Sécurité des gaz pour ballons : Les dangers de l'hélium et de l'azote 

Le gaz pour ballons est un mélange d'hélium et d'air. Il est sans danger lorsqu'il est utilisé correctement, mais vous ne devez jamais l'inhaler délibérément, car il s'agit d'un asphyxiant qui peut entraîner des complications pour la santé. Comme d'autres asphyxiants, l'hélium contenu dans le gaz pour ballons occupe une partie du volume normalement occupé par l'air, ce qui empêche cet air d'être utilisé pour entretenir les feux ou faire fonctionner les corps.

Il existe d'autres asphyxiants utilisés dans les applications industrielles. Par exemple, l'utilisation de l'azote est devenue presque indispensable dans de nombreux processus industriels de fabrication et de transport. Si les utilisations de l'azote sont nombreuses, il doit être manipulé conformément aux règles de sécurité industrielle. L'azote doit être considéré comme un risque potentiel pour la sécurité, quelle que soit l'ampleur du processus industriel dans lequel il est employé. Le dioxyde de carbone est couramment utilisé comme asphyxiant, notamment dans les systèmes d'extinction d'incendie et certains extincteurs. De même, l'hélium est ininflammable, non toxique et ne réagit pas avec d'autres éléments dans des conditions normales. Cependant, il est essentiel de savoir comment manipuler correctement l'hélium, car un malentendu peut conduire à des erreurs de jugement qui pourraient aboutir à une situation fatale, l'hélium étant utilisé dans de nombreuses situations de la vie quotidienne. Comme pour tous les gaz, il est essentiel de prendre soin et de manipuler correctement les conteneurs d'hélium.

Quels sont les dangers ?

Lorsque vous inhalez de l'hélium, sciemment ou non, il déplace de l'air, qui est en partie de l'oxygène. Cela signifie que lorsque vous inhalez, l'oxygène qui serait normalement présent dans vos poumons est remplacé par de l'hélium. L'oxygène jouant un rôle dans de nombreuses fonctions de votre corps, notamment la pensée et le mouvement, un déplacement trop important présente un risque pour la santé. En général, l'inhalation d'un petit volume d'hélium a pour effet de modifier la voix, mais elle peut aussi provoquer quelques vertiges et il existe toujours un risque d'autres effets, notamment des nausées, des étourdissements et/ou une perte de conscience temporaire - tous les effets d'un manque d'oxygène.

  • Comme la plupart des asphyxiants, l'azote gazeux, comme l'hélium gazeux, est incolore et inodore. En l'absence de dispositifs de détection de l'azote, le risque que les travailleurs industriels soient exposés à une concentration dangereuse d'azote est nettement plus élevé. De plus, alors que l'hélium s'élève souvent loin de la zone de travail en raison de sa faible densité, l'azote reste, se répand à partir de la fuite et ne se disperse pas rapidement. Par conséquent, les systèmes fonctionnant à l'azote et présentant des fuites non détectées constituent une préoccupation majeure en matière de réglementation de la sécurité. Les directives préventives en matière de santé au travail tentent de répondre à ce risque accru par des contrôles de sécurité supplémentaires des équipements. Le problème réside dans les faibles concentrations d'oxygène qui affectent le personnel. Les symptômes initiaux comprennent un léger essoufflement et une toux, des vertiges et peut-être une certaine agitation, suivis d'une respiration rapide, de douleurs thoraciques et d'une confusion, l'inhalation prolongée entraînant une pression artérielle élevée, un bronchospasme et un œdème pulmonaire.
  • L'hélium peut provoquer exactement les mêmes symptômes s'il est contenu dans un volume et ne peut s'échapper. Dans chaque cas, le remplacement complet de l'air par le gaz asphyxiant provoque un effondrement rapide de la personne, qui s'écroule sur place et subit de nombreuses blessures.

Meilleures pratiques en matière de sécurité des ballons de gaz

Conformément à OSHA des tests obligatoires sont requis pour les espaces industriels confinés, la responsabilité en incombant à tous les employeurs. L'échantillonnage de l'air atmosphérique à l'intérieur de ces espaces permet de déterminer s'il est adapté à la respiration. Les tests à effectuer sur l'air échantillonné comprennent principalement des concentrations d'oxygène, mais aussi la présence de gaz combustibles et des tests pour les vapeurs toxiques afin d'identifier les accumulations de ces gaz.

Quelle que soit la durée du séjour, l'OSHA exige de tous les employeurs qu'ils prévoient un accompagnateur juste à l'extérieur d'un espace soumis à autorisation lorsque du personnel y travaille. Cette personne doit surveiller en permanence les conditions gazeuses à l'intérieur de l'espace et appeler les sauveteurs si le travailleur à l'intérieur de l'espace confiné ne réagit plus. Il est essentiel de noter qu'à aucun moment l'accompagnateur ne doit tenter de pénétrer dans l'espace dangereux pour effectuer un sauvetage sans aide.

Dans les zones restreintes, une circulation d'air à courant d'air forcé réduira considérablement l'accumulation d'hélium, d'azote ou d'un autre gaz asphyxiant et limitera les risques d'une exposition fatale. Bien que cette stratégie puisse être utilisée dans les zones présentant de faibles risques de fuite d'azote, il est interdit aux travailleurs de pénétrer dans des environnements d'azote gazeux pur sans utiliser un équipement respiratoire approprié. Dans ce cas, le personnel doit utiliser un équipement approprié d'apport d'air artificiel.

Les dangers du gaz saisonnier

En matière de sécurité gazière, il n'y a pas de saison morte, mais il est important de savoir qu'il existe une sécurité gazière saisonnière. Lorsque les températures montent et descendent, ou que la pluie tombe en déluge, cela peut avoir des impacts uniques sur vos appareils à gaz. Pour vous aider à mieux comprendre la sécurité saisonnière du gaz, voici tout ce que vous devez savoir sur les principaux défis à relever tout au long de l'année.

Sécurité du gaz en vacances

Lorsque vous partez en vacances, la dernière chose à laquelle vous pensez est la sécurité du gaz, mais il est essentiel que vous vous protégiez. Qu'il s'agisse de longues vacances d'été ou d'un week-end d'hiver, avez-vous mis un détecteur de monoxyde de carbone dans votre valise ? Si ce n'est pas le cas, vous devriez le faire. La sécurité en matière de gaz est tout aussi importante en vacances qu'à la maison, car lorsque vous êtes en vacances, vous avez moins de connaissances ou de contrôle sur l'état des appareils à gaz.

