Sommet mondial de l'hydrogène 2022

Crowcon a exposé au World Hydrogen Summit & Exhibition 2022 du 9 au 11 mai 2022 dans le cadre de l'événement conçu pour faire progresser le développement du secteur de l'hydrogène. Basée à Rotterdam et produite par le Sustainable Energy Council (SEC), l'exposition de cette année était la première à laquelle Crowcon participait. Nous étions ravis de participer à un événement qui favorise les connexions et la collaboration entre ceux qui sont à l'avant-garde de l'industrie lourde et qui fait avancer le secteur de l'hydrogène.

Les représentants de notre équipe ont rencontré divers pairs de l'industrie et ont présenté nos solutions Hydrogène pour la détection de gaz. Notre capteur MPS offre un standard plus élevé de détection des gaz inflammables grâce à sa technologie pionnière de spectromètre de propriétés moléculaires avancées (MPS™) qui peut détecter et identifier avec précision plus de 15 gaz inflammables différents. Il s'agit d'une solution idéale pour la détection de l'hydrogène, car ce gaz a des propriétés qui lui permettent de s'enflammer facilement et de brûler plus intensément que l'essence ou le diesel, ce qui constitue un véritable risque d'explosion. Pour en savoir plus, lisez notre blog.

Notre technologie MPS a suscité l'intérêt car elle ne nécessite pas d'étalonnage tout au long du cycle de vie du capteur et détecte les gaz inflammables sans risque d'empoisonnement ou de fausses alarmes, ce qui permet de réaliser des économies importantes sur le coût total de possession et de réduire l'interaction avec les unités, offrant ainsi une tranquillité d'esprit et moins de risques pour les opérateurs.

Le sommet nous a permis de comprendre l'état actuel du marché de l'hydrogène, y compris les acteurs clés et les projets en cours, ce qui nous a permis de développer une meilleure compréhension des besoins de nos produits afin de jouer un rôle majeur dans l'avenir de la détection des gaz d'hydrogène.

Nous nous réjouissons de participer l'année prochaine !

Comment fonctionnent les capteurs électrochimiques ? 

Les capteurs électrochimiques sont les plus utilisés en mode diffusion dans lequel le gaz du milieu ambiant pénètre par un trou dans la face de la cellule. Certains instruments utilisent une pompe pour alimenter le capteur en air ou en gaz. Une membrane en PTFE est placée sur le trou pour empêcher l'eau ou les huiles de pénétrer dans la cellule. La conception des capteurs permet de varier leur portée et leur sensibilité en utilisant des trous de différentes tailles. Les trous plus grands offrent une sensibilité et une résolution plus élevées, tandis que les trous plus petits réduisent la sensibilité et la résolution mais augmentent la portée.

Avantages

Les capteurs électrochimiques présentent plusieurs avantages.

  • Peut être spécifique à un gaz ou une vapeur particulière dans la gamme des parties par million. Toutefois, le degré de sélectivité dépend du type de capteur, du gaz cible et de la concentration de gaz que le capteur est conçu pour détecter.
  • Taux élevé de répétabilité et de précision. Une fois étalonné à une concentration connue, le capteur fournira une lecture précise à un gaz cible qui est répétable.
  • Non susceptible d'être empoisonné par d'autres gaz, la présence d'autres vapeurs ambiantes ne raccourcira pas ou ne réduira pas la durée de vie du capteur.
  • Moins coûteux que la plupart des autres technologies de détection de gaz, telles que l IR ou PID par exemple. Les capteurs électrochimiques sont également plus économiques.

