Spectromètre de propriétés moléculaires™ Capteurs de gaz inflammables

Développés par NevadaNano, les capteurs Molecular Property Spectrometer™ (MPS™) représentent la nouvelle génération de détecteurs de gaz inflammables. Le MPS™ peut détecter rapidement plus de 15 gaz inflammables caractérisés à la fois. Jusqu'à récemment, quiconque avait besoin de surveiller des gaz inflammables devait choisir soit un détecteur de gaz inflammables traditionnel contenant un capteur à pellistor calibré pour un gaz spécifique, soit contenant un capteur infrarouge (IR) dont la sortie varie également en fonction du gaz inflammable mesuré, et qui doit donc être calibré pour chaque gaz. Bien que ces solutions soient avantageuses, elles ne sont pas toujours idéales. Par exemple, les deux types de capteurs doivent être étalonnés régulièrement et les capteurs à pellistor catalytique doivent également être soumis à des tests fréquents pour s'assurer qu'ils n'ont pas été endommagés par des contaminants (connus sous le nom d'"agents d'empoisonnement des capteurs") ou par des conditions difficiles. Dans certains environnements, les capteurs doivent être remplacés fréquemment, ce qui est coûteux en termes d'argent et de temps d'arrêt, ou de disponibilité du produit. La technologie IR ne peut pas détecter l'hydrogène, qui n'a pas de signature IR, et les détecteurs IR et à pellistors détectent parfois accidentellement d'autres gaz (c'est-à-dire non calibrés), ce qui donne des relevés inexacts susceptibles de déclencher de fausses alarmes ou d'inquiéter les opérateurs.

S'appuyant sur plus de 50 ans d'expertise dans le domaine du gaz, Crowcon est à l'avant-garde de la technologie des capteurs MPS™. technologie avancée de capteurs MPS™ qui détecte et identifie avec précision plus de 15 gaz inflammables différents dans un seul appareil. Désormais disponible dans les produits phares de Crowcon Xgard Bright détecteur fixe et détecteurs portables de Crowcon Gasman et T4x.

Avantages des capteurs de gaz inflammables Molecular Property Spectrometer™

Le capteur MPS™ présente des caractéristiques clés qui offrent des avantages concrets à l'opérateur et donc aux travailleurs. Il s'agit notamment de :

Pas d'étalonnage

Lors de la mise en œuvre d'un système contenant un détecteur à tête fixe, il est courant de procéder à l'entretien selon un calendrier recommandé par le fabricant. Cela entraîne des coûts réguliers et risque d'interrompre la production ou le processus afin de procéder à l'entretien ou même d'accéder au détecteur ou à plusieurs détecteurs. Il peut également y avoir un risque pour le personnel lorsque les détecteurs sont montés dans des environnements particulièrement dangereux. L'interaction avec un capteur MPS est moins stricte car il n'y a pas de modes de défaillance non révélés, à condition qu'il y ait de l'air. Il serait faux de dire qu'il n'y a aucune exigence en matière d'étalonnage. Un étalonnage en usine, suivi d'un test au gaz lors de la mise en service, est suffisant, car un étalonnage interne automatisé est effectué toutes les deux secondes pendant toute la durée de vie du capteur. Ce que l'on veut vraiment dire, c'est qu'il n'y a pas d'étalonnage par le client.

Gaz multi-espèces - 'True LEL'™

De nombreuses industries et applications utilisent ou ont comme sous-produit plusieurs gaz dans le même environnement. Cela peut constituer un défi pour les capteurs traditionnels qui ne peuvent détecter qu'un seul gaz pour lequel ils ont été calibrés au niveau correct et qui peuvent donner lieu à des lectures inexactes, voire à des fausses alarmes susceptibles d'interrompre le processus ou la production en cas de présence d'un autre type de gaz inflammable. L'absence de réponse ou la réponse excessive fréquemment rencontrées dans les environnements multigaz peut être frustrante et contre-productive, compromettant la sécurité des meilleures pratiques d'utilisation. Le capteur MPS™ peut détecter avec précision plusieurs gaz à la fois et identifier instantanément le type de gaz. En outre, le capteur MPS™ dispose d'une compensation environnementale intégrée et ne nécessite pas de facteur de correction externe. Les lectures imprécises et les fausses alarmes appartiennent au passé.

Pas d'empoisonnement des capteurs

Dans certains environnements, les capteurs traditionnels risquent d'être empoisonnés. Une pression, une température et une humidité extrêmes peuvent endommager les capteurs, tandis que les toxines et les contaminants de l'environnement peuvent "empoisonner" les capteurs et compromettre gravement leurs performances. Dans les environnements où des poisons ou des inhibiteurs peuvent être présents, des tests réguliers et fréquents sont le seul moyen de s'assurer que les performances ne sont pas dégradées. Une défaillance du capteur due à un empoisonnement peut s'avérer une expérience coûteuse. La technologie du capteur MPS™ n'est pas affectée par les contaminants présents dans l'environnement. Les processus qui comportent des contaminants ont désormais accès à une solution qui fonctionne de manière fiable avec une conception à sécurité intégrée pour alerter l'opérateur et offrir une tranquillité d'esprit au personnel et aux actifs situés dans un environnement dangereux. En outre, le capteur MPS n'est pas affecté par les concentrations élevées de gaz inflammables, qui peuvent provoquer des fissures dans les types de capteurs catalytiques conventionnels, par exemple. Le capteur MPS continue à fonctionner.

