas de capteurs Crowcon dormant au travail.

Les capteurs MOS (métal-oxyde-semiconducteur) ont été considérés comme l'une des solutions les plus récentes pour la détection du sulfure d'hydrogène (H2S) dans des températures fluctuantes allant de 50°C à une vingtaine de degrés, ainsi que dans des climats humides tels que le Moyen-Orient.

Cependant, les utilisateurs et les professionnels de la détection de gaz ont réalisé que les capteurs MOS ne sont pas la technologie de détection la plus fiable. Ce blog explique pourquoi cette technologie peut s'avérer difficile à entretenir et quels problèmes les utilisateurs peuvent rencontrer.

L'un des principaux inconvénients de cette technologie est le risque que le capteur se mette en veille lorsqu'il ne rencontre pas de gaz pendant un certain temps. Bien entendu, il s'agit d'un risque énorme pour la sécurité des travailleurs de la région... personne ne veut se retrouver face à un détecteur de gaz qui, en fin de compte, ne le détecte pas.

Les capteurs MOS ont besoin d'un élément chauffant pour s'égaliser, ce qui leur permet de produire une lecture cohérente. Cependant, lors de la mise en marche initiale, l'élément chauffant met du temps à chauffer, ce qui entraîne un délai important entre la mise en marche des capteurs et leur réaction au gaz dangereux. Les fabricants de MOS recommandent donc aux utilisateurs de laisser le capteur s'équilibrer pendant 24 à 48 heures avant l'étalonnage. Pour certains utilisateurs, cela peut constituer un obstacle à la production, ainsi qu'un délai supplémentaire pour l'entretien et la maintenance.

Le délai de l'élément chauffant n'est pas le seul problème. Il consomme beaucoup d'énergie, ce qui pose un problème supplémentaire : les changements de température spectaculaires dans le câble d'alimentation CC, qui entraînent des variations de tension au niveau de la tête du détecteur et des inexactitudes dans la lecture du niveau de gaz. 

Comme son nom de semi-conducteur d'oxyde métallique le suggère, les capteurs sont basés sur des semi-conducteurs qui sont reconnus pour dériver avec les changements d'humidité, ce qui n'est pas idéal pour le climat humide du Moyen-Orient. Dans d'autres industries, les semi-conducteurs sont souvent enrobés de résine époxy pour éviter ce phénomène, mais dans un capteur de gaz, ce revêtement empêcherait le mécanisme de détection du gaz, car celui-ci ne pourrait pas atteindre le semi-conducteur. Le dispositif est également exposé à l'environnement acide créé par le sable local au Moyen-Orient, ce qui affecte la conductivité et la précision de la lecture du gaz.

Une autre implication de sécurité importante d'un capteur MOS est qu'avec une sortie à des niveaux proches de zéro deH2S, il peut y avoir de fausses alarmes. Souvent, le capteur est utilisé avec un niveau de "suppression du zéro" au niveau du panneau de contrôle. Cela signifie que le panneau de commande peut afficher un zéro pendant un certain temps après que les niveaux deH2Sont commencé à augmenter. Cet enregistrement tardif de la présence de gaz à faible niveau peut alors retarder l'avertissement d'une fuite de gaz grave, l'opportunité d'une évacuation et le risque extrême de vies humaines.

Les capteurs MOS excellent dans la réaction rapide auH2S, la nécessité d'un frittage contrecarre donc cet avantage. LeH2Sétant un gaz "collant", il est capable d'être adsorbé sur les surfaces, y compris celles des frittes, ce qui ralentit la vitesse à laquelle le gaz atteint la surface de détection.

Pour remédier aux inconvénients des capteurs MOS, nous avons revisité et amélioré la technologie électrochimique avec notre nouveau capteurH2Shaute température (HT) pour XgardIQ. Les nouveaux développements de notre capteur permettent un fonctionnement jusqu'à 70°C à 0-95%rh - une différence significative par rapport à d'autres fabricants qui revendiquent une détection jusqu'à 60°C, en particulier dans les environnements difficiles du Moyen-Orient.