Questions relatives à la sensibilité croisée

Sensibilité croisée se produit lorsqu'un gaz autre que le gaz surveillé/détecté peut affecter le relevé donné par un capteur électrochimique. L'électrode du capteur réagit alors même si le gaz cible n'est pas réellement présent, ou bien le relevé et/ou l'alarme pour ce gaz est inexact. La sensibilité croisée peut provoquer plusieurs types de lectures inexactes dans les détecteurs de gaz électrochimiques. Ces relevés peuvent être positifs (indiquant la présence d'un gaz même s'il n'est pas réellement présent ou indiquant un niveau de ce gaz supérieur à sa valeur réelle), négatifs (une réponse réduite au gaz cible, suggérant qu'il est absent alors qu'il est présent, ou un relevé qui suggère une concentration du gaz cible inférieure à celle qui existe), ou le gaz interférent peut provoquer une inhibition.

Facteurs affectant la durée de vie des capteurs électrochimiques

Trois facteurs principaux affectent la durée de vie du capteur : la température, l'exposition à des concentrations de gaz extrêmement élevées et l'humidité. Les autres facteurs sont les électrodes du capteur et les vibrations et chocs mécaniques extrêmes.

Les températures extrêmes peuvent affecter la durée de vie du capteur. Le fabricant indiquera une plage de température de fonctionnement pour l'instrument : généralement -30˚C à +50˚C. Les capteurs de haute qualité seront toutefois capables de supporter des excursions temporaires au-delà de ces limites. Une exposition de courte durée (1 à 2 heures) à 60-65˚C pour les capteurs de H2S ou de CO (par exemple) est acceptable, mais des incidents répétés entraîneront l'évaporation de l'électrolyte et des décalages dans la lecture de la ligne de base (zéro) et une réponse plus lente.

L'exposition à des concentrations de gaz extrêmement élevées peut également compromettre les performances du capteur. Les capteurs électrochimiques sont généralement testés par une exposition à des concentrations jusqu'à dix fois supérieures à leur limite de conception. Les capteurs construits à l'aide d'un matériau catalytique de haute qualité doivent pouvoir résister à de telles expositions sans modification de la chimie ou perte de performance à long terme. Les capteurs avec une charge de catalyseur inférieure peuvent subir des dommages.

L'influence la plus considérable sur la durée de vie des capteurs est l'humidité. La condition environnementale idéale pour les capteurs électrochimiques est de 20˚Celsius et 60 % d'HR (humidité relative). Lorsque l'humidité ambiante augmente au-delà de 60 %HR, de l'eau est absorbée dans l'électrolyte, ce qui entraîne une dilution. Dans des cas extrêmes, la teneur en liquide peut augmenter de 2 à 3 fois, ce qui peut entraîner une fuite du corps du capteur, puis des broches. En dessous de 60 % d'humidité relative, l'eau contenue dans l'électrolyte commence à se déshydrater. Le temps de réponse peut être prolongé de manière significative lorsque l'électrolyte est déshydraté. Dans des conditions inhabituelles, les électrodes des capteurs peuvent être empoisonnées par des gaz interférents qui s'adsorbent sur le catalyseur ou réagissent avec lui en créant des sous-produits qui inhibent le catalyseur.

Les vibrations extrêmes et les chocs mécaniques peuvent également endommager les capteurs en fracturant les soudures qui relient les électrodes de platine, les bandes de connexion (ou les fils dans certains capteurs) et les broches entre elles.

Durée de vie "normale" du capteur électrochimique

Les capteurs électrochimiques pour les gaz courants tels que le monoxyde de carbone ou le sulfure d'hydrogène ont une durée de vie opérationnelle généralement fixée à 2 ou 3 ans. Les capteurs de gaz plus exotiques, comme le fluorure d'hydrogène, peuvent avoir une durée de vie de seulement 12 à 18 mois. Dans des conditions idéales (température et humidité stables de l'ordre de 20˚C et 60%HR), sans incidence de contaminants, les capteurs électrochimiques sont connus pour fonctionner plus de 4000 jours (11 ans). L'exposition périodique au gaz cible ne limite pas la durée de vie de ces minuscules piles à combustible : les capteurs de haute qualité possèdent une grande quantité de matériau catalyseur et des conducteurs robustes qui ne s'épuisent pas sous l'effet de la réaction.