Hydrogène (H2)

L'utilisation de l'hydrogène dans les processus industriels s'accroît à mesure que l'on cherche une alternative plus propre à l'utilisation du gaz naturel. La détection de l'hydrogène est actuellement limitée à la technologie des capteurs à pellistor, à semi-conducteur à oxyde métallique, électrochimiques et à la technologie moins précise des capteurs de conductivité thermique en raison de l'incapacité des capteurs infrarouges à détecter l'hydrogène. Face aux problèmes d'empoisonnement ou de fausses alarmes décrits ci-dessus, la solution actuelle peut obliger l'opérateur à procéder à des tests de déclenchement et à des entretiens fréquents, en plus des problèmes de fausses alarmes. Le capteur MPS™ offre une bien meilleure solution pour la détection de l'hydrogène, en éliminant les difficultés rencontrées avec la technologie traditionnelle des capteurs. Un capteur d'hydrogène à longue durée de vie, à réponse relativement rapide, qui ne nécessite pas d'étalonnage tout au long de son cycle de vie, sans risque d'empoisonnement ou de fausses alarmes, permet d'économiser considérablement sur le coût total de possession et réduit l'interaction avec l'unité, ce qui se traduit par une tranquillité d'esprit et une réduction des risques pour les opérateurs qui tirent parti de la technologie MPS™. Tout cela est possible grâce à la technologie MPS™, qui constitue la plus grande avancée en matière de détection de gaz depuis plusieurs décennies.

Comment fonctionne le capteur de gaz inflammable Molecular Property Spectrometer™ ?

Un transducteur à système micro-électromécanique (MEMS), composé d'une membrane inerte à l'échelle du micromètre et d'un élément chauffant et thermomètre intégrés, mesure les changements dans les propriétés thermiques de l'air et des gaz qui se trouvent à proximité. Les mesures multiples, qui s'apparentent à un "spectre" thermique, ainsi que les données environnementales sont traitées pour classer le type et la concentration des gaz inflammables présents, y compris les mélanges de gaz. C'est ce que l'on appelle le TrueLEL.

  1. Le gaz se désamorce rapidement à travers le tamis du capteur et dans la chambre du capteur, pénétrant dans le module du capteur MEMS.
  2. L'appareil de chauffage à effet joule chauffe rapidement la plaque chauffante.
  3. Les conditions environnementales en temps réel (température, pression et humidité) sont mesurées par le capteur environnemental intégré.
  4. L'énergie nécessaire pour chauffer l'échantillon est mesurée avec précision à l'aide d'un thermomètre à résistance.
  5. Le niveau de gaz, corrigé en fonction de la catégorie de gaz et des conditions environnementales, est calculé et transmis au détecteur de gaz.

Les MPS dans nos produits

Xgard Bright

De nombreuses industries et applications utilisent ou ont comme sous-produit plusieurs gaz dans le même environnement. Cela peut constituer un défi pour les capteurs traditionnels qui ne peuvent détecter qu'un seul gaz pour lequel ils ont été étalonnés au niveau correct, ce qui peut entraîner des lectures inexactes. 

Xgard Bright avec la technologie des capteurs MPS™TrueLEL™pour tous les gaz inflammables dans n'importe quel environnement à espèces multiples sanssans nécessiter d'étalonnageoumaintenance programméeau cours de soncycle de vie de plus de 5 ansréduisant ainsi les interruptions de vos opérations et augmentant le temps de fonctionnement. Cela réduit l'interaction avec le détecteur, ce qui se traduit par un coût total de possession plus faible.un coût total de possession plus faiblesur le cycle de vie du capteur et une réduction des risques pour le personnel et la production pour effectuer une maintenance régulière.Xgard Bright MPS™ estsur mesure pour la détection de l'hydrogèneAvec le capteur MPS™, un seul appareil est nécessaire, ce qui permet d'économiser de l'espace sans compromettre la sécurité.

Gasman

Notre technologie de capteur MPS™ a été conçue pour les environnements multigaz actuels, résiste à la contamination et empêche l'empoisonnement des capteurs. Offrez à vos équipes la tranquillité d'esprit avec un appareil conçu à cet effet dans n'importe quel environnement. La technologie MPS de nos détecteurs de gaz portables détecte automatiquement l'hydrogène et les hydrocarbures courants dans un seul capteur. Nos détecteurs sont fiables et fiables Gasman avec une technologie de capteur de pointe que vos applications exigent.

Gasman MPS™ fournit uneTrueLEL™pour tous les gaz inflammables dans n'importe quel environnement multi-espèces sanssans nécessiter d'étalonnageoumaintenance programméeau cours de soncycle de vie de plus de 5 ansréduisant ainsi les interruptions de vos opérations et augmentant le temps de fonctionnement.Étantrésistant au poisonet avecdurée de vie de la batterie doubléeles opérateurs sont plus susceptibles de ne jamais se retrouver sans appareil.Gasman MPS™ est homologué ATEXZone 0permettant aux opérateurs de pénétrer dans une zone où une atmosphère gazeuse explosive est présente en permanence ou pendant de longues périodes sans craindre que leur Gasman ne mette le feu à leur environnement.

