Aperçu du secteur : Alimentation par batterie

Les batteries sont efficaces pour réduire les coupures de courant car elles peuvent également stocker l'énergie excédentaire du réseau traditionnel. L'énergie stockée dans les batteries peut être libérée chaque fois qu'un grand volume d'énergie est nécessaire, par exemple pendant une panne de courant dans un centre de données pour éviter la perte de données, ou comme alimentation de secours dans un hôpital ou une application militaire pour assurer la continuité des services vitaux. Les batteries à grande échelle peuvent également être utilisées pour combler les lacunes à court terme de la demande du réseau. Ces compositions de batteries peuvent également être utilisées dans des tailles plus petites pour alimenter des voitures électriques et peuvent être encore réduites pour alimenter des produits commerciaux, tels que des téléphones, des tablettes, des ordinateurs portables, des haut-parleurs et, bien sûr, des détecteurs de gaz personnels.

Les applications comprennent le stockage des batteries, le transport et le soudage et peuvent être classées en quatre grandes catégories : Chimique - par exemple, l'ammoniac, l'hydrogène, le méthanol et le carburant synthétique, électrochimique - acide de plomb, lithium ion, Na-Cd, Na-ion, électrique - supercondensateurs, stockage magnétique supraconducteur et mécanique - air comprimé, hydroélectricité pompée, gravité.

Risques liés aux gaz

Incendies de batteries Li-ion

Un problème majeur se pose lorsque l'électricité statique ou un chargeur défectueux endommage le circuit de protection de la batterie. Ce dommage peut entraîner la fusion des interrupteurs à semi-conducteurs en position ON, à l'insu de l'utilisateur. Une batterie dont le circuit de protection est défectueux peut fonctionner normalement, mais elle n'offre pas de protection contre les courts-circuits. Un système de détection de gaz peut déterminer s'il y a un défaut et peut être utilisé dans une boucle de rétroaction pour couper l'alimentation, sceller l'espace et libérer un gaz inerte (tel que l'azote) dans la zone pour éviter tout incendie ou explosion.

Fuite de gaz toxiques avant l'emballement thermique

L'emballement thermique des piles lithium-métal et lithium-ion a provoqué plusieurs incendies. Des recherches ont montré que des incendies alimentés par des gaz inflammables s'échappent des batteries pendant l'emballement thermique. L'électrolyte d'une batterie lithium-ion est inflammable et contient généralement de l'hexafluorophosphate de lithium (LiPF6) ou d'autres sels de lithium contenant du fluor. En cas de surchauffe, l'électrolyte s'évapore et finit par être évacué des cellules de la batterie. Les chercheurs ont découvert que les batteries lithium-ion commerciales peuvent émettre des quantités considérables de fluorure d'hydrogène (HF) lors d'un incendie, et que les taux d'émission varient selon le type de batterie et le niveau de charge (SOC). Le fluorure d'hydrogène peut pénétrer la peau pour affecter les tissus cutanés profonds et même les os et le sang. Même en cas d'exposition minimale, la douleur et les symptômes peuvent ne pas se manifester avant plusieurs heures, mais les dommages sont alors extrêmes.

Hydrogène et risque d'explosion

Alors que les piles à hydrogène gagnent en popularité en tant qu'alternatives aux combustibles fossiles, il est important d'être conscient des dangers de l'hydrogène. Comme tous les carburants, l'hydrogène est hautement inflammable et s'il fuit, le risque d'incendie est réel. Les batteries au plomb traditionnelles produisent de l'hydrogène lorsqu'elles sont chargées. Ces batteries sont normalement chargées ensemble, parfois dans la même pièce ou le même endroit, ce qui peut générer un risque d'explosion, surtout si la pièce n'est pas correctement ventilée. La plupart des applications de l'hydrogène ne peuvent pas utiliser de substances odorantes pour des raisons de sécurité, car l'hydrogène se disperse plus rapidement que les substances odorantes. Il existe des normes de sécurité applicables aux stations de ravitaillement en hydrogène, selon lesquelles un équipement de protection approprié est requis pour tous les travailleurs. Cela inclut des détecteurs personnels, capables de détecter le niveau d'hydrogène en ppm ainsi que le niveau en %LEL. Les niveaux d'alarme par défaut sont fixés à 20 % et 40 % LIE, soit 4 % du volume, mais certaines applications peuvent souhaiter disposer d'une plage de PPM et de niveaux d'alarme personnalisés pour détecter rapidement les accumulations d'hydrogène.

