L'importance de la détection des gaz dans le secteur médical et des soins de santé

La nécessité de la détection de gaz dans le secteur médical et de la santé est peut-être moins bien comprise en dehors de l'industrie, mais le besoin existe néanmoins. Les patients, dans un certain nombre de contextes, reçoivent une variété de traitements et de thérapies médicales qui impliquent l'utilisation de produits chimiques. La nécessité de surveiller avec précision les gaz utilisés ou émis, dans le cadre de ce processus, est très importante pour permettre un traitement continu et sûr. Afin de protéger les patients et, bien sûr, les professionnels de la santé eux-mêmes, la mise en œuvre d'un équipement de surveillance précis et fiable est indispensable.

Applications

Dans les établissements de santé et les hôpitaux, une série de gaz potentiellement dangereux peuvent se présenter en raison des équipements et appareils médicaux utilisés. Des produits chimiques nocifs sont également utilisés à des fins de désinfection et de nettoyage des surfaces de travail et des fournitures médicales des hôpitaux. Par exemple, des produits chimiques potentiellement dangereux peuvent être utilisés comme conservateur pour les spécimens de tissus, tels que le toluène, le xylène ou le formaldéhyde. Les applications comprennent :

  • Surveillance des gaz respiratoires
  • Chambres froides
  • Générateurs
  • Laboratoires
  • Salles de stockage
  • Salles d'opération
  • Sauvetage pré-hospitalier
  • Thérapie par pression positive des voies respiratoires
  • Thérapie par canules nasales à haut débit
  • Unités de soins intensifs
  • Unité de soins post-anesthésiques

Risques liés aux gaz

Enrichissement en oxygène dans les services hospitaliers

À la lumière de la pandémie mondiale COVID-19, les professionnels de la santé ont reconnu la nécessité d'augmenter la quantité d'oxygène dans les services hospitaliers en raison du nombre croissant de ventilateurs utilisés. Les capteurs d'oxygène sont essentiels, notamment dans les services de soins intensifs, car ils informent le clinicien de la quantité d'oxygène délivrée au patient pendant la ventilation. Cela permet de prévenir le risque d'hypoxie, d'hypoxémie ou de toxicité de l'oxygène. Si les capteurs d'oxygène ne fonctionnent pas comme ils le devraient, ils peuvent déclencher des alarmes régulières, devoir être changés et, malheureusement, entraîner des décès. L'utilisation accrue des ventilateurs enrichit également l'air en oxygène et peut augmenter le risque de combustion. Il est nécessaire de mesurer les niveaux d'oxygène dans l'air à l'aide d'un système fixe de détection de gaz pour éviter des niveaux dangereux dans l'air.

Dioxyde de carbone

La surveillance du niveau de dioxyde de carbone est également nécessaire dans les environnements de soins de santé pour garantir un environnement de travail sûr pour les professionnels, ainsi que pour protéger les patients traités. Le dioxyde de carbone est utilisé dans une pléthore de procédures médicales et de soins de santé, qu'il s'agisse de chirurgies peu invasives, telles que l'endoscopie, l'arthroscopie et la laparoscopie, de la cryothérapie ou de l'anesthésie. LeCO2 est également utilisé dans les incubateurs et les laboratoires et, comme c'est un gaz toxique, il peut provoquer l'asphyxie. Des niveaux élevés deCO2 dans l'air, émis par certaines machines, peuvent nuire aux personnes présentes dans l'environnement, ainsi que propager des agents pathogènes et des virus. Les détecteurs deCO2 dans les environnements de santé peuvent donc améliorer la ventilation, la circulation de l'air et le bien-être de tous.