T4x

T4xL'industrie exigeant sans cesse des améliorations en matière de sécurité, une réduction de l'impact sur l'environnement et une diminution des coûts de propriété, nos produits portables fiables et sûrs ont été conçus pour répondre aux besoins de l'industrie. T4x répond à ces besoins grâce à ses technologies de pointe en matière de capteurs. Il est spécialement conçu pour répondre aux exigences de vos applications. 

T4x aide les équipes opérationnelles à se concentrer sur des tâches à plus forte valeur ajoutée enréduisant le nombre de remplacements de capteursde 75 % et en augmentant la fiabilité des capteurs.

En garantissant la conformité sur l'ensemble du site, T4x aide les responsables de la santé et de la sécurité enen éliminant la nécessité de s'assurer que chaque appareil est calibrépour le gaz inflammable concerné, car il en détecte avec précision plus de 15 à la fois.En étant résistant aux poisonset avecdurée de vie des piles doubléeles opérateurs sont plus susceptibles de ne jamais être privés d'un appareil.T4x réduit le coût total de possession sur 5 ans.coût total de possession sur 5 ansde plus de 25 % etéconomise 12 g de de plomb par détecteurce qui facilite grandement son recyclage en fin de vie et est plus respectueux de la planète.

Pour en savoir plus sur Crowcon, consultez le site https://www.crowcon.com ou pour en savoir plus sur MPS visitez https://www.crowcon.com/mpsinfixed/

Gas-Pro TK : Double lecture du %LEL et du %Vol

Gas-Pro Le moniteur portable à double gamme TK (rebaptisé Tank-Pro) mesure la concentration des gaz inflammables dans les réservoirs inertes. Disponible pour le méthane, le butane et le propane, Gas-Pro TK utilise un capteur de gaz inflammable à double IR - la meilleure technologie pour cet environnement spécialisé. Gas-Pro Le TK double IR est doté d'une commutation automatique entre la mesure du %vol. et du %LEL, afin d'assurer un fonctionnement dans la plage de mesure correcte. Cette technologie n'est pas endommagée par des concentrations élevées d'hydrocarbures et n'a pas besoin de concentrations d'oxygène pour fonctionner, ce qui est le facteur limitant des billes catalytiques / pellistors dans de tels environnements.

Quel problème Gas-Pro TK est-il spécifiquement conçu pour résoudre ?

Lorsque vous souhaitez pénétrer dans un réservoir de stockage de carburant pour l'inspecter ou l'entretenir, vous pouvez commencer par le remplir de gaz inflammable. Vous ne pouvez pas commencer à pomper de l'air pour déplacer le gaz inflammable, car à un moment donné, lors de la transition entre la présence du carburant et celle de l'air, il y aurait un mélange explosif de carburant et d'air. Au lieu de cela, vous devez pomper un gaz inerte, généralement de l'azote, pour déplacer le carburant sans introduire d'oxygène. Le passage de 100 % de gaz inflammable et 0 % de volume d'azote, à 0 % de volume de gaz inflammable et 100 % d'azote permet de passer en toute sécurité de 100 % d'azote à l'air. L'utilisation de ce processus en deux étapes permet de passer en toute sécurité du combustible à l'air sans risquer une explosion.

Au cours de ce processus, il n'y a ni air ni oxygène, de sorte que les capteurs à billes catalytiques ou à pellistors ne fonctionneront pas correctement et seront également empoisonnés par les niveaux élevés de gaz inflammable. Le capteur IR à double gamme utilisé par Gas-Pro TK n'a pas besoin d'air ou d'oxygène pour fonctionner. Il est donc idéal pour surveiller l'ensemble du processus, du %volume aux concentrations de %LEL, tout en surveillant également les niveaux d'oxygène dans le même environnement.

Qu'est-ce que le LEL ?

Le site limite inférieure d'explosivité (LIE) est la concentration la plus faible d'un gaz ou d'une vapeur qui brûle dans l'air. Les mesures sont exprimées en pourcentage de cette concentration, la LIE de 100 % étant la quantité minimale de gaz nécessaire pour brûler. La LIE varie d'un gaz à l'autre, mais pour la plupart des gaz inflammables, elle est inférieure à 5 % en volume. Cela signifie qu'il faut une concentration relativement faible de gaz ou de vapeur pour produire un risque élevé d'explosion.
Trois éléments doivent être présents pour qu'une explosion se produise : un gaz combustible (le carburant), de l'air et une source d'inflammation (comme indiqué sur le schéma). En outre, le combustible doit être présent à la bonne concentration, entre la limite inférieure d'explosivité (LIE), en dessous de laquelle le mélange gaz/air est trop pauvre pour brûler, et la limite supérieure d'explosivité (LSE), au-dessus de laquelle le mélange est trop riche et l'apport d'oxygène insuffisant pour entretenir une flamme.