Notre nouveau capteurH2SHT s'est révélé être une solution fiable et résistante pour la détection duH2Sà haute température - une solution qui ne s'endort pas au travail !

Cliquez ici pour plus d'informations sur notre nouveau capteurH2Sà haute température (HT) pour XgardIQ.

Avez-vous déjà pensé aux dangers qui se cachent derrière votre boisson préférée ?

Il est tout à fait naturel pour nous d'associer le besoin de détection de gaz aux industries du pétrole, du gaz et de l'acier, mais avez-vous pensé à la nécessité de détecter des gaz dangereux tels que le dioxyde de carbone et l'azote dans l'industrie de la brasserie et des boissons ?

C'est peut-être parce que l'azote (N2) et le dioxyde de carbone (CO2) sont naturellement présents dans l'atmosphère. Il se peut que leCO2 soit encore sous-estimé en tant que gaz dangereux. Bien que dans l'atmosphère, leCO2 reste à des concentrations très faibles - environ 400 parties par million (ppm), il faut être plus prudent dans les brasseries et les caves où, dans des espaces confinés, le risque de fuite des bonbonnes de gaz ou des équipements associés peut entraîner des niveaux élevés. Une quantité aussi faible que 0,5 % en volume (5 000 ppm) deCO2 présente un risque toxique pour la santé. L'azote, quant à lui, peut déplacer l'oxygène.

LeCO2 est incolore, inodore et sa densité est supérieure à celle de l'air, ce qui signifie que des poches deCO2 se forment au sol et augmentent progressivement en taille. LeCO2 est généré en grandes quantités pendant la fermentation et peut présenter un risque dans les espaces confinés tels que les cuves, les caves ou les zones de stockage des bouteilles, ce qui peut être fatal pour les travailleurs se trouvant dans l'environnement proche. Les responsables de la santé et de la sécurité doivent donc s'assurer que les équipements et les détecteurs appropriés sont en place.

Les brasseurs utilisent souvent l'azote dans de multiples phases du processus de brassage et de distribution pour mettre des bulles dans la bière, en particulier les stouts, les ales pâles et les porters, il permet également de s'assurer que la bière ne s'oxyde pas ou ne pollue pas le lot suivant avec des saveurs agressives. L'azote permet de pousser le liquide d'un réservoir à l'autre et peut également être injecté dans les fûts ou les tonneaux pour les pressuriser en vue de leur stockage et de leur expédition. Ce gaz n'est pas toxique, mais il déplace l'oxygène dans l'atmosphère, ce qui peut constituer un danger en cas de fuite de gaz, d'où l'importance d'une détection précise des gaz.

La détection de gaz peut être fournie sous forme de dispositifs fixes ou portables. L'installation d'un détecteur de gaz fixe peut être utile dans un espace plus grand, tel qu'une salle des machines, pour assurer une protection continue de la zone et du personnel 24 heures sur 24. Cependant, pour la sécurité des travailleurs dans et autour de la zone de stockage des bouteilles et dans les espaces désignés comme espaces confinés, un détecteur portable peut être plus adapté. Ceci est particulièrement vrai pour les pubs et les points de vente de boissons, pour la sécurité des travailleurs et de ceux qui ne sont pas familiers avec l'environnement, comme les chauffeurs de livraison, les équipes de vente ou les techniciens d'équipement. L'unité portable se fixe facilement à la ceinture ou aux vêtements et détecte les poches deCO2 à l'aide d'alarmes et de signaux visuels, indiquant que l'utilisateur doit immédiatement quitter la zone.

Chez Crowcon, nous nous engageons à construire un avenir plus sûr, plus propre et plus sain pour tout le monde, chaque jour, en fournissant les meilleures solutions de sécurité gaz. Il est essentiel qu'une fois les détecteurs de gaz déployés, les employés ne se laissent pas aller à la complaisance et fassent des contrôles nécessaires une partie essentielle de chaque journée de travail, car une détection précoce peut faire la différence entre la vie et la mort.

Quelques faits et conseils sur la détection de gaz dans les brasseries :

  • L'azote et leCO2 sont tous deux incolores et inodores. LeCO2 étant 5 fois plus lourd que l'air, c'est un gaz silencieux et mortel.
  • Toute personne entrant dans une citerne ou un autre espace confiné doit être équipée d'un détecteur de gaz approprié.
  • La détection précoce peut faire la différence entre la vie et la mort.