Composés organiques volatils (COV)

Une série de COV peuvent être trouvés dans les environnements hospitaliers et de soins de santé et causer des dommages aux personnes qui y travaillent et y sont traitées. Les COV tels que les hydrocarbures aliphatiques, aromatiques et halogénés, les aldéhydes, les alcools, les cétones, les éthers et les terpènes, pour n'en citer que quelques-uns, ont été mesurés dans les environnements hospitaliers, provenant d'un certain nombre de zones spécifiques, notamment les halls d'accueil, les chambres des patients, les soins infirmiers, les unités de soins post-anesthésiques, les laboratoires de parasitologie-mycologie et les unités de désinfection. Bien que leur prévalence dans les milieux de soins n'en soit encore qu'au stade de la recherche, il est clair que l'ingestion de COV a des effets néfastes sur la santé humaine, tels qu'une irritation des yeux, du nez et de la gorge, des maux de tête et une perte de coordination, des nausées et des lésions du foie, des reins ou du système nerveux central. Certains COV, notamment le benzène, sont cancérigènes. La mise en place d'une détection de gaz est donc indispensable pour protéger tout le monde.

Les capteurs de gaz doivent donc être utilisés dans les unités de soins postopératoires, les unités de soins intensifs, les services médicaux d'urgence, les services de secours préhospitaliers, les thérapies PAP et les thérapies HFNC pour surveiller les niveaux de gaz d'une série d'équipements, notamment les ventilateurs, les concentrateurs d'oxygène, les générateurs d'oxygène et les appareils d'anesthésie.

Normes et certifications

La Care Quality Commission (CQC) est l'organisme qui, en Angleterre, réglemente la qualité et la sécurité des soins dispensés dans tous les établissements de soins de santé, médicaux, sociaux et bénévoles du pays. La commission fournit des détails sur les meilleures pratiques en matière d'administration d'oxygène aux patients, de mesure et d'enregistrement des niveaux, de stockage et de formation à l'utilisation de ce gaz et d'autres gaz médicaux.

L'organisme britannique de réglementation des gaz médicaux est la Medicines and Healthcare products Regulatory Agency (MHRA). Il s'agit d'une agence exécutive du ministère de la Santé et des Soins sociaux (DHSC) qui garantit la santé et la sécurité du public et des patients en réglementant les médicaments, les produits de santé et les équipements médicaux dans le secteur. Elle fixe des normes appropriées de sécurité, de qualité, de performance et d'efficacité, et veille à ce que tous les équipements soient utilisés en toute sécurité. Toute entreprise fabriquant des gaz médicaux doit obtenir une autorisation de fabrication délivrée par la MHRA.

Aux États-Unis, la Food and Drug Association (FDA) réglemente le processus de certification pour la fabrication, la vente et la commercialisation de gaz médicaux désignés. En vertu de la section 575, la FDA déclare que toute personne qui commercialise un gaz médical à usage humain ou animal sans demande approuvée enfreint les directives spécifiées. Les gaz médicaux qui doivent être certifiés sont l'oxygène, l'azote, le protoxyde d'azote, le dioxyde de carbone, l'hélium, le monoxyde de carbone et l'air médical.

Pour en savoir plus sur les dangers du secteur médical et des soins de santé, visitez notre page sur l'industrie pour plus d'informations.

Sécurité des gaz pour ballons : Les dangers de l'hélium et de l'azote 

Le gaz pour ballons est un mélange d'hélium et d'air. Il est sans danger lorsqu'il est utilisé correctement, mais vous ne devez jamais l'inhaler délibérément, car il s'agit d'un asphyxiant qui peut entraîner des complications pour la santé. Comme d'autres asphyxiants, l'hélium contenu dans le gaz pour ballons occupe une partie du volume normalement occupé par l'air, ce qui empêche cet air d'être utilisé pour entretenir les feux ou faire fonctionner les corps.

Il existe d'autres asphyxiants utilisés dans les applications industrielles. Par exemple, l'utilisation de l'azote est devenue presque indispensable dans de nombreux processus industriels de fabrication et de transport. Si les utilisations de l'azote sont nombreuses, il doit être manipulé conformément aux règles de sécurité industrielle. L'azote doit être considéré comme un risque potentiel pour la sécurité, quelle que soit l'ampleur du processus industriel dans lequel il est employé. Le dioxyde de carbone est couramment utilisé comme asphyxiant, notamment dans les systèmes d'extinction d'incendie et certains extincteurs. De même, l'hélium est ininflammable, non toxique et ne réagit pas avec d'autres éléments dans des conditions normales. Cependant, il est essentiel de savoir comment manipuler correctement l'hélium, car un malentendu peut conduire à des erreurs de jugement qui pourraient aboutir à une situation fatale, l'hélium étant utilisé dans de nombreuses situations de la vie quotidienne. Comme pour tous les gaz, il est essentiel de prendre soin et de manipuler correctement les conteneurs d'hélium.