Les procédures de sécurité visent généralement à détecter les gaz inflammables bien avant qu'ils n'atteignent une concentration explosive. Les systèmes de détection de gaz et les moniteurs portables sont donc conçus pour déclencher des alarmes avant que les gaz ou les vapeurs n'atteignent la limite inférieure d'explosivité. Les seuils spécifiques varient selon l'application, mais la première alarme est généralement réglée à 20 % de la LIE et une autre à 40 % de la LIE. Les niveaux de LIE sont définis dans les normes suivantes : ISO10156 (également référencée dans EN50054, qui a depuis été remplacée) et IEC60079.

Qu'est-ce que le %Volume ?

L'échelle de pourcentage en volume est utilisée pour donner la concentration d'un type de gaz dans un mélange de gaz en pourcentage du volume de gaz présent. Il s'agit simplement d'une échelle différente avec, par exemple, la concentration de la limite inférieure d'explosivité du méthane affichée à 4,4 % du volume au lieu de 100 % LIE ou 44000ppm, qui sont tous équivalents. S'il y avait 5 % ou plus de méthane présent dans l'air, nous serions dans une situation très dangereuse où toute étincelle ou surface chaude pourrait provoquer une explosion en présence d'air (spécifiquement d'oxygène). Si la lecture du volume est de 100%, cela signifie qu'il n'y a pas d'autre gaz présent dans le mélange de gaz.

Gas-Pro TK

Notre Gas-Pro TKa été conçu pour être utilisé dans des réservoirs inertes spécialisés afin de contrôler les niveaux de gaz inflammables et d'oxygène, car les détecteurs de gaz standard ne fonctionnent pas. En mode "vérification du réservoir", notre Gas-Pro TKest adapté aux applications spécialisées de surveillance des espaces de réservoirs inertes pendant la purge ou le dégagement de gaz, et sert également de détecteur de gaz personnel en fonctionnement normal. Il permet aux utilisateurs de surveiller le mélange de gaz dans les réservoirs transportant des gaz inflammables pendant le transport en mer (car il est homologué pour le transport maritime) ou à terre, par exemple dans les pétroliers et les terminaux de stockage de pétrole. Avec 340 g,Gas-Pro TK est jusqu'à six fois plus léger que les autres moniteurs destinés à cette application, ce qui est un avantage si vous devez le porter sur vous toute la journée.

En mode Tank Check, le CrowconGas-Pro TK surveille les concentrations de gaz inflammable et d'oxygène, vérifiant qu'un mélange dangereux ne se développe pas. L'appareil passe automatiquement du %vol au %LEL en fonction de la concentration de gaz, sans intervention manuelle, et avertit l'utilisateur dès que cela se produit. Gas-Pro Le TK affiche en temps réel les concentrations d'oxygène à l'intérieur du réservoir, de sorte que les utilisateurs peuvent suivre les niveaux d'oxygène, soit lorsque les niveaux d'oxygène sont suffisamment bas pour charger et stocker du carburant en toute sécurité, soit lorsqu'ils sont suffisamment élevés pour pénétrer dans le réservoir en toute sécurité lors de la maintenance.

LeGas-Pro TKest disponible calibré pour le méthane, le propane ou le butane.Avec une protection IP65 et IP67, Gas-Pro TK répond aux exigences de la plupart des environnements industriels. Avec les certifications MED en option, il constitue un outil précieux pour la surveillance des réservoirs à bord des navires. Le capteur High H₂S en option permet aux utilisateurs d'analyser les risques éventuels en cas de dégagement de gaz lors de la purge. Avec cette option, les utilisateurs peuvent surveiller la gamme 0-100 ou 0-1000ppm.

Remarque : si le carburant contenu dans le réservoir est de l'hydrogène ou de l'ammoniac, une autre technique de détection de gaz est nécessaire - et vous devez contacter Crowcon.

Pour plus d'informations sur notre Gas-Pro TK, visitez notre page produit ou contactez-nous contact avec notre équipe.

Aperçu du secteur : Alimentation par batterie

Les batteries sont efficaces pour réduire les coupures de courant car elles peuvent également stocker l'énergie excédentaire du réseau traditionnel. L'énergie stockée dans les batteries peut être libérée chaque fois qu'un grand volume d'énergie est nécessaire, par exemple pendant une panne de courant dans un centre de données pour éviter la perte de données, ou comme alimentation de secours dans un hôpital ou une application militaire pour assurer la continuité des services vitaux. Les batteries à grande échelle peuvent également être utilisées pour combler les lacunes à court terme de la demande du réseau. Ces compositions de batteries peuvent également être utilisées dans des tailles plus petites pour alimenter des voitures électriques et peuvent être encore réduites pour alimenter des produits commerciaux, tels que des téléphones, des tablettes, des ordinateurs portables, des haut-parleurs et, bien sûr, des détecteurs de gaz personnels.

Les applications comprennent le stockage des batteries, le transport et le soudage et peuvent être classées en quatre grandes catégories : Chimique - par exemple, l'ammoniac, l'hydrogène, le méthanol et le carburant synthétique, électrochimique - acide de plomb, lithium ion, Na-Cd, Na-ion, électrique - supercondensateurs, stockage magnétique supraconducteur et mécanique - air comprimé, hydroélectricité pompée, gravité.