Bien qu'il n'y ait pas de grande différence entre la sécurité du gaz dans une caravane ou sur un bateau, la sécurité du gaz en camping sous une tente est différente. Les réchauds de camping à gaz, les chauffages à gaz (comme les chauffages de table et de terrasse) et même les barbecues à combustible solide peuvent produire du monoxyde de carbone (CO), ce qui peut entraîner une intoxication. Par conséquent, s'ils sont introduits dans une tente, une caravane ou tout autre espace clos, pendant ou après leur utilisation, ils peuvent émettre du CO nocif, mettant en danger toute personne se trouvant à proximité.

Il est également important de se rappeler que réglementation en matière de sécurité du gaz dans d'autres pays peuvent différer de celles en vigueur en dehors du Royaume-Uni. Bien que l'on ne puisse pas s'attendre à ce que vous sachiez ce qui est légal et ce qui ne l'est pas partout où vous allez, vous pouvez assurer votre sécurité et celle de votre entourage en suivant quelques conseils simples.

Conseils pour la sécurité du gaz en vacances

  • Demandez si les appareils à gaz de votre logement ont été entretenus et contrôlés.
  • Emportez un avertisseur sonore de monoxyde de carbone.
  • À votre arrivée, les appareils électroménagers peuvent ne pas fonctionner de la même manière que ceux que vous avez chez vous. Si aucune instruction n'est fournie, contactez votre représentant de vacances ou le propriétaire du logement pour obtenir de l'aide si vous n'êtes pas sûr.
    • Soyez conscient des signes d'appareils à gaz dangereux.
    • Des marques et des taches noires autour de l'appareil
    • Des flammes orange ou jaunes paresseuses au lieu de flammes bleues vives.
    • Des niveaux élevés de condensation dans votre logement
  • N'utilisez jamais de cuisinières à gaz, de réchauds ou de barbecues pour vous chauffer, et assurez-vous qu'ils disposent d'une ventilation adéquate lorsqu'ils sont utilisés.

Sécurité des barbecues

L'été est l'occasion d'être en plein air et de profiter des longues soirées. Qu'il pleuve ou qu'il fasse beau, nous allumons nos barbecues, les seules inquiétudes étant de savoir s'il va pleuvoir ou si les saucisses sont bien cuites. La sécurité du gaz n'est pas seulement réservée à la maison ou aux environnements industriels, les barbecues nécessitent une attention particulière pour garantir leur sécurité.

Le monoxyde de carbone est un gaz dont les risques pour la santé sont largement connus. Nous sommes nombreux à installer des détecteurs dans nos maisons et nos entreprises. Cependant, l'association du monoxyde de carbone à nos barbecues est inconnue. Si le temps est mauvais, nous pouvons décider de faire un barbecue dans l'entrée du garage ou sous une tente ou un auvent. Certains d'entre nous peuvent même apporter leurs barbecues dans la tente après utilisation. Toutes ces situations peuvent être potentiellement mortelles car le monoxyde de carbone s'accumule dans ces espaces confinés. Il faut noter que la zone de cuisson doit être éloignée des bâtiments et bien ventilée avec de l'air frais, sinon vous risquez une intoxication au monoxyde de carbone. Il est essentiel de connaître les signes d'une intoxication au monoxyde de carbone : maux de tête, nausées, essoufflement, vertiges, effondrement ou perte de conscience.

De même qu'avec une bonbonne de gaz propane ou butane, nous la stockons dans nos garages, nos remises et même nos maisons sans savoir qu'il existe un risque de combinaison potentiellement mortelle entre un espace clos, une fuite de gaz et une étincelle provenant d'un appareil électrique. Tous ces éléments peuvent provoquer une explosion.

La sécurité du gaz en hiver

Lorsque le froid s'installe, les chaudières à gaz et le gaz sont allumés pour la première fois depuis plusieurs mois, afin de nous tenir chaud. Cependant, cette utilisation accrue peut exercer une pression supplémentaire sur les appareils et les faire tomber en panne. Par conséquent, il faut se préparer à l'hiver en s'assurant que les appareils à gaz - y compris les chaudières, les réchauffeurs d'air chaud, les cuisinières et les feux - ont été régulièrement contrôlés et entretenus par un ingénieur agréé Gas Safe, qui dispose de détecteurs de gaz.

Que faire si vous soupçonnez une fuite de gaz

Si vous sentez une odeur de gaz ou si vous pensez qu'il pourrait y avoir une fuite de gaz dans une propriété, un bateau ou une caravane, il est important d'agir rapidement. Une fuite de gaz présente un risque d'incendie, voire d'explosion.

Vous devriez :

  • Éteignez toute flamme nue pour éviter tout risque d'incendie ou d'explosion.
  • Coupez le gaz au niveau du compteur si possible (et si vous pouvez le faire en toute sécurité).
  • Ouvrez les fenêtres pour permettre la ventilation et faire en sorte que le gaz se dissipe.
  • Évacuez immédiatement la zone pour éviter tout risque pour la vie.
  • Informez immédiatement votre représentant de vacances ou le propriétaire du logement ou l'équivalent.
  • Consultez un médecin si vous vous sentez mal ou si vous présentez des signes d'empoisonnement au monoxyde de carbone.

Symptômes d'empoisonnement au monoxyde de carbone

Les signes et les symptômes de l'intoxication au monoxyde de carbone sont souvent confondus avec d'autres maladies, telles qu'une intoxication alimentaire ou une grippe. Les symptômes comprennent :

  • Maux de tête
  • Vertiges
  • Essoufflement
  • Nausée ou sensation de malaise
  • Collapse
  • Perte de conscience

Toute personne qui pense souffrir d'une intoxication au monoxyde de carbone doit immédiatement sortir à l'air libre et consulter d'urgence un médecin.

Détecteurs de gaz personnels

Le site Clip SDG est conçu pour résister aux conditions de travail industrielles les plus difficiles et offre une durée d'alarme, des niveaux d'alarme modifiables et un enregistrement des événements à la pointe de l'industrie, ainsi que des solutions conviviales de test de déclenchement et d'étalonnage.

Gasman Le capteur de CO spécialisé est un détecteur de gaz simple, robuste et compact, conçu pour être utilisé dans les environnements les plus difficiles. Sa conception compacte et légère en fait le choix idéal pour la détection des gaz industriels.

Assurer la sécurité des services d'urgence et des premiers intervenants

Le personnel des services d'urgence et les premiers intervenants sont confrontés à des risques liés au gaz dans le cadre de leur travail. Cependant, l'évaluation immédiate de leur environnement dès leur arrivée ainsi que la surveillance continue en cas de sauvetage sont vitales pour la santé de toutes les personnes concernées.