Une fois de plus, Gas-Pro est le "détecteur de choix" pour l'expédition environnementale sur le volcan.

Nous connaissons tous l'expression "réchauffement climatique" et nous voyons souvent des statistiques sur les effets potentiels de ce phénomène sur notre planète. L'une de ces prédictions est que d'ici la fin du siècle, la température de la planète augmentera de 0,8 à 4 degrés.

Ce que beaucoup d'entre nous ne savent peut-être pas, c'est que les volcans, qui sont un phénomène tout à fait naturel, rejettent une quantité importante de gaz dans notre atmosphère. Et ces gaz ne sont actuellement pas pris en compte dans les modèles climatiques mondiaux, ce qui signifie qu'il existe potentiellement une grande marge d'erreur.

Cependant, cela pourrait être sur le point de changer car Yves Moussallam, un volcanologue français inspirant, qui, avec le soutien de Rolex et des Prix Rolex à l'esprit d'entreprise 2019, s'est donné pour mission de comprendre les volcans et leur impact sur notre planète. Il s'aventure dans ces environnements dramatiques et dangereux pour prendre des mesures qui sont utilisées par les scientifiques et les climatologues pour améliorer leurs modèles de prédiction.

En observant les volcans et en recueillant ces données d'une importance vitale, il aide le monde à comprendre l'impact des volcans sur le changement climatique.

Yves n'est pas étranger aux expéditions volcaniques. En 2015, il a dirigé une petite équipe dans la zone de subduction de Nazca, en Amérique du Sud. Leur mission consistait à fournir la première estimation précise et à grande échelle du flux de plusieurs espèces de gaz volatils.

Pour assurer la sécurité de l'équipe, Yves a choisi l'équipement de détection Crowcon et a été ravi de la légèreté, de la propreté et de la sécurité de Gas man et de Gas-Pro.

Aujourd'hui, Yves est de retour avec une nouvelle expédition et s'est à nouveau tourné vers Crowcon. Cette fois-ci, Yves se dirige vers la région de la Mélanésie en Italie. Les satellites, qui sont utilisés pour suivre le comportement des volcans, ont montré que cette région est responsable d'environ un tiers des émissions mondiales de gaz volcaniques.

Son expédition escaladera ces volcans et prendra des mesures directement dans le panache volcanique.

Il existe deux méthodes principales pour mesurer les gaz dans les volcans. La première consiste à utiliser un satellite qui prend des images depuis l'espace. La seconde consiste à se rendre directement sur le terrain et à mesurer le gaz libéré à sa source.

Les experts estiment que la méthode consistant à travailler directement sur le terrain est la plus précise, car elle permet d'être beaucoup plus près de la source, ce qui réduit le risque d'erreur.

Pour effectuer ces mesures, il faut disposer d'un équipement éprouvé, testé et fiable, et grâce à la réputation de Crowcon, Yves s'est à nouveau tourné vers Gas-Pro.

L'appareil Crowcon Gas-Pro comprend une fonction d'enregistrement de données embarquée qui fournit une ligne de données supplémentaire et une idée de l'exposition moyenne, ce qui est important pour les expéditions qui s'étendent sur de longues périodes. Il est également léger, ce qui est très utile pour transporter des équipements encombrants.

Toute l'équipe de Crowcon souhaite à Yves une expédition sûre et réussie et nous espérons que les données qu'il recueillera nous aideront à comprendre l'impact des volcans sur notre monde.

#Rolex #RolexAwards #PerpetualPlanet #Perpetual

Identifier les fuites de gazoducs à une distance sûre

L'utilisation du gaz naturel, dont le méthane est le principal composant, augmente dans le monde entier. Il a également de nombreuses utilisations industrielles, comme la fabrication de produits chimiques tels que l'ammoniac, le méthanol, le butane, l'éthane, le propane et l'acide acétique ; il entre également dans la composition de produits aussi divers que les engrais, les antigels, les plastiques, les produits pharmaceutiques et les tissus.