Risques liés aux gaz

Incendies de batteries Li-ion

Un problème majeur se pose lorsque l'électricité statique ou un chargeur défectueux endommage le circuit de protection de la batterie. Ce dommage peut entraîner la fusion des interrupteurs à semi-conducteurs en position ON, à l'insu de l'utilisateur. Une batterie dont le circuit de protection est défectueux peut fonctionner normalement, mais elle n'offre pas de protection contre les courts-circuits. Un système de détection de gaz peut déterminer s'il y a un défaut et peut être utilisé dans une boucle de rétroaction pour couper l'alimentation, sceller l'espace et libérer un gaz inerte (tel que l'azote) dans la zone pour éviter tout incendie ou explosion.

Fuite de gaz toxiques avant l'emballement thermique

L'emballement thermique des piles lithium-métal et lithium-ion a provoqué plusieurs incendies. Des recherches ont montré que des incendies alimentés par des gaz inflammables s'échappent des batteries pendant l'emballement thermique. L'électrolyte d'une batterie lithium-ion est inflammable et contient généralement de l'hexafluorophosphate de lithium (LiPF6) ou d'autres sels de lithium contenant du fluor. En cas de surchauffe, l'électrolyte s'évapore et finit par être évacué des cellules de la batterie. Les chercheurs ont découvert que les batteries lithium-ion commerciales peuvent émettre des quantités considérables de fluorure d'hydrogène (HF) lors d'un incendie, et que les taux d'émission varient selon le type de batterie et le niveau de charge (SOC). Le fluorure d'hydrogène peut pénétrer la peau pour affecter les tissus cutanés profonds et même les os et le sang. Même en cas d'exposition minimale, la douleur et les symptômes peuvent ne pas se manifester avant plusieurs heures, mais les dommages sont alors extrêmes.

Hydrogène et risque d'explosion

Alors que les piles à hydrogène gagnent en popularité en tant qu'alternatives aux combustibles fossiles, il est important d'être conscient des dangers de l'hydrogène. Comme tous les carburants, l'hydrogène est hautement inflammable et s'il fuit, le risque d'incendie est réel. Les batteries au plomb traditionnelles produisent de l'hydrogène lorsqu'elles sont chargées. Ces batteries sont normalement chargées ensemble, parfois dans la même pièce ou le même endroit, ce qui peut générer un risque d'explosion, surtout si la pièce n'est pas correctement ventilée. La plupart des applications de l'hydrogène ne peuvent pas utiliser de substances odorantes pour des raisons de sécurité, car l'hydrogène se disperse plus rapidement que les substances odorantes. Il existe des normes de sécurité applicables aux stations de ravitaillement en hydrogène, selon lesquelles un équipement de protection approprié est requis pour tous les travailleurs. Cela inclut des détecteurs personnels, capables de détecter le niveau d'hydrogène en ppm ainsi que le niveau en %LEL. Les niveaux d'alarme par défaut sont fixés à 20 % et 40 % LIE, soit 4 % du volume, mais certaines applications peuvent souhaiter disposer d'une plage de PPM et de niveaux d'alarme personnalisés pour détecter rapidement les accumulations d'hydrogène.

Pour en savoir plus sur les dangers du gaz dans l'alimentation par batterie, visitez notrepage sur l'industriepour plus d'informations.

Pourquoi la plage de mesure de mon moniteur est-elle si importante ?

Qu'est-ce qu'une gamme de mesure de moniteur ?

La surveillance des gaz est généralement mesurée en PPM (parties par million), en pourcentage du volume ou en pourcentage de la LIE (limite inférieure d'explosivité), ce qui permet aux responsables de la sécurité de s'assurer que leurs opérateurs ne sont pas exposés à des niveaux potentiellement dangereux de gaz ou de produits chimiques. La surveillance des gaz peut être effectuée à distance pour s'assurer que la zone est propre avant qu'un travailleur n'y pénètre, ou par le biais d'un dispositif fixe ou d'un dispositif portable porté sur le corps pour détecter toute fuite potentielle ou zone dangereuse pendant le travail.

Pourquoi les moniteurs de gaz sont-ils essentiels et quelles sont les gammes de déficiences ou d'enrichissements ?

Il y a trois raisons principales pour lesquelles les moniteurs sont nécessaires : il est essentiel de détecter les déficiences ou les enrichissements en oxygène, car un manque d'oxygène peut empêcher le corps humain de fonctionner et entraîner une perte de conscience chez le travailleur. Si le niveau d'oxygène n'est pas rétabli à un niveau normal, le travailleur risque de mourir. On considère qu'une atmosphère est déficiente lorsque la concentration d'O2 est inférieure à 19,5 %. Par conséquent, un environnement qui contient trop d'oxygène est tout aussi dangereux car il présente un risque d'incendie et d'explosion beaucoup plus élevé, ce qui est le cas lorsque le niveau de concentration d'O2 est supérieur à 23,5 %.