Quels sont les gaz présents ?

Des gaz toxiques comme le monoxyde de carbone (CO) et le cyanure d'hydrogène (HCN) sont présents en cas d'incendie. Individuellement, ces gaz sont dangereux, voire mortels, mais leur combinaison est exponentiellement pire : on les appelle les jumeaux toxiques.

Le monoxyde de carbone (CO) est un gaz incolore, inodore, insipide et toxique produit par la combustion incomplète de combustibles à base de carbone, notamment le gaz, le pétrole, le bois et le charbon. C'est seulement lorsque le combustible ne brûle pas complètement qu'un excès de CO est produit, qui est toxique. Lorsque l'excès de CO pénètre dans le corps, il empêche le sang d'apporter de l'oxygène aux cellules, aux tissus et aux organes. Le CO est toxique car vous ne pouvez pas le voir, le goûter ou le sentir, mais il peut tuer rapidement sans avertissement.

Le cyanure d'hydrogène (HCN) est un produit chimique industriel important et plus d'un million de tonnes sont produites chaque année dans le monde. Le cyanure d'hydrogène (HCN) est un liquide ou un gaz incolore ou bleu clair, extrêmement inflammable. Il a une légère odeur d'amande amère, bien qu'elle ne soit pas détectable par tous. Le cyanure d'hydrogène a de nombreuses utilisations, principalement dans la fabrication de peintures, de plastiques, de fibres synthétiques (par exemple le nylon) et d'autres produits chimiques. Le cyanure d'hydrogène et d'autres composés du cyanure ont également été utilisés comme fumigant pour lutter contre les parasites. Ils sont également utilisés pour le nettoyage des métaux, le jardinage, l'extraction de minerais, la galvanoplastie, la teinture, l'impression et la photographie. Le cyanure de sodium et de potassium et d'autres sels de cyanure peuvent être fabriqués à partir du cyanure d'hydrogène.

Quels sont les risques ?

Ces gaz sont dangereux individuellement. Cependant, l'exposition aux deux combinés est encore plus dangereuse, c'est pourquoi un détecteur de gaz CO et HCN adéquat est essentiel là où se trouvent les jumeaux toxiques. Habituellement, la fumée visible est un bon indicateur, mais les jumeaux toxiques sont tous deux incolores. Ces gaz combinés sont généralement présents dans les incendies. Les pompiers et les autres personnels d'urgence sont formés pour faire attention à l'empoisonnement au CO dans les incendies. Toutefois, en raison de l'utilisation accrue de plastiques et de fibres synthétiques, le HCN peut être libéré jusqu'à 200 ppm dans les incendies domestiques et industriels. Ces deux gaz sont à l'origine de milliers de décès liés aux incendies chaque année, et doivent donc être davantage pris en compte dans la détection des gaz d'incendie.

La présence de HCN dans l'environnement ne conduit pas toujours à une exposition. Cependant, pour que le HCN ait des effets néfastes sur la santé, il faut que vous entriez en contact avec lui, c'est-à-dire que vous le respiriez, le mangiez, le buviez ou que vous entriez en contact avec la peau ou les yeux. Après une exposition à un produit chimique, les effets néfastes sur la santé dépendent d'un certain nombre de facteurs, tels que la quantité à laquelle vous êtes exposé (dose), la manière dont vous êtes exposé, la durée de l'exposition, la forme du produit chimique et si vous avez été exposé à d'autres produits chimiques. Le HCN étant très toxique, il peut empêcher le corps d'utiliser correctement l'oxygène. Les premiers signes d'une exposition au HCN sont les suivants : maux de tête, nausées, vertiges, confusion et même somnolence. Une exposition substantielle peut rapidement conduire à une perte de conscience, un ajustement, un coma et éventuellement la mort. Si l'on survit à une exposition importante, il peut y avoir des effets à long terme dus à des dommages au cerveau et à d'autres dommages au système nerveux. Les effets du contact avec la peau nécessitent une grande surface de la peau pour être exposés.

Quels sont les produits disponibles ?

Pour les équipes des services d'urgence et les premiers intervenants, l'utilisation de détecteurs de gaz portables est essentielle. Des gaz toxiques sont produits lorsque des matériaux sont brûlés, ce qui signifie que des gaz et des vapeurs inflammables peuvent être présents.

Notre détecteur multigaz portable permet de détecter jusqu'à 5 gaz dans une solution compacte et robuste. Gas-Pro détecteur multigaz portable permet de détecter jusqu'à 5 gaz dans une solution compacte et robuste. Il est doté d'un écran facile à lire sur le dessus, ce qui le rend facile à utiliser et optimal pour la détection des gaz dans les espaces confinés. Une pompe interne optionnelle, activée par la plaque d'écoulement, facilite les tests avant l'entrée et permet à Gas-Pro d'être porté en mode de pompage ou de diffusion. Changements de pellistors sur le terrain pour le méthane, l'hydrogène, le propane, l'éthane, l'acétylène (0-100% LIE, avec une résolution de 1% LIE). En permettant le changement de pellistors sur place, les détecteurs Gas-Pro offrent aux utilisateurs la possibilité de tester commodément une gamme de gaz inflammables, sans avoir besoin de plusieurs capteurs ou détecteurs. De plus, ils peuvent continuer à calibrer en utilisant les cartouches de méthane existantes, ce qui permet d'économiser du temps et de l'argent. Le capteur de gaz pour le cyanure d'hydrogène a une plage de mesure de 0-30 ppm avec une résolution de 0,1 ppm.

Tetra 3 Le détecteur multigaz portable peut détecter et surveiller les quatre gaz les plus courants (monoxyde de carbone, méthane, oxygène et sulfure d'hydrogène), mais aussi une gamme élargie : ammoniac, ozone, dioxyde de soufre, H2 CO filtré (pour les aciéries) et dioxyde de carbone IR (uniquement pour les zones sécurisées).

T4 Le détecteur de gaz portable 4 en 1 offre une protection efficace contre quatre dangers courants liés aux gaz : le monoxyde de carbone, le sulfure d'hydrogène, les gaz inflammables et la raréfaction de l'oxygène. Le détecteur multigaz T4 est désormais doté d'une détection améliorée du pentane, de l'hexane et d'autres hydrocarbures à longue chaîne.

Le détecteur monogaz Clip (SDG) est un détecteur de gaz industriel conçu pour être utilisé dans les zones dangereuses. Il offre une surveillance fiable et durable à durée de vie fixe dans un boîtier compact, léger et sans entretien. Clip SGD a une durée de vie de 2 ans et est disponible pour le sulfure d'hydrogène (H2S), le monoxyde de carbone (CO) ou l'oxygène (O2).

