Aperçu du secteur : La transformation des déchets en énergie

L'industrie de la valorisation énergétique des déchets utilise plusieurs méthodes de traitement des déchets. Les déchets solides municipaux et industriels sont convertis en électricité, et parfois en chaleur pour le traitement industriel et les systèmes de chauffage urbain. Le principal procédé est bien sûr l'incinération, mais des étapes intermédiaires de pyrolyse, de gazéification et de digestion anaérobie sont parfois utilisées pour convertir les déchets en sous-produits utiles qui sont ensuite utilisés pour produire de l'énergie au moyen de turbines ou d'autres équipements. Cette technologie est de plus en plus reconnue dans le monde comme une forme d'énergie plus verte et plus propre que la combustion traditionnelle de combustibles fossiles, et comme un moyen de réduire la production de déchets.

Types de valorisation énergétique des déchets

Incinération

L'incinération est un procédé de traitement des déchets qui implique la combustion de substances riches en énergie contenues dans les déchets, généralement à des températures élevées, de l'ordre de 1000 degrés C. Les installations industrielles d'incinération des déchets sont communément appelées installations de valorisation énergétique des déchets et sont souvent des centrales électriques de taille importante. L'incinération et les autres systèmes de traitement des déchets à haute température sont souvent décrits comme un "traitement thermique". Au cours de ce processus, les déchets sont transformés en chaleur et en vapeur qui peuvent être utilisées pour actionner une turbine afin de produire de l'électricité. Cette méthode a actuellement un rendement d'environ 15 à 29 %, bien qu'elle présente un potentiel d'amélioration.

Pyrolyse

La pyrolyse est un procédé différent de traitement des déchets dans lequel la décomposition des déchets hydrocarbonés solides, généralement des plastiques, a lieu à haute température, sans présence d'oxygène, dans une atmosphère de gaz inertes. Ce traitement est généralement effectué à une température égale ou supérieure à 500 °C, ce qui fournit suffisamment de chaleur pour décomposer les molécules à longue chaîne, y compris les biopolymères, en hydrocarbures plus simples de masse inférieure.

Gazéification

Ce procédé est utilisé pour fabriquer des combustibles gazeux à partir de combustibles plus lourds et de déchets contenant des matières combustibles. Dans ce procédé, les substances carbonées sont converties en dioxyde de carbone (CO2), en monoxyde de carbone (CO) et en une petite quantité d'hydrogène à haute température. Ce processus génère un gaz qui est une bonne source d'énergie utilisable. Ce gaz peut ensuite être utilisé pour produire de l'électricité et de la chaleur.

Gazéification par arc à plasma

Dans ce procédé, une torche à plasma est utilisée pour ioniser les matériaux riches en énergie. Un gaz de synthèse est produit, qui peut ensuite être utilisé pour fabriquer des engrais ou produire de l'électricité. Cette méthode est davantage une technique d'élimination des déchets qu'un moyen sérieux de produire du gaz, consommant souvent autant d'énergie que le gaz qu'elle produit peut en fournir.

Les raisons de la valorisation énergétique des déchets

Cette technologie est de plus en plus reconnue au niveau mondial en ce qui concerne la production de déchets et la demande d'énergie propre.

  • Évite les émissions de méthane des décharges.
  • Compense les émissions de gaz à effet de serre (GES) provenant de la production d'électricité à partir de combustibles fossiles.
  • Récupérer et recycler des ressources précieuses, telles que les métaux.
  • Produit de l'énergie et de la vapeur propres et fiables à partir d'une charge de base.
  • Utilise moins de terres par mégawatt que les autres sources d'énergie renouvelables.
  • Source de combustible renouvelable durable et régulière (par rapport à l'éolien et au solaire)
  • Détruit les déchets chimiques
  • Permet d'obtenir de faibles niveaux d'émissions, généralement bien en dessous des niveaux autorisés.
  • Détruit par catalyse les oxydes d'azote (NOx), les dioxines et les furanes grâce à une réduction catalytique sélective (RCS).

Quels sont les risques liés aux gaz ?

Il existe de nombreux procédés permettant de transformer les déchets en énergie, notamment les usines de biogaz, l'utilisation des déchets, les bassins de lixiviation, la combustion et la récupération de chaleur. Tous ces processus présentent des risques gazeux pour ceux qui travaillent dans ces environnements.

Le biogaz est produit dans une installation de biogaz. Celui-ci se forme lorsque des matières organiques telles que les déchets agricoles et alimentaires sont décomposées par des bactéries dans un environnement pauvre en oxygène. Il s'agit d'un processus appelé digestion anaérobie. Une fois le biogaz capté, il peut être utilisé pour produire de la chaleur et de l'électricité pour des moteurs, des microturbines et des piles à combustible. Il est clair que le biogaz a une teneur élevée en méthane ainsi qu'une quantité importante de sulfure d'hydrogène (H2S), ce qui génère de multiples risques gazeux graves. (Lire notre blog pour plus d'informations sur le biogaz). Il existe donc un risque élevé d'incendie et d'explosion, de dangers liés aux espaces confinés, d'asphyxie, d'appauvrissement en oxygène et d'empoisonnement au gaz, généralement par leH2Sou l'ammoniac (NH3). Les travailleurs d'une usine de biogaz doivent être équipés de détecteurs de gaz personnels qui détectent et surveillent les gaz inflammables, l'oxygène et les gaz toxiques comme leH2Set le CO.

Dans une collecte de déchets, il est courant de trouver du méthane (CH4), un gaz inflammable, et des gaz toxiquesH2S, CO et NH3. En effet, les bunkers à ordures sont construits à plusieurs mètres sous terre et les détecteurs de gaz sont généralement installés en hauteur, ce qui rend leur entretien et leur étalonnage difficiles. Dans de nombreux cas, un système d'échantillonnage est une solution pratique car les échantillons d'air peuvent être amenés à un endroit pratique et mesurés.

Le lixiviat est un liquide qui s'écoule (lixivie) d'une zone dans laquelle les déchets sont collectés. Les bassins de lixiviat présentent une série de risques gazeux. Il s'agit notamment du risque de gaz inflammable (risque d'explosion), deH2S(poison, corrosion), d'ammoniac (poison, corrosion), de CO (poison) et de niveaux d'oxygène défavorables (suffocation). Le bassin de lixiviat et les passages menant au bassin de lixiviat nécessitent une surveillance de CH4,H2S, CO, NH3, oxygène (O2) etCO2. Divers détecteurs de gaz doivent être placés le long des voies d'accès au bassin de lixiviat, les sorties étant reliées à des panneaux de contrôle externes.

La combustion et la récupération de chaleur nécessitent la détection de l'O2 et des gaz toxiques que sont le dioxyde de soufre (SO2) et le CO. Ces gaz constituent tous une menace pour les personnes qui travaillent dans les chaufferies.

Un autre procédé classé comme dangereux pour les gaz est l'épurateur d'air vicié. Ce procédé est dangereux car les gaz de combustion issus de l'incinération sont hautement toxiques. Ils contiennent en effet des polluants tels que le dioxyde d'azote (NO2), le SO2, le chlorure d'hydrogène (HCL) et la dioxine. Le NO2 et le SO2 sont d'importants gaz à effet de serre, tandis que le HCL tous ces types de gaz mentionnés ici sont nocifs pour la santé humaine.

Pour en savoir plus sur le secteur de la valorisation énergétique des déchets, consultez notre page consacrée à ce secteur.