Les moniteurs sont nécessaires lorsque des gaz toxiques sont présents et peuvent causer des dommages considérables au corps humain. Le sulfure d'hydrogène (H2S) en est un exemple classique. Le H2S est dégagé par les bactéries lorsqu'elles décomposent la matière organique., Comme ce gaz est plus lourd que l'air, il peut déplacer l'air, ce qui peut nuire aux personnes présentes. C'est également un poison toxique à large spectre.

De plus, les détecteurs de gaz ont la capacité de détecter les gaz inflammables. Les dangers qui peuvent être évités grâce à l'utilisation d'un détecteur de gaz ne sont pas seulement dus à l'inhalation, mais aussi à la combustion. Les détecteurs de gaz dotés d'un capteur de gamme LIE détectents et alertent contre les gaz inflammables.

Pourquoi sont-ils importants et comment fonctionnent-ils ?

La mesure ou la plage de mesure est la plage totale que l'appareil peut mesurer dans des conditions normales. Le terme normal signifie qu'il n'y a pas de limite de surpression (OPL) et que la pression de service maximale (MWP) est respectée. Ces valeurs se trouvent généralement sur le site Web du produit ou sur la fiche technique des spécifications. La plage de mesure peut également être calculée en identifiant la différence entre la limite supérieure de la plage (URL) et la limite inférieure de la plage (LRL) de l'appareil. Lorsque l'on tente de déterminer la portée du détecteur, il ne s'agit pas d'identifier la surface en pieds carrés ou dans un rayon fixe autour du détecteur, mais plutôt d'identifier le rendement ou la diffusion de la zone surveillée. Ce processus se produit lorsque les capteurs réagissent aux gaz qui pénètrent à travers les membranes du détecteur. Par conséquent, les appareils ont la capacité de détecter les gaz qui sont en contact immédiat avec le moniteur. Il est donc important de comprendre la plage de mesure des détecteurs de gaz et de souligner leur importance pour la sécurité des travailleurs présents dans ces environnements.

Y a-t-il des produits disponibles ?

Crowcon propose une gamme de moniteurs portables. Gas-Pro Le détecteur multigaz portable permet de détecter jusqu'à 5 gaz dans une solution compacte et robuste. Le détecteur multigaz portable permet de détecter jusqu'à 5 gaz dans une solution compacte et robuste. Il est doté d'un écran facile à lire sur le dessus, ce qui le rend facile à utiliser et optimal pour la détection des gaz dans les espaces clos. Une pompe interne optionnelle, activée par la plaque d'écoulement, facilite les tests avant l'entrée et permet à Gas-Pro d'être porté en mode de pompage ou de diffusion.

Le détecteur de gaz portable 4 en 1 T4 Le détecteur de gaz portable 4 en 1 offre une protection efficace contre quatre dangers courants liés aux gaz : le monoxyde de carbone, le sulfure d'hydrogène, les gaz inflammables et la raréfaction de l'oxygène. Le détecteur multigaz T4 est désormais doté d'une détection améliorée du pentane, de l'hexane et d'autres hydrocarbures à longue chaîne. Il vous offre la conformité, la robustesse et un faible coût de possession dans une solution simple à utiliser. T4 contient une large gamme de fonctions puissantes pour rendre l'utilisation quotidienne plus facile et plus sûre.

Ce détecteur de gaz portable est compact et léger. Gasman est compact et léger, mais il est entièrement renforcé pour les environnements industriels les plus difficiles. Fonctionnant à l'aide d'un seul bouton, il est doté d'un grand écran facile à lire indiquant la concentration de gaz et d'alarmes sonores, visuelles et vibrantes.

Crowcon propose également une gamme flexible de produits fixes de détection de gaz qui peuvent détecter les gaz inflammables, toxiques et l'oxygène, signaler leur présence et activer des alarmes ou des équipements associés. Nous utilisons diverses technologies de mesure, de protection et de communication et nos détecteurs fixes ont fait leurs preuves dans de nombreux environnements difficiles, notamment l'exploration pétrolière et gazière, le traitement des eaux, les usines chimiques et les aciéries. Ces détecteurs de gaz fixes sont utilisés dans de nombreuses applications où la fiabilité, la sécurité et l'absence de fausses alarmes sont essentielles à une détection efficace et effective des gaz. Il s'agit notamment des secteurs de la fabrication automobile et aérospatiale, des installations scientifiques et de recherche et des installations médicales, civiles ou commerciales à forte utilisation.

Comment l'hydrogène aide les industries du gaz et de l'acier à passer au vert

L'hydrogène vert, issu de sources d'énergie renouvelables et à faible teneur en carbone, peut jouer un rôle crucial en rapprochant une entreprise - ou un pays - de la neutralité carbone. Les applications courantes dans lesquelles l'hydrogène vert peut être utilisé sont les suivantes :

  • Piles à combustible pour véhicules électriques
  • Comme l'hydrogène dans le mélange de gaz de pipeline
  • Dans les raffineries d'"acier vert" qui utilisent l'hydrogène comme source de chaleur plutôt que le charbon.
  • Dans les porte-conteneurs alimentés par de l'ammoniac liquide fabriqué à partir d'hydrogène.
  • Dans les turbines électriques à hydrogène qui peuvent produire de l'électricité lors des pics de demande.