Gasman est un appareil complet dans un boîtier compact et léger - parfait pour les clients qui ont besoin de plus d'options de capteurs, de TWA et de capacité de données. Il est disponible avec un capteur O2 à longue durée de vie et la technologie de capteur MPS.

MPS Sensor offre une technologie avancée qui supprime le besoin d'étalonnage et fournit une "vraie LIE" pour la lecture de quinze gaz inflammables, mais peut détecter tous les gaz inflammables dans un environnement multi-espèces. De nombreuses industries et applications utilisent ou ont comme sous-produit des gaz multiples dans un même environnement. Cela peut constituer un défi pour les capteurs traditionnels qui ne peuvent détecter qu'un seul gaz pour lequel ils ont été étalonnés et qui peuvent donner lieu à des relevés inexacts, voire à de fausses alarmes, susceptibles d'interrompre le processus ou la production. Les défis rencontrés dans les environnements à plusieurs espèces de gaz peuvent être frustrants et contre-productifs. Notre capteur MPS™ peut détecter avec précision plusieurs gaz à la fois et identifier instantanément le type de gaz. Notre capteur MPS™ dispose d'une compensation environnementale embarquée et ne nécessite pas de facteur de correction. Les relevés imprécis et les fausses alarmes font partie du passé.

Crowcon Connect est une solution de sécurité et de conformité au gaz qui utilise un service de données en nuage flexible offrant des informations exploitables sur la flotte de détecteurs. Ce logiciel basé sur le cloud fournit une vue d'ensemble de l'utilisation des appareils avec un tableau de bord montrant la proportion d'appareils qui sont assignés ou non à un opérateur, pour la région ou la zone spécifique sélectionnée. Fleet Insights donne un aperçu des appareils allumés/éteints, synchronisés ou en alarme.

Pourquoi les professionnels du chauffage, de la ventilation et de la climatisation sont-ils exposés au risque de monoxyde de carbone - et comment le gérer ?

Le monoxyde de carbone (CO) est un gaz inodore, incolore et insipide qui est également très toxique et potentiellement inflammable (à des niveaux plus élevés : 10,9 % en volume ou 109 000 ppm). Il est produit par la combustion incomplète de combustibles fossiles tels que le bois, le pétrole, le charbon, la paraffine, le GPL, l'essence et le gaz naturel. De nombreux systèmes et unités CVC brûlent des combustibles fossiles, il n'est donc pas difficile de comprendre pourquoi les professionnels du CVC peuvent être exposés au CO dans leur travail. Peut-être avez-vous, par le passé, ressenti des étourdissements, des nausées ou des maux de tête pendant ou après un travail ? Dans cet article de blog, nous examinerons le CO et ses effets, ainsi que la manière dont les risques peuvent être gérés.

Comment le CO est-il généré ?

Comme nous l'avons vu, le CO est produit par la combustion incomplète des combustibles fossiles. Cela se produit généralement lorsqu'il y a un manque général d'entretien, un manque d'air - ou un air de qualité insuffisante - pour permettre une combustion complète.

Par exemple, la combustion efficace du gaz naturel génère du dioxyde de carbone et de la vapeur d'eau. Mais si l'air où se déroule cette combustion est insuffisant ou si l'air utilisé pour la combustion est vicié, la combustion échoue et produit de la suie et du CO. S'il y a de la vapeur d'eau dans l'atmosphère, celle-ci peut encore réduire le niveau d'oxygène et accélérer la production de CO.

Quels sont les dangers du CO ?

Normalement, le corps humain utilise l'hémoglobine pour transporter l'oxygène dans la circulation sanguine. Cependant, il est plus facile pour l'hémoglobine d'absorber et de faire circuler le CO que l'oxygène. Par conséquent, en présence de CO, il y a danger car l'hémoglobine du corps "préfère" le CO à l'oxygène. Lorsque l'hémoglobine absorbe le CO de cette manière, elle devient saturée en CO, qui est rapidement et efficacement transporté vers toutes les parties du corps sous forme de carboxyhémoglobine.

Cela peut provoquer toute une série de problèmes physiques, en fonction de la quantité de CO présente dans l'air. Par exemple :

200 parties par million (ppm) peuvent provoquer des maux de tête en 2 à 3 heures.
400 ppm peut provoquer des maux de tête et des nausées en 1 à 2 heures, et mettre la vie en danger en 3 heures.
800 ppm peut provoquer des convulsions, de graves maux de tête et des vomissements en moins d'une heure, une perte de conscience en 2 heures.
1 500 ppm peut provoquer des étourdissements, des nausées et une perte de conscience en moins de 20 minutes, la mort en 1 heure.
6 400 ppm peuvent causer une perte de conscience après deux ou trois respirations ; la mort dans les 15 minutes.

Pourquoi les travailleurs du secteur du CVC sont-ils en danger ?

Certains des événements les plus courants dans les installations de CVC peuvent entraîner une exposition au CO, par exemple :

Travailler dans des espaces confinés, tels que des sous-sols ou des greniers.
Travailler sur des appareils de chauffage qui fonctionnent mal, qui sont en mauvais état et/ou dont les joints sont cassés ou usés ; des conduits de fumée et des cheminées obstrués, fissurés ou effondrés ; laisser les produits de combustion pénétrer dans la zone de travail.
Travailler sur des appareils à conduit ouvert, en particulier si le conduit déborde, si la ventilation est mauvaise et/ou si la cheminée est obstruée.
Travailler sur des feux et/ou des cuisinières à gaz sans conduit, en particulier lorsque le volume de la pièce est insuffisant et/ou que la ventilation est mauvaise.

Quelle quantité est trop importante ?

Le Health and Safety Executive (HSE) publie une liste des limites d'exposition sur le lieu de travail pour de nombreuses substances toxiques, dont le CO. Vous pouvez télécharger gratuitement la dernière version sur leur site Web à l'adresse www.hse.gov.uk/pubns/books/eh40.htm. Au moment de la rédaction de ce document (novembre 2021), les limites pour le CO sont les suivantes :

Limite d'exposition sur le lieu de travail

Gaz Formule Numéro CAS Limite d'exposition à long terme
(période de référence 8-hr TWA)
Limite d'exposition à court terme
(période de référence de 15 minutes)
Monoxyde de carbone CO 630-08-0 20ppm (parties par million) 100ppm (parties par million)

Comment puis-je rester en sécurité et prouver ma conformité ?