Pour en savoir plus sur les dangers du gaz dans l'alimentation par batterie, visitez notrepage sur l'industriepour plus d'informations.

Pourquoi la plage de mesure de mon moniteur est-elle si importante ?

Qu'est-ce qu'une gamme de mesure de moniteur ?

La surveillance des gaz est généralement mesurée en PPM (parties par million), en pourcentage du volume ou en pourcentage de la LIE (limite inférieure d'explosivité), ce qui permet aux responsables de la sécurité de s'assurer que leurs opérateurs ne sont pas exposés à des niveaux potentiellement dangereux de gaz ou de produits chimiques. La surveillance des gaz peut être effectuée à distance pour s'assurer que la zone est propre avant qu'un travailleur n'y pénètre, ou par le biais d'un dispositif fixe ou d'un dispositif portable porté sur le corps pour détecter toute fuite potentielle ou zone dangereuse pendant le travail.

Pourquoi les moniteurs de gaz sont-ils essentiels et quelles sont les gammes de déficiences ou d'enrichissements ?

Il y a trois raisons principales pour lesquelles les moniteurs sont nécessaires : il est essentiel de détecter les déficiences ou les enrichissements en oxygène, car un manque d'oxygène peut empêcher le corps humain de fonctionner et entraîner une perte de conscience chez le travailleur. Si le niveau d'oxygène n'est pas rétabli à un niveau normal, le travailleur risque de mourir. On considère qu'une atmosphère est déficiente lorsque la concentration d'O2 est inférieure à 19,5 %. Par conséquent, un environnement qui contient trop d'oxygène est tout aussi dangereux car il présente un risque d'incendie et d'explosion beaucoup plus élevé, ce qui est le cas lorsque le niveau de concentration d'O2 est supérieur à 23,5 %.

Les moniteurs sont nécessaires lorsque des gaz toxiques sont présents et peuvent causer des dommages considérables au corps humain. Le sulfure d'hydrogène (H2S) en est un exemple classique. Le H2S est dégagé par les bactéries lorsqu'elles décomposent la matière organique., Comme ce gaz est plus lourd que l'air, il peut déplacer l'air, ce qui peut nuire aux personnes présentes. C'est également un poison toxique à large spectre.

De plus, les détecteurs de gaz ont la capacité de détecter les gaz inflammables. Les dangers qui peuvent être évités grâce à l'utilisation d'un détecteur de gaz ne sont pas seulement dus à l'inhalation, mais aussi à la combustion. Les détecteurs de gaz dotés d'un capteur de gamme LIE détectents et alertent contre les gaz inflammables.

Pourquoi sont-ils importants et comment fonctionnent-ils ?

La mesure ou la plage de mesure est la plage totale que l'appareil peut mesurer dans des conditions normales. Le terme normal signifie qu'il n'y a pas de limite de surpression (OPL) et que la pression de service maximale (MWP) est respectée. Ces valeurs se trouvent généralement sur le site Web du produit ou sur la fiche technique des spécifications. La plage de mesure peut également être calculée en identifiant la différence entre la limite supérieure de la plage (URL) et la limite inférieure de la plage (LRL) de l'appareil. Lorsque l'on tente de déterminer la portée du détecteur, il ne s'agit pas d'identifier la surface en pieds carrés ou dans un rayon fixe autour du détecteur, mais plutôt d'identifier le rendement ou la diffusion de la zone surveillée. Ce processus se produit lorsque les capteurs réagissent aux gaz qui pénètrent à travers les membranes du détecteur. Par conséquent, les appareils ont la capacité de détecter les gaz qui sont en contact immédiat avec le moniteur. Il est donc important de comprendre la plage de mesure des détecteurs de gaz et de souligner leur importance pour la sécurité des travailleurs présents dans ces environnements.