Ce post explorera l'utilisation de l'hydrogène dans les mélanges de gaz de pipeline et les raffineries d'acier vert.

Injection d'hydrogène dans les pipelines

Les gouvernements et les entreprises de services publics du monde entier étudient les possibilités d'injecter de l'hydrogène dans leurs réseaux de gaz naturel, afin de réduire la consommation de combustibles fossiles et de limiter les émissions. En effet, l'injection d'hydrogène dans les pipelines figure désormais dans les stratégies nationales en matière d'hydrogène de l'UE, de l'Australie et du Royaume-Uni, la stratégie de l'UE en matière d'hydrogène prévoyant l'introduction de l'hydrogène dans les réseaux de gaz nationaux d'ici 2050.

D'un point de vue environnemental, l'ajout d'hydrogène au gaz naturel a le potentiel de réduire considérablement les émissions de gaz à effet de serre, mais pour y parvenir, l'hydrogène doit être produit à partir de sources d'énergie à faible teneur en carbone et de sources renouvelables. Par exemple, l'hydrogène généré par électrolyse, les biodéchets ou les sources de combustibles fossiles qui utilisent le captage et le stockage du carbone (CSC).

De la même manière, les pays qui aspirent à développer une économie verte de l'hydrogène peuvent se tourner vers l'injection dans le réseau pour stimuler les investissements et développer de nouveaux marchés. Pour donner le coup d'envoi de son plan en faveur de l'hydrogène renouvelable, l'Australie occidentale prévoit d'introduire au moins 10 % d'hydrogène renouvelable dans ses gazoducs et réseaux, et d'avancer de 2040 à 2030 les objectifs de l'État dans le cadre de sa stratégie en faveur de l'hydrogène renouvelable.

Sur une base volumétrique, l'hydrogène a une densité énergétique beaucoup plus faible que le gaz naturel, de sorte que les utilisateurs finaux d'un gaz mélangé auraient besoin d'un plus grand volume de gaz pour obtenir le même pouvoir calorifique que ceux qui utilisent du gaz naturel pur. En clair, un mélange de 5 % d'hydrogène en volume ne se traduit pas directement par une réduction de 5 % de la consommation de combustibles fossiles.

Le mélange d'hydrogène dans notre approvisionnement en gaz présente-t-il un risque pour la sécurité ? Examinons ce risque :

  1. L'hydrogène a une LIE plus faible que le gaz naturel, il y a donc un risque plus élevé de générer une atmosphère inflammable avec des mélanges de gaz.
  2. L'hydrogène a une énergie d'allumage inférieure à celle du gaz naturel et une large plage d'inflammabilité (de 4 % à 74 % dans l'air), d'où un risque d'explosion plus élevé.
  3. Les molécules d'hydrogène sont petites et se déplacent rapidement, de sorte que toute fuite de gaz mélangé se répandra plus rapidement et plus largement qu'avec du gaz naturel.

Au Royaume-Uni, le chauffage domestique et industriel représente la moitié de la consommation d'énergie du pays et un tiers de ses émissions de carbone. Depuis 2019, le premier projet britannique d'injection d'hydrogène dans le réseau de gaz est en cours, avec des essais réalisés à l'université de Keele. Le projet HyDeploy vise à injecter jusqu'à 20 % d'hydrogène et à le mélanger à l'approvisionnement en gaz existant pour chauffer des immeubles résidentiels et des campus sans changer les appareils à gaz ou la tuyauterie. Dans le cadre de ce projet, les détecteurs de gaz et l'analyseur de gaz de combustion Crowcon sont utilisés pour identifier l'impact du mélange d'hydrogène en termes de détection des fuites de gaz. L'analyseur de gaz de combustion Crowcon Sprint Pro est utilisé pour évaluer l'efficacité des chaudières.

L'analyseur de gaz de combustion Crowcon Sprint Pro est un analyseur de gaz de combustion de qualité professionnelle, avec des caractéristiques adaptées aux besoins des professionnels du génie climatique, une conception robuste, une sélection complète d'accessoires et une garantie de 5 ans. Pour en savoir plus sur lesite Sprint Pro , cliquez ici.

L'hydrogène dans l'industrie sidérurgique

La production traditionnelle de fer et d'acier est considérée comme l'un des plus grands émetteurs de polluants environnementaux, notamment de gaz à effet de serre et de poussières fines. Les procédés de fabrication de l'acier font largement appel aux combustibles fossiles, les produits du charbon représentant 78 % de ceux-ci. Il n'est donc pas surprenant que l'industrie sidérurgique émette environ 10 % de toutes les émissions mondiales de CO2 liées aux procédés et à l'énergie.