Produits

Les capteurs électrochimiques étant plus économiques, Nous disposons d'une gamme de produits portables et produits fixes qui utilisent ce type de capteur pour détecter les gaz.

Pour en savoir plus, visitez notre page technique pour plus d'informations.

Qu'est-ce qu'un Pellistor (perles catalytiques) ? 

Les capteurs à pellistor sont constitués de deux bobines de fil appariées, chacune étant encastrée dans une perle de céramique. Le courant passe à travers les bobines, chauffant les billes à environ 230˚C. La perle devient chaude à cause de la combustion, ce qui entraîne une différence de température entre cette perle active et l'autre perle " de référence ". Cela provoque une différence de résistance, qui est mesurée ; la quantité de gaz présente est directement proportionnelle à la variation de résistance, de sorte que la concentration de gaz en pourcentage de sa limite inférieure d'explosivité (% LIE*) peut être déterminée avec précision. Le gaz inflammable brûle sur la bille et la chaleur supplémentaire générée produit une augmentation de la résistance de la bobine qui est mesurée par l'instrument pour indiquer la concentration de gaz. Les capteurs à pellistors sont largement utilisés dans l'industrie, notamment sur les plates-formes pétrolières, dans les raffineries et dans les constructions souterraines telles que les mines et les tunnels.

Avantages des capteurs à pellistors ?

Les capteurs à pellistors sont relativement peu coûteux en raison des différences de niveau de technologie par rapport aux technologies plus complexes comme les capteurs à capteurs IRCependant, ils doivent être remplacés plus fréquemment. Avec une sortie linéaire correspondant à la concentration de gaz, des facteurs de correction peuvent être utilisés pour calculer la réponse approximative des pellistors à d'autres gaz inflammables, ce qui peut faire des pellistors un bon choix en présence de plusieurs gaz et vapeurs inflammables.

Facteurs affectant Capteur à pellistor Durée de vie

Les deux principaux facteurs qui réduisent la durée de vie du capteur sont l'exposition à une forte concentration de gaz et l'empoisonnement ou l'inhibition du capteur. Les chocs ou vibrations mécaniques extrêmes peuvent également affecter la durée de vie du capteur.

La capacité de la surface du catalyseur à oxyder le gaz diminue lorsqu'elle a été empoisonnée ou inhibée. On connaît des durées de vie des capteurs allant jusqu'à dix ans dans certaines applications où les composés inhibiteurs ou empoisonnants ne sont pas présents. Les pellistors de plus grande puissance ont des billes plus grandes, donc plus de catalyseur, et cette plus grande activité catalytique assure une moindre vulnérabilité à l'empoisonnement. Des billes plus poreuses facilitent l'accès du gaz à une plus grande quantité de catalyseur, ce qui permet une plus grande activité catalytique à partir d'un volume de surface plutôt que d'une simple surface. Une conception initiale habile et des procédés de fabrication sophistiqués garantissent une porosité maximale des billes.

La résistance de la bille est également très importante car l'exposition à de fortes concentrations de gaz (>100% LIE) peut compromettre l'intégrité du capteur et provoquer des fissures. Les performances sont affectées et il en résulte souvent des décalages dans le signal zéro/ligne de base. Une combustion incomplète entraîne des dépôts de carbone sur la bille : le carbone " croît " dans les pores et provoque des dommages mécaniques ou empêche simplement le gaz d'atteindre le pellistor. Le carbone peut cependant être brûlé au fil du temps pour révéler à nouveau les sites catalytiques.

Un choc mécanique extrême ou des vibrations peuvent, dans de rares cas, provoquer une rupture des bobines de pellistors. Ce problème est plus fréquent sur les détecteurs de gaz portables que sur les détecteurs fixes, car ils sont plus susceptibles de tomber et les pellistors utilisés sont de faible puissance (pour maximiser la durée de vie de la batterie) et utilisent donc des bobines de fil plus fines et plus délicates.