Y a-t-il des produits disponibles ?

Crowcon propose une gamme de moniteurs portables. Gas-Pro Le détecteur multigaz portable permet de détecter jusqu'à 5 gaz dans une solution compacte et robuste. Le détecteur multigaz portable permet de détecter jusqu'à 5 gaz dans une solution compacte et robuste. Il est doté d'un écran facile à lire sur le dessus, ce qui le rend facile à utiliser et optimal pour la détection des gaz dans les espaces clos. Une pompe interne optionnelle, activée par la plaque d'écoulement, facilite les tests avant l'entrée et permet à Gas-Pro d'être porté en mode de pompage ou de diffusion.

Le détecteur de gaz portable 4 en 1 T4 Le détecteur de gaz portable 4 en 1 offre une protection efficace contre quatre dangers courants liés aux gaz : le monoxyde de carbone, le sulfure d'hydrogène, les gaz inflammables et la raréfaction de l'oxygène. Le détecteur multigaz T4 est désormais doté d'une détection améliorée du pentane, de l'hexane et d'autres hydrocarbures à longue chaîne. Il vous offre la conformité, la robustesse et un faible coût de possession dans une solution simple à utiliser. T4 contient une large gamme de fonctions puissantes pour rendre l'utilisation quotidienne plus facile et plus sûre.

Ce détecteur de gaz portable est compact et léger. Gasman est compact et léger, mais il est entièrement renforcé pour les environnements industriels les plus difficiles. Fonctionnant à l'aide d'un seul bouton, il est doté d'un grand écran facile à lire indiquant la concentration de gaz et d'alarmes sonores, visuelles et vibrantes.

Crowcon propose également une gamme flexible de produits fixes de détection de gaz qui peuvent détecter les gaz inflammables, toxiques et l'oxygène, signaler leur présence et activer des alarmes ou des équipements associés. Nous utilisons diverses technologies de mesure, de protection et de communication et nos détecteurs fixes ont fait leurs preuves dans de nombreux environnements difficiles, notamment l'exploration pétrolière et gazière, le traitement des eaux, les usines chimiques et les aciéries. Ces détecteurs de gaz fixes sont utilisés dans de nombreuses applications où la fiabilité, la sécurité et l'absence de fausses alarmes sont essentielles à une détection efficace et effective des gaz. Il s'agit notamment des secteurs de la fabrication automobile et aérospatiale, des installations scientifiques et de recherche et des installations médicales, civiles ou commerciales à forte utilisation.

Pourquoi les professionnels du chauffage, de la ventilation et de la climatisation sont-ils exposés au risque de monoxyde de carbone - et comment le gérer ?

Le monoxyde de carbone (CO) est un gaz inodore, incolore et insipide qui est également très toxique et potentiellement inflammable (à des niveaux plus élevés : 10,9 % en volume ou 109 000 ppm). Il est produit par la combustion incomplète de combustibles fossiles tels que le bois, le pétrole, le charbon, la paraffine, le GPL, l'essence et le gaz naturel. De nombreux systèmes et unités CVC brûlent des combustibles fossiles, il n'est donc pas difficile de comprendre pourquoi les professionnels du CVC peuvent être exposés au CO dans leur travail. Peut-être avez-vous, par le passé, ressenti des étourdissements, des nausées ou des maux de tête pendant ou après un travail ? Dans cet article de blog, nous examinerons le CO et ses effets, ainsi que la manière dont les risques peuvent être gérés.

Comment le CO est-il généré ?

Comme nous l'avons vu, le CO est produit par la combustion incomplète des combustibles fossiles. Cela se produit généralement lorsqu'il y a un manque général d'entretien, un manque d'air - ou un air de qualité insuffisante - pour permettre une combustion complète.