L'hydrogène pourrait être une solution de rechange pour les entreprises sidérurgiques qui cherchent à réduire radicalement leurs émissions de carbone. Plusieurs sidérurgistes en Allemagne et en Corée réduisent déjà leurs émissions grâce à une méthode de fabrication de l'acier par réduction de l'hydrogène, qui utilise l'hydrogène, et non le charbon, pour fabriquer l'acier. Traditionnellement, une quantité importante d'hydrogène est produite dans la fabrication de l'acier en tant que sous-produit appelé gaz de coke. En faisant passer ce gaz de coke par un processus appelé "capture et stockage du carbone" (CSC), les aciéries peuvent produire une quantité importante d'hydrogène bleu, qui peut ensuite être utilisé pour contrôler les températures et empêcher l'oxydation pendant la production de l'acier.

En outre, les sidérurgistes fabriquent des produits en acier spécifiquement destinés à l'hydrogène. Dans le cadre de sa nouvelle vision visant à devenir une entreprise verte de l'hydrogène, le sidérurgiste coréen POSCO a investi massivement dans le développement de produits en acier destinés à la production, au transport, au stockage et à l'utilisation de l'hydrogène.

Les risques liés aux gaz inflammables et toxiques étant nombreux dans les aciéries, il est important de comprendre la sensibilité croisée des gaz, car une fausse lecture de gaz peut s'avérer fatale. Par exemple, un haut fourneau produit une grande quantité de gaz chauds, poussiéreux, toxiques et inflammables, composés de monoxyde de carbone (CO) et d'hydrogène. Les fabricants de détecteurs de gaz qui ont l'expérience de ces environnements connaissent bien le problème de l'hydrogène qui affecte les capteurs électrochimiques de CO, et fournissent donc des capteurs filtrés à l'hydrogène en standard aux aciéries.

Pour en savoir plus sur la sensibilité croisée, veuillez consulter notre blog. Les détecteurs de gaz Crowcon sont utilisés dans de nombreuses installations sidérurgiques à travers le monde, et vous pouvez en savoir plus sur les solutions Crowcon dans l'industrie sidérurgique ici.

Références :

  1. L'injection d'hydrogène dans les réseaux de gaz naturel pourrait fournir une demande stable dont le secteur a besoin pour se développer (S&P Global Platts, 19 mai 2020).
  2. L'Australie occidentale injecte 22 millions de dollars dans un plan d'action pour l'hydrogène (Power Engineering, 14 septembre 2020)
  3. L'hydrogène vert dans les gazoducs : Solution de décarbonisation ou chimère ? (Green Tech Media, 20 nov. 2020)
  4. L'hydrogène pourrait-il se greffer sur les infrastructures de gaz naturel ? (Réseau en ligne, 17 mars 2016)
  5. Acier, hydrogène et énergies renouvelables : De drôles de compagnons ? Peut-être pas... (Forbes.com, 15 mai 2020)
  6. POSCO va étendre sa production d'hydrogène à 5 millions de tonnes d'ici 2050 (Business Korea) Tonnes d'ici 2050 (Business Korea, 14 déc. 202 0)http://https://www.crowcon.com/wp-content/uploads/2020/07/shutterstock_607164341-scaled.jpg

Les capteurs à pellistors - comment ils fonctionnent

Les capteurs de gaz à pellistors (ou capteurs de gaz à perles catalytiques) constituent la principale technologie de détection des gaz inflammables depuis les années 60. Bien que nous ayons abordé un certain nombre de questions relatives à la détection des gaz inflammables et des COV, nous n'avons pas encore examiné le fonctionnement des pellistors. Pour y remédier, nous avons inclus une explication vidéo, que nous espérons que vous téléchargerez et utiliserez dans le cadre de vos formations.

Un pellistor est basé sur un circuit en pont de Wheatstone, et comprend deux "perles", qui renferment toutes deux des bobines de platine. L'une des billes (la bille "active") est traitée avec un catalyseur, qui abaisse la température à laquelle le gaz qui l'entoure s'enflamme. Cette bille devient chaude à cause de la combustion, ce qui entraîne une différence de température entre cette bille active et l'autre bille "de référence". Cela provoque une différence de résistance, qui est mesurée ; la quantité de gaz présente est directement proportionnelle à cette différence, de sorte que la concentration de gaz en pourcentage de sa limite inférieure d'explosivité (%LEL*) peut être déterminée avec précision.

La perle chaude et le circuit électrique sont contenus dans un boîtier de capteur antidéflagrant, derrière le pare-flamme en métal fritté (ou frittage) à travers lequel passe le gaz. Confiné dans ce boîtier de capteur, qui maintient une température interne de 500°C, une combustion contrôlée peut se produire, isolée de l'environnement extérieur. Lorsque la concentration de gaz est élevée, le processus de combustion peut être incomplet, ce qui entraîne la formation d'une couche de suie sur la bille active. Ce phénomène altère partiellement ou totalement les performances. Il convient d'être prudent dans les environnements où des niveaux de gaz supérieurs à 70 % LIE peuvent être rencontrés.

Pour plus d'informations sur la technologie des capteurs de gaz pour les gaz inflammables, lisez notre article comparatif sur les pellistors et la technologie des capteurs de gaz à infrarouge : Les implants en silicone dégradent-ils votre détection de gaz ?

*La limite inférieure d'explosivité - En savoir plus

Cliquez dans le coin supérieur droit de la vidéo, pour accéder à un fichier qui peut être téléchargé.