Que se passe-t-il lorsqu'un Pellistor est empoisonné ?

Un pellistor empoisonné reste électriquement opérationnel mais peut ne pas réagir au gaz car il ne produit pas de sortie lorsqu'il est exposé à un gaz inflammable. Cela signifie qu'un détecteur ne se met pas en alarme, donnant l'impression que l'environnement est sûr.

Les composés contenant du silicium, du plomb, du soufre et des phosphates à seulement quelques parties par million (ppm) peuvent nuire aux performances des pellistors. Par conséquent, qu'il s'agisse d'un élément présent dans votre environnement de travail ou d'un produit aussi inoffensif que du matériel de nettoyage ou de la crème pour les mains, le fait de l'approcher d'un pellistor peut compromettre l'efficacité de votre capteur sans même que vous vous en rendiez compte.

Pourquoi les silicones sont-elles mauvaises ?

Les silicones ont leurs vertus, mais ils sont peut-être plus courants que vous ne le pensiez au départ. Parmi les exemples, citons les mastics, les adhésifs, les lubrifiants et les isolants thermiques et électriques. Les silicones ont la capacité d'empoisonner un capteur sur un pellistor à des niveaux extrêmement bas, car ils agissent de manière cumulative, un peu à la fois.

Produits

Notre site produits portables utilisent tous des billes de pellistors portables à faible puissance. Cela prolonge la durée de vie des piles mais peut les rendre susceptibles d'empoisonnement. C'est pourquoi nous proposons des alternatives qui n'empoisonnent pas, comme les capteurs IR et MPS. Notre site produits fixes utilisent un pellistor fixe poreux à haute énergie.

Pour en savoir plus, visitez notre page technique pour plus d'informations.

Quelle sera la durée de vie de mon capteur de gaz ?

Les détecteurs de gaz sont largement utilisés dans de nombreuses industries ( traitement de l'eau, raffinerie, pétrochimie, sidérurgie et construction, pour n'en citer que quelques-unes) pour protéger le personnel et les équipements des gaz dangereux et de leurs effets. Les utilisateurs d'appareils portables et fixes connaissent bien les coûts potentiellement importants liés au maintien de la sécurité de leurs instruments tout au long de leur vie utile. Les capteurs de gaz fournissent une mesure de la concentration d'un analyte d'intérêt, tel que le CO (monoxyde de carbone), le CO2 (dioxyde de carbone) ou le NOx (oxyde d'azote). Il existe deux types de capteurs de gaz les plus utilisés dans les applications industrielles : les capteurs électrochimiques pour les gaz toxiques et la mesure de l'oxygène, et les pellistors (ou billes catalytiques) pour les gaz inflammables. Au cours des dernières années, l'introduction des deux Oxygène et MPS (Molecular Property Spectrometer) ont permis d'améliorer la sécurité.

Comment puis-je savoir si mon capteur est défaillant ?

Au cours des dernières décennies, plusieurs brevets et techniques appliqués aux détecteurs de gaz ont prétendu être capables de déterminer quand un capteur électrochimique est défaillant. Cependant, la plupart de ces techniques ne font que déduire que le capteur fonctionne grâce à une certaine forme de stimulation des électrodes et peuvent donner un faux sentiment de sécurité. La seule méthode sûre pour démontrer qu'un capteur fonctionne consiste à appliquer un gaz d'essai et à mesurer la réponse : un test de déclenchement ou un étalonnage complet.

Capteur électrochimique

Les capteursélectrochimiques sont les plus utilisés en mode diffusion dans lequel le gaz du milieu ambiant pénètre par un trou dans la face de la cellule. Certains instruments utilisent une pompe pour alimenter le capteur en air ou en gaz. Une membrane en PTFE est placée sur le trou pour empêcher l'eau ou les huiles de pénétrer dans la cellule. La conception des capteurs permet de varier leur portée et leur sensibilité en utilisant des trous de différentes tailles. Les trous plus grands offrent une sensibilité et une résolution plus élevées, tandis que les trous plus petits réduisent la sensibilité et la résolution mais augmentent la portée.