Quels sont les dangers ?

Lorsque vous inhalez de l'hélium, sciemment ou non, il déplace de l'air, qui est en partie de l'oxygène. Cela signifie que lorsque vous inhalez, l'oxygène qui serait normalement présent dans vos poumons est remplacé par de l'hélium. L'oxygène jouant un rôle dans de nombreuses fonctions de votre corps, notamment la pensée et le mouvement, un déplacement trop important présente un risque pour la santé. En général, l'inhalation d'un petit volume d'hélium a pour effet de modifier la voix, mais elle peut aussi provoquer quelques vertiges et il existe toujours un risque d'autres effets, notamment des nausées, des étourdissements et/ou une perte de conscience temporaire - tous les effets d'un manque d'oxygène.

  • Comme la plupart des asphyxiants, l'azote gazeux, comme l'hélium gazeux, est incolore et inodore. En l'absence de dispositifs de détection de l'azote, le risque que les travailleurs industriels soient exposés à une concentration dangereuse d'azote est nettement plus élevé. De plus, alors que l'hélium s'élève souvent loin de la zone de travail en raison de sa faible densité, l'azote reste, se répand à partir de la fuite et ne se disperse pas rapidement. Par conséquent, les systèmes fonctionnant à l'azote et présentant des fuites non détectées constituent une préoccupation majeure en matière de réglementation de la sécurité. Les directives préventives en matière de santé au travail tentent de répondre à ce risque accru par des contrôles de sécurité supplémentaires des équipements. Le problème réside dans les faibles concentrations d'oxygène qui affectent le personnel. Les symptômes initiaux comprennent un léger essoufflement et une toux, des vertiges et peut-être une certaine agitation, suivis d'une respiration rapide, de douleurs thoraciques et d'une confusion, l'inhalation prolongée entraînant une pression artérielle élevée, un bronchospasme et un œdème pulmonaire.
  • L'hélium peut provoquer exactement les mêmes symptômes s'il est contenu dans un volume et ne peut s'échapper. Dans chaque cas, le remplacement complet de l'air par le gaz asphyxiant provoque un effondrement rapide de la personne, qui s'écroule sur place et subit de nombreuses blessures.

Meilleures pratiques en matière de sécurité des ballons de gaz

Conformément à OSHA des tests obligatoires sont requis pour les espaces industriels confinés, la responsabilité en incombant à tous les employeurs. L'échantillonnage de l'air atmosphérique à l'intérieur de ces espaces permet de déterminer s'il est adapté à la respiration. Les tests à effectuer sur l'air échantillonné comprennent principalement des concentrations d'oxygène, mais aussi la présence de gaz combustibles et des tests pour les vapeurs toxiques afin d'identifier les accumulations de ces gaz.

Quelle que soit la durée du séjour, l'OSHA exige de tous les employeurs qu'ils prévoient un accompagnateur juste à l'extérieur d'un espace soumis à autorisation lorsque du personnel y travaille. Cette personne doit surveiller en permanence les conditions gazeuses à l'intérieur de l'espace et appeler les sauveteurs si le travailleur à l'intérieur de l'espace confiné ne réagit plus. Il est essentiel de noter qu'à aucun moment l'accompagnateur ne doit tenter de pénétrer dans l'espace dangereux pour effectuer un sauvetage sans aide.

Dans les zones restreintes, une circulation d'air à courant d'air forcé réduira considérablement l'accumulation d'hélium, d'azote ou d'un autre gaz asphyxiant et limitera les risques d'une exposition fatale. Bien que cette stratégie puisse être utilisée dans les zones présentant de faibles risques de fuite d'azote, il est interdit aux travailleurs de pénétrer dans des environnements d'azote gazeux pur sans utiliser un équipement respiratoire approprié. Dans ce cas, le personnel doit utiliser un équipement approprié d'apport d'air artificiel.