La meilleure façon de se protéger des dangers du CO est de porter un détecteur de gaz CO portable et de haute qualité. Le Clip for CO de Crowcon est un détecteur de gaz personnel léger de 93g qui émet une alarme de 90db lorsque le porteur est exposé à 30 et 100 ppm de CO. Le Clip CO est un détecteur de gaz portable jetable qui a une durée de vie de 2 ans ou un maximum de 2900 minutes d'alarme, selon la première éventualité.

Pourquoi les certifications de gaz sont-elles importantes ?

Qui classe les certificats de gaz ?

L'une des préoccupations les plus importantes sur un lieu de travail industriel est le risque potentiel d'incendie et/ou d'explosion. Cependant, il existe des directives qui fixent des normes visant à contrôler les atmosphères explosives. ATEX (ATmosphère EXplosible) est le nom communément donné à deux directives européennes visant à contrôler les environnements explosifs. IECEX (International Electrotechnical Commission for Explosive Atmospheres) est la certification que tous les appareils électriques doivent passer par la Commission électrotechnique internationale pour garantir qu'ils répondent à une norme de sécurité minimale qui déterminera s'ils peuvent être utilisés dans des environnements dangereux ou explosifs. Aux États-Unis, Underwriters Limited (UL) est un organisme de sécurité qui certifie la sécurité d'utilisation des produits destinés à être vendus sur le marché. De même, les normes nationales canadiennes (CSA) fournissent aux produits mis sur le marché ou mis en service une certification de sécurité indiquant qu'ils sont aptes à être utilisés. Cependant, le niveau d'intégrité de sécurité (SIL) est le niveau de réduction des risques fourni par une fonction de sécurité, ou pour spécifier un niveau cible de réduction des risques. Les opérateurs se fient aux certificats fournis par les normes ATEX et Sil pour prévenir les incendies et les explosions, mais aussi pour assurer la sécurité de toutes les personnes présentes sur les lieux de travail industriels.

Dangers sur le lieu de travail

Les risques sur le lieu de travail sont trop nombreux pour être comptés, mais un emplacement dangereux est défini comme une zone dans laquelle des substances combustibles ou inflammables sont ou peuvent être présentes. Les emplacements dangereux sont spécifiés en fonction du type de danger combustible et de la probabilité de sa présence. Ils sont déterminés par les classifications établies par le National Electric Code (NEC) aux États-Unis et par la Commission internationale d'électrochimie (CEI) au niveau international. Ces classifications sont définies de deux manières : le système de classes/divisions en Amérique du Nord ou les zones/groupes au niveau international.

Classe et divisions

Divisions :

Division 1 : Il y a une probabilité que le danger soit présent dans des conditions normales de fonctionnement.

Division 2 : Le danger est présent dans des conditions anormales (c'est-à-dire en cas de déversement ou de fuite).

Cours :

Classe 1: Gaz

Classe 2: Poussière

Classe 3: Fibres

Zones et groupes 

Zones : identifient la possibilité qu'un danger soit présent.

Zone 0 : le danger est présent en permanence et pendant une période prolongée.

Zone 1 : Il y a une chance que le danger soit présent mais dans des conditions normales de fonctionnement conditions normales de fonctionnement

Zone 2 : Le danger n'est pas susceptible d'être présent dans des conditions normales pendant une période prolongée. temps

Groupes: Identifier le type de danger particulier

Groupe 1 : Industrie minière - risques spécifiques

Groupe 2 : un groupe identifie le danger comme étant de nature gazeuse.

A : Méthane, propane et autres gaz similaires.

B : Ethylène et gaz ou ceux qui présentent un risque de danger similaire

C : Acétylène, hydrogène ou risques similaires

Groupe 3 : Poussières et autres groupes selon la taille de la particule et le type de matériau

Comprendre les logos de certification

Les logos situés sur l'équipement indiquent quelle association a testé et évalué l'équipement, garantissant ainsi sa sécurité sur la base des normes établies. De nombreuses associations certifient que l'équipement est antidéflagrant, précisant que toute inflammation sera contenue dans l'appareil et ne constituera pas une menace pour l'environnement extérieur. Cette action est intrinsèquement sûre, empêchant ainsi l'appareil de créer une étincelle qui pourrait conduire à une explosion dans un environnement dangereux.

Pourquoi les certificats sont importants

Bien qu'il soit difficile d'identifier toutes les classifications, pour s'assurer que l'équipement a été certifié sûr, il est essentiel de rechercher les logos familiers comme un signe primaire que l'équipement est sûr et ne constituera pas une menace pour l'environnement. Les certificats permettent à l'opérateur de visualiser facilement non seulement que les appareils fonctionnent correctement mais aussi qu'ils protègent tous ceux qui se trouvent dans l'environnement dangereux qu'ils sont censés mesurer.

Quelle est la différence entre un pellistor et un capteur IR ?

Les capteurs jouent un rôle essentiel lorsqu'il s'agit de surveiller les gaz et les vapeurs inflammables. L'environnement, le temps de réponse et la plage de température ne sont que quelques-uns des éléments à prendre en compte pour choisir la meilleure technologie.

Dans ce blog, nous soulignons les différences entre les capteurs à pellistors (catalytiques) et les capteurs infrarouges (IR), les avantages et les inconvénients de ces deux technologies, et comment savoir laquelle convient le mieux à différents environnements.

Capteur à pellistor

Un capteur de gaz à pellistor est un dispositif utilisé pour détecter les gaz ou les vapeurs combustibles qui se situent dans la gamme d'explosivité afin d'avertir de l'augmentation des niveaux de gaz. Le capteur est une bobine de fil de platine dans laquelle un catalyseur est inséré pour former une petite perle active qui abaisse la température à laquelle le gaz s'enflamme autour d'elle. En présence d'un gaz combustible, la température et la résistance de la perle augmentent par rapport à la résistance de la perle de référence inerte. La différence de résistance peut être mesurée, ce qui permet de mesurer le gaz présent. En raison des catalyseurs et des billes, un capteur à pellistor est également appelé capteur catalytique ou capteur à billes catalytiques.

Créés dans les années 1960 par le scientifique et inventeur britannique Alan Baker, les capteurs à pellistors ont été initialement conçus comme une solution aux techniques de longue date de la lampe de sécurité à flamme et du canari. Plus récemment, ces dispositifs sont utilisés dans des applications industrielles et souterraines telles que les mines ou les tunnels, les raffineries de pétrole et les plates-formes pétrolières.

Les capteurs à pellistors sont relativement moins coûteux que les capteurs à infrarouge en raison des différences de niveau technologique, mais ils doivent être remplacés plus fréquemment.