Le gaz naturel est transporté de plusieurs façons : par gazoducs sous forme gazeuse, sous forme de gaz naturel liquéfié (GNL) ou de gaz naturel comprimé (GNC). Le GNL est la méthode habituelle pour transporter le gaz sur de très longues distances, par exemple à travers les océans, tandis que le GNC est généralement transporté par des camions-citernes sur de courtes distances. Les gazoducs sont le mode de transport privilégié pour les longues distances sur terre (et parfois en mer), comme entre la Russie et l'Europe centrale. Les sociétés de distribution locales livrent également le gaz naturel aux utilisateurs commerciaux et domestiques par le biais de réseaux de services publics au sein des pays, des régions et des municipalités.

L'entretien régulier des systèmes de distribution de gaz est essentiel. L'identification et la rectification des fuites de gaz font également partie intégrante de tout programme d'entretien, mais cette tâche est notoirement difficile dans de nombreux environnements urbains et industriels, car les conduites de gaz peuvent être situées sous terre, en hauteur, dans les plafonds, derrière les murs et les cloisons ou dans des endroits autrement inaccessibles tels que des bâtiments fermés à clé. Jusqu'à récemment, les fuites suspectées de ces gazoducs pouvaient entraîner le bouclage de zones entières jusqu'à ce que la fuite soit localisée.

C'est précisément parce que les détecteurs de gaz conventionnels - tels que ceux qui utilisent la combustion catalytique, l'ionisation de flamme ou la technologie des semi-conducteurs - ne sont pas capables de détecter les gaz à distance et sont donc incapables de détecter les fuites de gaz dans les pipelines difficiles d'accès, que de nombreuses recherches ont été menées récemment sur les moyens de détecter le méthane à distance.

Télédétection

Des technologies de pointe sont désormais disponibles pour permettre la détection et l'identification à distance des fuites avec une précision extrême. Les appareils portatifs, par exemple, peuvent désormais détecter le méthane à des distances allant jusqu'à 100 mètres, tandis que les systèmes montés sur des avions peuvent identifier des fuites à un demi-kilomètre de distance. Ces nouvelles technologies transforment la manière de détecter et de traiter les fuites de gaz naturel.

La télédétection est réalisée par spectroscopie d'absorption laser infrarouge. Comme le méthane absorbe une longueur d'onde spécifique de la lumière infrarouge, ces instruments émettent des lasers infrarouges. Le faisceau laser est dirigé vers l'endroit où l'on soupçonne la présence d'une fuite, par exemple une conduite de gaz ou un plafond. Comme une partie de la lumière est absorbée par le méthane, la lumière reçue en retour fournit une mesure de l'absorption par le gaz. Une caractéristique utile de ces systèmes est le fait que le faisceau laser peut traverser des surfaces transparentes, comme le verre ou le plexiglas, de sorte qu'il peut être possible de tester un espace clos avant d'y entrer. Les détecteurs mesurent la densité moyenne du gaz méthane entre le détecteur et la cible. Les relevés sur les appareils portables sont donnés en ppm-m (produit de la concentration du nuage de méthane (ppm) et de la longueur du trajet (m)). De cette manière, les fuites de méthane peuvent être rapidement confirmées en pointant un faisceau laser vers la fuite suspectée ou le long d'une ligne de sondage, par exemple.

Une différence importante entre la nouvelle technologie et les détecteurs de méthane classiques est que les nouveaux systèmes mesurent la concentration moyenne de méthane, plutôt que de détecter le méthane en un seul point - ce qui donne une indication plus précise de la gravité de la fuite.

Les applications pour les appareils portatifs comprennent :

  • Enquêtes sur les pipelines
  • Usine à gaz
  • Enquêtes sur les propriétés industrielles et commerciales
  • Appel d'urgence
  • Surveillance des gaz de décharge
  • Etude de la surface des routes

Réseaux de distribution municipaux

On se rend compte aujourd'hui des avantages de la technologie à distance pour la surveillance des pipelines en milieu urbain.