Par exemple, la combustion efficace du gaz naturel génère du dioxyde de carbone et de la vapeur d'eau. Mais si l'air où se déroule cette combustion est insuffisant ou si l'air utilisé pour la combustion est vicié, la combustion échoue et produit de la suie et du CO. S'il y a de la vapeur d'eau dans l'atmosphère, celle-ci peut encore réduire le niveau d'oxygène et accélérer la production de CO.

Quels sont les dangers du CO ?

Normalement, le corps humain utilise l'hémoglobine pour transporter l'oxygène dans la circulation sanguine. Cependant, il est plus facile pour l'hémoglobine d'absorber et de faire circuler le CO que l'oxygène. Par conséquent, en présence de CO, il y a danger car l'hémoglobine du corps "préfère" le CO à l'oxygène. Lorsque l'hémoglobine absorbe le CO de cette manière, elle devient saturée en CO, qui est rapidement et efficacement transporté vers toutes les parties du corps sous forme de carboxyhémoglobine.

Cela peut provoquer toute une série de problèmes physiques, en fonction de la quantité de CO présente dans l'air. Par exemple :

200 parties par million (ppm) peuvent provoquer des maux de tête en 2 à 3 heures.
400 ppm peut provoquer des maux de tête et des nausées en 1 à 2 heures, et mettre la vie en danger en 3 heures.
800 ppm peut provoquer des convulsions, de graves maux de tête et des vomissements en moins d'une heure, une perte de conscience en 2 heures.
1 500 ppm peut provoquer des étourdissements, des nausées et une perte de conscience en moins de 20 minutes, la mort en 1 heure.
6 400 ppm peuvent causer une perte de conscience après deux ou trois respirations ; la mort dans les 15 minutes.

Pourquoi les travailleurs du secteur du CVC sont-ils en danger ?

Certains des événements les plus courants dans les installations de CVC peuvent entraîner une exposition au CO, par exemple :

Travailler dans des espaces confinés, tels que des sous-sols ou des greniers.
Travailler sur des appareils de chauffage qui fonctionnent mal, qui sont en mauvais état et/ou dont les joints sont cassés ou usés ; des conduits de fumée et des cheminées obstrués, fissurés ou effondrés ; laisser les produits de combustion pénétrer dans la zone de travail.
Travailler sur des appareils à conduit ouvert, en particulier si le conduit déborde, si la ventilation est mauvaise et/ou si la cheminée est obstruée.
Travailler sur des feux et/ou des cuisinières à gaz sans conduit, en particulier lorsque le volume de la pièce est insuffisant et/ou que la ventilation est mauvaise.

Quelle quantité est trop importante ?

Le Health and Safety Executive (HSE) publie une liste des limites d'exposition sur le lieu de travail pour de nombreuses substances toxiques, dont le CO. Vous pouvez télécharger gratuitement la dernière version sur leur site Web à l'adresse www.hse.gov.uk/pubns/books/eh40.htm. Au moment de la rédaction de ce document (novembre 2021), les limites pour le CO sont les suivantes :

Limite d'exposition sur le lieu de travail

Gaz Formule Numéro CAS Limite d'exposition à long terme
(période de référence 8-hr TWA)
Limite d'exposition à court terme
(période de référence de 15 minutes)
Monoxyde de carbone CO 630-08-0 20ppm (parties par million) 100ppm (parties par million)

Comment puis-je rester en sécurité et prouver ma conformité ?

La meilleure façon de se protéger des dangers du CO est de porter un détecteur de gaz CO portable et de haute qualité. Le Clip for CO de Crowcon est un détecteur de gaz personnel léger de 93g qui émet une alarme de 90db lorsque le porteur est exposé à 30 et 100 ppm de CO. Le Clip CO est un détecteur de gaz portable jetable qui a une durée de vie de 2 ans ou un maximum de 2900 minutes d'alarme, selon la première éventualité.