Avec une sortie linéaire correspondant à la concentration du gaz, des facteurs de correction peuvent être utilisés pour calculer la réponse approximative des pellistors à d'autres gaz inflammables, ce qui peut faire des pellistors un bon choix en présence de plusieurs vapeurs inflammables.

De plus, les pellistors intégrés dans les détecteurs fixes avec des sorties de pont mV, comme le type 3 de Xgard, sont très bien adaptés aux zones difficiles d'accès car les réglages de l'étalonnage peuvent être effectués sur le panneau de commande local.

D'autre part, les pellistors ont des difficultés dans les environnements où il y a peu ou pas d'oxygène, car le processus de combustion par lequel ils fonctionnent nécessite de l'oxygène. Pour cette raison, les instruments pour espaces confinés qui contiennent des capteurs LIE de type pellistor catalytique comprennent souvent un capteur pour mesurer l'oxygène.

Dans les environnements où les composés contiennent du silicium, du plomb, du soufre et des phosphates, le capteur est susceptible d'être empoisonné (perte irréversible de sensibilité) ou inhibé (perte réversible de sensibilité), ce qui peut constituer un danger pour les personnes sur le lieu de travail.

S'ils sont exposés à de fortes concentrations de gaz, les capteurs à pellistors peuvent être endommagés. Dans de telles situations, les pellistors ne sont pas "à sécurité intégrée", ce qui signifie qu'aucune notification n'est donnée lorsqu'une défaillance de l'instrument est détectée. Toute défaillance ne peut être identifiée que par un test de déclenchement avant chaque utilisation pour s'assurer que les performances ne sont pas dégradées.

 

Capteur IR

La technologie des capteurs infrarouges repose sur le principe selon lequel la lumière infrarouge (IR) d'une longueur d'onde particulière est absorbée par le gaz cible. Un capteur comporte généralement deux émetteurs qui génèrent des faisceaux de lumière infrarouge : un faisceau de mesure dont la longueur d'onde est absorbée par le gaz cible, et un faisceau de référence qui n'est pas absorbé. Chaque faisceau est d'intensité égale et est dévié par un miroir à l'intérieur du capteur vers un photorécepteur. La différence d'intensité qui en résulte, entre le faisceau de référence et le faisceau de mesure, en présence du gaz cible, est utilisée pour mesurer la concentration du gaz présent.

Dans de nombreux cas, la technologie des capteurs infrarouges (IR) peut présenter un certain nombre d'avantages par rapport aux pellistors ou être plus fiable dans des domaines où les performances des capteurs à base de pellistors peuvent être altérées, notamment dans les environnements à faible teneur en oxygène et inertes. Seul le faisceau d'infrarouge interagit avec les molécules de gaz environnantes, ce qui donne au capteur l'avantage de ne pas être confronté à la menace d'empoisonnement ou d'inhibition.

La technologie IR permet d'effectuer des tests à sécurité intégrée. Cela signifie que si le faisceau infrarouge devait tomber en panne, l'utilisateur en serait informé.

Gas-Pro TK utilise un double capteur IR - la meilleure technologie pour les environnements spécialisés où les détecteurs de gaz standard ne fonctionnent tout simplement pas, qu'il s'agisse de purger un réservoir ou de libérer du gaz.

L'un de nos détecteurs IR est le Crowcon Gas-Pro IR, idéal pour l'industrie pétrolière et gazière, car il permet de détecter le méthane, le pentane ou le propane dans des environnements potentiellement explosifs et à faible teneur en oxygène, où les capteurs à pellistors peuvent avoir du mal à fonctionner. Nous utilisons également un capteur à double gamme %LEL et %Volume dans notre Gas-Pro TK, qui permet de mesurer et de basculer entre les deux mesures, de sorte qu'il fonctionne toujours en toute sécurité avec le paramètre correct.

Cependant, les capteurs IR ne sont pas tous parfaits car ils n'ont qu'une sortie linéaire par rapport au gaz cible ; la réponse d'un capteur IR à d'autres vapeurs inflammables que le gaz cible sera non linéaire.

Tout comme les pellistors sont sensibles à l'empoisonnement, les capteurs IR sont sensibles aux chocs mécaniques et thermiques sévères et sont également fortement affectés par les changements de pression importants. De plus, les capteurs infrarouges ne peuvent pas être utilisés pour détecter le gaz hydrogène, nous suggérons donc d'utiliser des pellistors ou des capteurs électromécaniques dans ce cas.

L'objectif premier en matière de sécurité est de sélectionner la meilleure technologie de détection pour minimiser les risques sur le lieu de travail. Nous espérons qu'en identifiant clairement les différences entre ces deux capteurs, nous pourrons sensibiliser les gens à la manière dont les divers environnements industriels et dangereux peuvent rester sûrs.

Pour plus d'informations sur les capteurs à pellistor et IR, vous pouvez télécharger notre livre blanc qui comprend des illustrations et des diagrammes pour vous aider à déterminer la meilleure technologie pour votre application.

Vous ne trouverez pas de capteurs Crowcon dormant au travail.

Les capteurs MOS (métal-oxyde-semiconducteur) ont été considérés comme l'une des solutions les plus récentes pour la détection du sulfure d'hydrogène (H2S) dans des températures fluctuantes allant de 50°C à une vingtaine de degrés, ainsi que dans des climats humides tels que le Moyen-Orient.

Cependant, les utilisateurs et les professionnels de la détection de gaz ont réalisé que les capteurs MOS ne sont pas la technologie de détection la plus fiable. Ce blog explique pourquoi cette technologie peut s'avérer difficile à entretenir et quels problèmes les utilisateurs peuvent rencontrer.

L'un des principaux inconvénients de cette technologie est le risque que le capteur se mette en veille lorsqu'il ne rencontre pas de gaz pendant un certain temps. Bien entendu, il s'agit d'un risque énorme pour la sécurité des travailleurs de la région... personne ne veut se retrouver face à un détecteur de gaz qui, en fin de compte, ne le détecte pas.

Les capteurs MOS ont besoin d'un élément chauffant pour s'égaliser, ce qui leur permet de produire une lecture cohérente. Cependant, lors de la mise en marche initiale, l'élément chauffant met du temps à chauffer, ce qui entraîne un délai important entre la mise en marche des capteurs et leur réaction au gaz dangereux. Les fabricants de MOS recommandent donc aux utilisateurs de laisser le capteur s'équilibrer pendant 24 à 48 heures avant l'étalonnage. Pour certains utilisateurs, cela peut constituer un obstacle à la production, ainsi qu'un délai supplémentaire pour l'entretien et la maintenance.