La capacité des dispositifs de télédétection à surveiller les fuites de gaz à distance en fait des outils extrêmement utiles en cas d'urgence. Les opérateurs peuvent rester à l'écart des sources de fuite potentiellement dangereuses lorsqu'ils vérifient la présence de gaz dans des locaux fermés ou des espaces confinés, car la technologie leur permet de surveiller la situation sans y accéder. Non seulement ce processus est plus facile et plus rapide, mais il est également sûr. De plus, il n'est pas affecté par les autres gaz présents dans l'atmosphère puisque les détecteurs sont calibrés pour détecter uniquement le méthane - il n'y a donc aucun risque d'obtenir de faux signaux, ce qui est important dans les situations d'urgence.

Le principe de la télédétection s'applique également à l'inspection des colonnes montantes (les conduites aériennes qui transportent le gaz jusqu'aux locaux des clients et qui longent normalement les murs extérieurs des bâtiments). Dans ce cas, les opérateurs orientent l'appareil vers la conduite en suivant son parcours, et ce depuis le sol, sans avoir à utiliser d'échelle ni à accéder aux propriétés des clients.

Zones dangereuses

Outre la détection des fuites de gaz dans les réseaux de distribution municipaux, les appareils antidéflagrants et homologués ATEX peuvent être utilisés dans les zones dangereuses de la zone 1, telles que les usines pétrochimiques, les raffineries de pétrole, les terminaux et les navires de GNL, ainsi que dans certaines applications minières.

Lors de l'inspection d'un réservoir souterrain de GNL/GPL, par exemple, un dispositif antidéflagrant serait nécessaire à moins de 7,5 mètres du réservoir lui-même et à un mètre autour de la soupape de sécurité. Les opérateurs doivent donc être pleinement conscients de ces restrictions et être équipés du type d'équipement approprié.

Coordination GPS

Certains instruments permettent désormais d'effectuer des relevés ponctuels de méthane en divers points d'un site - tel qu'un terminal GNL - en générant automatiquement un suivi GPS des relevés et des emplacements des mesures. Cela rend les allers-retours pour des investigations supplémentaires beaucoup plus efficaces, tout en fournissant un enregistrement authentique de l'activité d'inspection confirmée - souvent une condition préalable à la conformité réglementaire.

Détection aérienne

Au-delà des appareils portatifs, il existe également des détecteurs de méthane à distance qui peuvent être installés sur des avions et qui détectent les fuites de gazoducs sur des centaines de kilomètres. Ces systèmes peuvent détecter des niveaux de méthane à des concentrations aussi faibles que 0,5 ppm jusqu'à 500 mètres de distance et comprennent un affichage sur carte mobile en temps réel des concentrations de gaz au fur et à mesure que l'enquête est menée.

Le fonctionnement de ces systèmes est relativement simple. Un détecteur à distance est fixé sous le fuselage de l'avion (généralement un hélicoptère). Comme dans le cas de l'appareil portable, l'unité produit un signal laser infrarouge, qui est dévié par toute fuite de méthane se trouvant sur sa trajectoire ; plus le niveau de méthane est élevé, plus le faisceau est dévié. Ces systèmes utilisent également le GPS, de sorte que le pilote peut suivre une carte mobile en temps réel de l'itinéraire GPS du pipeline, avec un affichage en temps réel de la trajectoire de l'appareil, des fuites de gaz et de la concentration (en ppm) présenté à l'équipage à tout moment. Une alarme sonore peut être réglée pour une concentration de gaz souhaitée, ce qui permet au pilote de s'approcher pour une étude plus approfondie.

Conclusion

La gamme de systèmes de détection à distance du méthane s'élargit rapidement, de nouvelles technologies étant développées en permanence. Tous ces dispositifs, qu'ils soient portatifs ou montés sur des avions, permettent une identification rapide, sûre et très ciblée des fuites - que ce soit sous la chaussée, dans une ville ou sur des centaines de kilomètres de toundra en Alaska. Cela permet non seulement d'éviter des émissions inutiles et coûteuses, mais aussi de s'assurer que le personnel travaillant sur ou à proximité des pipelines n'est pas exposé à des dangers inutiles.