Facteurs affectant la durée de vie des capteurs électrochimiques

Trois facteurs principaux affectent la durée de vie du capteur : la température, l'exposition à des concentrations de gaz extrêmement élevées et l'humidité. Les autres facteurs sont les électrodes du capteur et les vibrations et chocs mécaniques extrêmes.

Les températures extrêmes peuvent affecter la durée de vie du capteur. Le fabricant indiquera une plage de température de fonctionnement pour l'instrument : généralement -30˚C à +50˚C. Les capteurs de haute qualité seront toutefois capables de supporter des excursions temporaires au-delà de ces limites. Une exposition de courte durée (1 à 2 heures) à 60-65˚C pour les capteurs de H2S ou de CO (par exemple) est acceptable, mais des incidents répétés entraîneront l'évaporation de l'électrolyte et des décalages dans la lecture de la ligne de base (zéro) et une réponse plus lente.

L'exposition à des concentrations de gaz extrêmement élevées peut également compromettre les performances des capteurs. Les capteurs électrochimiques sont généralement testés par une exposition à des concentrations jusqu'à dix fois supérieures à leur limite de conception. Les capteurs construits à l'aide d'un matériau catalytique de haute qualité doivent pouvoir résister à de telles expositions sans modification de la chimie ou perte de performance à long terme. Les capteurs avec une charge de catalyseur inférieure peuvent subir des dommages.

L'influence la plus considérable sur la durée de vie des capteurs est l'humidité. La condition environnementale idéale pour les capteurs électrochimiques est de 20˚Celsius et 60 % d'HR (humidité relative). Lorsque l'humidité ambiante augmente au-delà de 60 %HR, de l'eau est absorbée dans l'électrolyte, ce qui entraîne une dilution. Dans des cas extrêmes, la teneur en liquide peut augmenter de 2 à 3 fois, ce qui peut entraîner une fuite du corps du capteur, puis des broches. En dessous de 60 % d'humidité relative, l'eau contenue dans l'électrolyte commence à se déshydrater. Le temps de réponse peut être prolongé de manière significative lorsque l'électrolyte est déshydraté. Dans des conditions inhabituelles, les électrodes des capteurs peuvent être empoisonnées par des gaz interférents qui s'adsorbent sur le catalyseur ou réagissent avec lui en créant des sous-produits qui inhibent le catalyseur.

Les vibrations extrêmes et les chocs mécaniques peuvent également endommager les capteurs en fracturant les soudures qui relient les électrodes de platine, les bandes de connexion (ou les fils dans certains capteurs) et les broches entre elles.

Durée de vie "normale" d'un capteur électrochimique

Les capteurs électrochimiques pour les gaz courants tels que le monoxyde de carbone ou le sulfure d'hydrogène ont une durée de vie opérationnelle généralement estimée à 2 ou 3 ans. Les capteurs de gaz plus exotiques, comme le fluorure d'hydrogène, peuvent avoir une durée de vie de seulement 12 à 18 mois. Dans des conditions idéales (température et humidité stables de l'ordre de 20˚C et 60%HR), sans incidence de contaminants, les capteurs électrochimiques sont connus pour fonctionner plus de 4000 jours (11 ans). L'exposition périodique au gaz cible ne limite pas la durée de vie de ces minuscules piles à combustible : les capteurs de haute qualité possèdent une grande quantité de matériau catalyseur et des conducteurs robustes qui ne s'épuisent pas sous l'effet de la réaction.