Le délai de l'élément chauffant n'est pas le seul problème. Il consomme beaucoup d'énergie, ce qui pose un problème supplémentaire : les changements de température spectaculaires dans le câble d'alimentation CC, qui entraînent des variations de tension au niveau de la tête du détecteur et des inexactitudes dans la lecture du niveau de gaz. 

Comme son nom de semi-conducteur d'oxyde métallique le suggère, les capteurs sont basés sur des semi-conducteurs qui sont reconnus pour dériver avec les changements d'humidité, ce qui n'est pas idéal pour le climat humide du Moyen-Orient. Dans d'autres industries, les semi-conducteurs sont souvent enrobés de résine époxy pour éviter ce phénomène, mais dans un capteur de gaz, ce revêtement empêcherait le mécanisme de détection du gaz, car celui-ci ne pourrait pas atteindre le semi-conducteur. Le dispositif est également exposé à l'environnement acide créé par le sable local au Moyen-Orient, ce qui affecte la conductivité et la précision de la lecture du gaz.

Une autre implication de sécurité importante d'un capteur MOS est qu'avec une sortie à des niveaux proches de zéro deH2S, il peut y avoir de fausses alarmes. Souvent, le capteur est utilisé avec un niveau de "suppression du zéro" au niveau du panneau de contrôle. Cela signifie que le panneau de commande peut afficher un zéro pendant un certain temps après que les niveaux deH2Sont commencé à augmenter. Cet enregistrement tardif de la présence de gaz à faible niveau peut alors retarder l'avertissement d'une fuite de gaz grave, l'opportunité d'une évacuation et le risque extrême de vies humaines.

Les capteurs MOS excellent dans la réaction rapide auH2S, la nécessité d'un frittage contrecarre donc cet avantage. LeH2Sétant un gaz "collant", il est capable d'être adsorbé sur les surfaces, y compris celles des frittes, ce qui ralentit la vitesse à laquelle le gaz atteint la surface de détection.

Pour remédier aux inconvénients des capteurs MOS, nous avons revisité et amélioré la technologie électrochimique avec notre nouveau capteurH2Shaute température (HT) pour XgardIQ. Les nouveaux développements de notre capteur permettent un fonctionnement jusqu'à 70°C à 0-95%rh - une différence significative par rapport à d'autres fabricants qui revendiquent une détection jusqu'à 60°C, en particulier dans les environnements difficiles du Moyen-Orient.

Notre nouveau capteurH2SHT s'est révélé être une solution fiable et résistante pour la détection duH2Sà haute température - une solution qui ne s'endort pas au travail !

Cliquez ici pour plus d'informations sur notre nouveau capteurH2Sà haute température (HT) pour XgardIQ.

Une solution ingénieuse au problème du H2S à haute température

En raison de la chaleur extrême au Moyen-Orient, qui peut atteindre 50°C en plein été, la nécessité d'une détection de gaz fiable est cruciale. Dans ce blog, nous nous concentrons sur la nécessité de détecter le sulfure d'hydrogène (H2S) - un défi de longue date pour l'industrie de la détection de gaz au Moyen-Orient.

En combinant une nouvelle astuce avec une ancienne technologie, nous avons trouvé la solution pour une détection fiable des gaz dans les environnements du climat rude du Moyen-Orient. Notre nouveau capteurH2Sà haute température (HT) pour XgardIQ a été revu et amélioré par notre équipe d'experts Crowcon en combinant deux adaptations ingénieuses de sa conception originale.

Dans les capteurs traditionnels deH2S, la détection est basée sur la technologie électrochimique, où des électrodes sont utilisées pour détecter les changements induits dans un électrolyte par la présence du gaz cible. Cependant, les températures élevées combinées à une faible humidité provoquent l'assèchement de l'électrolyte, ce qui altère les performances du capteur et oblige à le remplacer régulièrement, ce qui implique des coûts de remplacement élevés, du temps et des efforts.

Ce qui rend le nouveau capteur si avancé par rapport à son prédécesseur, c'est sa capacité à conserver les niveaux d'humidité à l'intérieur du capteur, empêchant l'évaporation même dans des climats à haute température. Le capteur mis à jour est basé sur un gel électrolytique, adapté pour le rendre plus hygroscopique et éviter la déshydratation plus longtemps.

De plus, les pores du boîtier du capteur ont été réduits, ce qui empêche l'humidité de s'échapper. Ce graphique indique une perte de poids qui est une indication de la perte d'humidité. Lorsqu'il est stocké à 55°C ou 65°C pendant un an, il ne perd que 3% de son poids. Un autre capteur typique perdrait 50% de son poids en 100 jours dans les mêmes conditions.

Pour une détection optimale des fuites, notre remarquable nouveau capteur est également doté d'un boîtier de capteur à distance en option, tandis que l'écran d'affichage et les commandes à bouton-poussoir du transmetteur sont positionnés de manière à permettre un accès sûr et facile pour les opérateurs jusqu'à 15 mètres de distance.

 

Les résultats de notre nouveau capteur HTH2Spour XgardIQ parlent d'eux-mêmes, avec un environnement de fonctionnement allant jusqu'à 70°C à 0-95%rh, ainsi qu'un temps de réponse de 0-200ppm et T90 de moins de 30 secondes. Contrairement à d'autres capteurs pour la détection duH2S, il offre une durée de vie de plus de 24 mois, même dans des climats difficiles comme celui du Moyen-Orient.

La réponse aux défis de la détection des gaz au Moyen-Orient se trouve entre les mains de notre nouveau capteur, qui offre à ses utilisateurs des performances rentables et fiables.

Cliquez ici pour plus d'informations sur le détecteur Crowcon HT H2Sou.

Une fois de plus, Gas-Pro est le "détecteur de choix" pour l'expédition environnementale sur le volcan.

Nous connaissons tous l'expression "réchauffement climatique" et nous voyons souvent des statistiques sur les effets potentiels de ce phénomène sur notre planète. L'une de ces prédictions est que d'ici la fin du siècle, la température de la planète augmentera de 0,8 à 4 degrés.

Ce que beaucoup d'entre nous ne savent peut-être pas, c'est que les volcans, qui sont un phénomène tout à fait naturel, rejettent une quantité importante de gaz dans notre atmosphère. Et ces gaz ne sont actuellement pas pris en compte dans les modèles climatiques mondiaux, ce qui signifie qu'il existe potentiellement une grande marge d'erreur.