L'utilisation du gaz naturel étant en augmentation dans le monde entier, nous prévoyons des avancées technologiques rapides en matière de détection de gaz à distance dans des applications aussi diverses que la recherche de fuites, l'intégrité des transmissions, la gestion des usines et des installations, l'agriculture et la gestion des déchets, ainsi que les applications d'ingénierie des procédés telles que la production de coke et d'acier. Chacun de ces domaines présente des situations où l'accès peut être difficile, associé à la nécessité de placer la protection du personnel en tête des priorités. Les possibilités offertes par les détecteurs de méthane à distance ne cessent donc de croître.

 

Les risques d'explosion dans les réservoirs inertes et comment les éviter

Le sulfure d'hydrogène (H2S) est connu pour être extrêmement toxique et hautement corrosif. Dans un environnement de réservoir inerte, il représente un danger supplémentaire et sérieux : la combustion qui, on le soupçonne, a été la cause de graves explosions dans le passé.

Le sulfure d'hydrogène peut être présent en %vol dans le pétrole ou le gaz "acide". Le carburant peut également être rendu "acide" par l'action des bactéries sulfato-réductrices présentes dans l'eau de mer, souvent présentes dans les cales des pétroliers. Il est donc important de continuer à surveiller le niveau deH2S, car il peut changer, notamment en mer. CeH2Speut augmenter la probabilité d'un incendie si la situation n'est pas correctement gérée.

Les réservoirs sont généralement revêtus de fer (parfois recouvert de zinc). Le fer rouille, créant de l'oxyde de fer (FeO). Dans l'espace de tête inerte d'un réservoir, l'oxyde de fer peut réagir avecH2Spour former du sulfure de fer (FeS). Le sulfure de fer est un pyrophore, ce qui signifie qu'il peut s'enflammer spontanément en présence d'oxygène.

Exclusion des éléments du feu

Une citerne pleine d'huile ou de gaz constitue un risque d'incendie évident dans les bonnes circonstances. Les trois éléments du feu sont le combustible, l'oxygène et une source d'allumage. Sans ces trois éléments, un feu ne peut pas démarrer. L'air contient environ 21 % d'oxygène. Par conséquent, un moyen courant de contrôler le risque d'incendie dans une citerne est d'éliminer autant d'air que possible en rinçant l'air de la citerne avec un gaz inerte, tel que l'azote ou le dioxyde de carbone. Lors du déchargement de la citerne, on veille à ce que le carburant soit remplacé par un gaz inerte plutôt que par de l'air. Cela permet d'éliminer l'oxygène et d'éviter les départs de feu.

Par définition, il n'y a pas assez d'oxygène dans un environnement inerte pour qu'un incendie puisse se déclarer. Mais à un moment donné, il faudra laisser entrer de l'air dans le réservoir - pour que le personnel de maintenance puisse y pénétrer en toute sécurité, par exemple. Les trois éléments du feu peuvent alors se rencontrer. Comment le contrôler ?

  • L'oxygène doit pouvoir entrer
  • Il peut y avoir du FeS présent, que l'oxygène va faire étinceler.
  • L'élément qui peut être contrôlé est le carburant.

Si tout le carburant a été retiré et que la combinaison d'air et de FeS provoque une étincelle, cela ne peut pas faire de mal.

Suivi des éléments

Il ressort de ce qui précède qu'il est important de surveiller tous les éléments susceptibles de provoquer un incendie dans ces réservoirs de carburant. L'oxygène et le carburant peuvent être contrôlés directement à l'aide d'un détecteur de gaz approprié, tel que Gas-Pro TK. Conçu pour ces environnements spécialisés, Gas-Pro TK peut automatiquement mesurer un réservoir plein de gaz (mesuré en %vol) et un réservoir presque vide de gaz (mesuré en %LEL). Gas-Pro TK peut vous indiquer quand les niveaux d'oxygène sont suffisamment bas pour que vous puissiez charger du carburant en toute sécurité ou suffisamment élevés pour que le personnel puisse pénétrer dans le réservoir en toute sécurité. Une autre utilisation importante de Gas-Pro TK est la surveillance duH2S, qui permet d'évaluer la présence probable du pryophore, le sulfure de fer.