Capteur à pellistor

Les capteurs àpellistor sont constitués de deux bobines de fil appariées, chacune étant encastrée dans une perle de céramique. Le courant passe dans les bobines, chauffant les billes à environ 500˚C. Le gaz inflammable brûle sur la perle et la chaleur supplémentaire générée produit une augmentation de la résistance de la bobine qui est mesurée par l'instrument pour indiquer la concentration de gaz.

Facteurs affectant la durée de vie des capteurs à pellistors

Les deux principaux facteurs qui affectent la durée de vie du capteur sont l'exposition à une forte concentration de gaz et l'empoisonnement ou l'inhibition du capteur. Les chocs ou vibrations mécaniques extrêmes peuvent également affecter la durée de vie du capteur. La capacité de la surface du catalyseur à oxyder le gaz diminue lorsqu'elle a été empoisonnée ou inhibée. Une durée de vie du capteur supérieure à dix ans est courante dans les applications où les composés inhibiteurs ou empoisonnants ne sont pas présents. Les pellistors de plus grande puissance ont une plus grande activité catalytique et sont moins vulnérables à l'empoisonnement. Les billes plus poreuses ont également une plus grande activité catalytique à mesure que leur volume de surface augmente. Une conception initiale habile et des procédés de fabrication sophistiqués garantissent une porosité maximale des billes. L'exposition à de fortes concentrations de gaz (>100%LEL) peut également compromettre les performances du capteur et créer un décalage du signal zéro/ligne de base. Une combustion incomplète entraîne des dépôts de carbone sur la bille : le carbone "croît" dans les pores et crée des dommages mécaniques. Le carbone peut cependant être brûlé au fil du temps pour révéler à nouveau les sites catalytiques. Dans de rares cas, un choc mécanique extrême ou des vibrations peuvent également provoquer une rupture des bobines de pellistors. Ce problème est plus fréquent sur les détecteurs de gaz portables que sur les détecteurs fixes, car ils sont plus susceptibles de tomber, et les pellistors utilisés sont de plus faible puissance (pour maximiser la durée de vie de la batterie) et utilisent donc des bobines de fils plus fins et plus délicats.

Comment puis-je savoir si mon capteur est défaillant ?

Un pellistor qui a été empoisonné reste électriquement opérationnel mais peut ne pas réagir au gaz. Par conséquent, le détecteur de gaz et le système de commande peuvent sembler être en bonne santé, mais une fuite de gaz inflammable peut ne pas être détectée.

Capteur d'oxygène

Long Life 02 Icon

Notre nouveau capteur d'oxygène sans plomb et à longue durée de vie n'a pas de brins de plomb comprimés dans lesquels l'électrolyte doit pénétrer, ce qui permet d'utiliser un électrolyte épais, donc pas de fuites, pas de corrosion induite par les fuites et une sécurité accrue. La robustesse supplémentaire de ce capteur nous permet d'offrir en toute confiance une garantie de 5 ans pour une plus grande tranquillité d'esprit.

Les capteurs d'oxygène à longue durée de vie ont une durée de vie étendue de 5 ans, avec moins de temps d'arrêt, un coût de possession plus faible et un impact environnemental réduit. Ils mesurent avec précision l'oxygène sur une large gamme de concentrations allant de 0 à 30% en volume et constituent la prochaine génération de détection de gaz O2.

Capteur MPS

MPS offre une technologie avancée qui supprime le besoin d'étalonnage et fournit une "véritable LIE (limite inférieure d'explosivité)" pour la lecture de quinze gaz inflammables, mais peut détecter tous les gaz inflammables dans un environnement multi-espèces, ce qui entraîne des coûts de maintenance permanents plus faibles et une interaction réduite avec l'unité. Cela réduit les risques pour le personnel et évite les temps d'arrêt coûteux. Le capteur MPS est également immunisé contre l'empoisonnement du capteur.  