Cependant, cela pourrait être sur le point de changer car Yves Moussallam, un volcanologue français inspirant, qui, avec le soutien de Rolex et des Prix Rolex à l'esprit d'entreprise 2019, s'est donné pour mission de comprendre les volcans et leur impact sur notre planète. Il s'aventure dans ces environnements dramatiques et dangereux pour prendre des mesures qui sont utilisées par les scientifiques et les climatologues pour améliorer leurs modèles de prédiction.

En observant les volcans et en recueillant ces données d'une importance vitale, il aide le monde à comprendre l'impact des volcans sur le changement climatique.

Yves n'est pas étranger aux expéditions volcaniques. En 2015, il a dirigé une petite équipe dans la zone de subduction de Nazca, en Amérique du Sud. Leur mission consistait à fournir la première estimation précise et à grande échelle du flux de plusieurs espèces de gaz volatils.

Pour assurer la sécurité de l'équipe, Yves a choisi l'équipement de détection Crowcon et a été ravi de la légèreté, de la propreté et de la sécurité de Gas man et de Gas-Pro.

Aujourd'hui, Yves est de retour avec une nouvelle expédition et s'est à nouveau tourné vers Crowcon. Cette fois-ci, Yves se dirige vers la région de la Mélanésie en Italie. Les satellites, qui sont utilisés pour suivre le comportement des volcans, ont montré que cette région est responsable d'environ un tiers des émissions mondiales de gaz volcaniques.

Son expédition escaladera ces volcans et prendra des mesures directement dans le panache volcanique.

Il existe deux méthodes principales pour mesurer les gaz dans les volcans. La première consiste à utiliser un satellite qui prend des images depuis l'espace. La seconde consiste à se rendre directement sur le terrain et à mesurer le gaz libéré à sa source.

Les experts estiment que la méthode consistant à travailler directement sur le terrain est la plus précise, car elle permet d'être beaucoup plus près de la source, ce qui réduit le risque d'erreur.

Pour effectuer ces mesures, il faut disposer d'un équipement éprouvé, testé et fiable, et grâce à la réputation de Crowcon, Yves s'est à nouveau tourné vers Gas-Pro.

L'appareil Crowcon Gas-Pro comprend une fonction d'enregistrement de données embarquée qui fournit une ligne de données supplémentaire et une idée de l'exposition moyenne, ce qui est important pour les expéditions qui s'étendent sur de longues périodes. Il est également léger, ce qui est très utile pour transporter des équipements encombrants.

Toute l'équipe de Crowcon souhaite à Yves une expédition sûre et réussie et nous espérons que les données qu'il recueillera nous aideront à comprendre l'impact des volcans sur notre monde.

#Rolex #RolexAwards #PerpetualPlanet #Perpetual

Pour vous aider à rester en sécurité pendant la saison des barbecues

Qui n'aime pas les barbecues d'été ? Qu'il pleuve ou qu'il vente, nous allumons nos barbecues, les seules inquiétudes étant de savoir s'il va pleuvoir ou si les saucisses sont bien cuites.

Bien qu'il s'agisse d'éléments importants (en particulier le fait de s'assurer que les saucisses sont bien cuites !), beaucoup d'entre nous ne sont pas du tout conscients des risques potentiels.

Le monoxyde de carbone est un gaz qui a reçu sa part de publicité. Beaucoup d'entre nous ont installé des détecteurs dans leurs maisons et leurs entreprises, mais ignorent complètement que le monoxyde de carbone est associé à nos barbecues.

Si le temps est mauvais, nous pouvons décider de faire un barbecue dans l'entrée du garage ou sous une tente ou un auvent. Certains d'entre nous peuvent même apporter leurs barbecues dans la tente après utilisation. Toutes ces situations peuvent être potentiellement mortelles car le monoxyde de carbone s'accumule dans ces zones confinées.

De même qu'avec une bonbonne de gaz propane ou butane, nous la stockons dans nos garages, nos remises et même nos maisons sans savoir qu'il existe un risque de combinaison potentiellement mortelle entre un espace clos, une fuite de gaz et une étincelle provenant d'un appareil électrique. Tous ces éléments peuvent provoquer une explosion.

Tout ceci étant dit, les barbecues sont là pour rester et si nous les utilisons en toute sécurité, ils sont une excellente façon de passer un après-midi d'été. Voici donc une sélection de faits et de conseils de notre équipe de sécurité chez Crowcon qui, nous l'espérons, vous aideront à profiter d'un été sûr et délicieux !

 

Quelques faits et conseils sur les charbons de barbecue :

  • Le monoxyde de carbone est un gaz incolore et inodore. Ce n'est pas parce que nous ne pouvons pas le voir ou le sentir qu'il n'existe pas.
  • Le monoxyde de carbone est un sous-produit de la combustion de combustibles fossiles, dont le charbon de bois et le gaz de barbecue.
  • Utilisez toujours votre barbecue dans un endroit ouvert et bien ventilé, car le gaz peut s'accumuler et atteindre des niveaux toxiques dans les espaces clos.
  • N'apportez jamais de charbon de bois dans une tente, même si elle semble froide. N'oubliez pas qu'un barbecue qui couve dégage toujours du monoxyde de carbone.
  • Soyez vigilant et agissez rapidement si une personne présente les symptômes d'une intoxication au monoxyde de carbone, à savoir des maux de tête, des vertiges, un essoufflement, des nausées, une confusion, un effondrement et une perte de conscience. Ces symptômes peuvent être potentiellement mortels

 

Quelques faits et conseils sur les bonbonnes de gaz :

  • Les barbecues à gaz utilisent généralement du propane, du butane ou du GPL (qui est un mélange des deux).
  • Les barbecues à gaz ont des trous dans le fond pour éviter l'accumulation de gaz. En effet, le gaz étant plus lourd que l'air, il s'accumule dans les zones basses ou remplit un espace de bas en haut.
  • Pour éviter l'accumulation de gaz, les canettes doivent toujours être stockées à l'extérieur, en position verticale, dans un endroit bien ventilé, loin des sources de chaleur et des espaces bas fermés.
  • Si vous rangez votre barbecue dans le garage, assurez-vous de débrancher la bonbonne de gaz et de la garder à l'extérieur.
  • Lorsque vous utilisez votre barbecue, placez la boîte de conserve sur le côté afin qu'elle ne se trouve pas sous la source de chaleur et près de celle-ci, et placez le barbecue dans un espace ouvert.
  • Gardez toujours la cartouche à l'écart des sources d'inflammation lorsque vous changez de cartouche.
  • Assurez-vous toujours de fermer le gaz au niveau du barbecue ainsi que le régulateur sur la cartouche, après utilisation.