Une défaillance du capteur due à un empoisonnement peut être une expérience frustrante et coûteuse. La technologie du capteur MPS™n'est pas affectée par les contaminants présents dans l'environnement. Les processus qui ont des contaminants ont maintenant accès à une solution qui fonctionne de manière fiable avec une conception à sécurité intégrée pour alerter l'opérateur et offrir une tranquillité d'esprit pour le personnel et les actifs situés dans un environnement dangereux. Il est désormais possible de détecter plusieurs gaz inflammables, même dans des environnements difficiles, en utilisant un seul capteur qui ne nécessite pas d'étalonnage et dont la durée de vie prévue est d'au moins 5 ans.

Quelle est la différence entre un pellistor et un capteur IR ?

Les capteurs jouent un rôle essentiel lorsqu'il s'agit de surveiller les gaz et les vapeurs inflammables. L'environnement, le temps de réponse et la plage de température ne sont que quelques-uns des éléments à prendre en compte pour choisir la meilleure technologie.

Dans ce blog, nous soulignons les différences entre les capteurs à pellistors (catalytiques) et les capteurs infrarouges (IR), les avantages et les inconvénients de ces deux technologies, et comment savoir laquelle convient le mieux à différents environnements.

Capteur à pellistor

Un capteur de gaz à pellistor est un dispositif utilisé pour détecter les gaz ou les vapeurs combustibles qui se situent dans la gamme d'explosivité afin d'avertir de l'augmentation des niveaux de gaz. Le capteur est une bobine de fil de platine dans laquelle un catalyseur est inséré pour former une petite perle active qui abaisse la température à laquelle le gaz s'enflamme autour d'elle. En présence d'un gaz combustible, la température et la résistance de la perle augmentent par rapport à la résistance de la perle de référence inerte. La différence de résistance peut être mesurée, ce qui permet de mesurer le gaz présent. En raison des catalyseurs et des billes, un capteur à pellistor est également appelé capteur catalytique ou capteur à billes catalytiques.

Créés dans les années 1960 par le scientifique et inventeur britannique Alan Baker, les capteurs à pellistors ont été initialement conçus comme une solution aux techniques de longue date de la lampe de sécurité à flamme et du canari. Plus récemment, ces dispositifs sont utilisés dans des applications industrielles et souterraines telles que les mines ou les tunnels, les raffineries de pétrole et les plates-formes pétrolières.

Les capteurs à pellistors sont relativement moins coûteux que les capteurs à infrarouge en raison des différences de niveau technologique, mais ils doivent être remplacés plus fréquemment.

Avec une sortie linéaire correspondant à la concentration du gaz, des facteurs de correction peuvent être utilisés pour calculer la réponse approximative des pellistors à d'autres gaz inflammables, ce qui peut faire des pellistors un bon choix en présence de plusieurs vapeurs inflammables.

De plus, les pellistors intégrés dans les détecteurs fixes avec des sorties de pont mV, comme le type 3 de Xgard, sont très bien adaptés aux zones difficiles d'accès car les réglages de l'étalonnage peuvent être effectués sur le panneau de commande local.

D'autre part, les pellistors ont des difficultés dans les environnements où il y a peu ou pas d'oxygène, car le processus de combustion par lequel ils fonctionnent nécessite de l'oxygène. Pour cette raison, les instruments pour espaces confinés qui contiennent des capteurs LIE de type pellistor catalytique comprennent souvent un capteur pour mesurer l'oxygène.

Dans les environnements où les composés contiennent du silicium, du plomb, du soufre et des phosphates, le capteur est susceptible d'être empoisonné (perte irréversible de sensibilité) ou inhibé (perte réversible de sensibilité), ce qui peut constituer un danger pour les personnes sur le lieu de travail.

S'ils sont exposés à de fortes concentrations de gaz, les capteurs à pellistors peuvent être endommagés. Dans de telles situations, les pellistors ne sont pas "à sécurité intégrée", ce qui signifie qu'aucune notification n'est donnée lorsqu'une défaillance de l'instrument est détectée. Toute défaillance ne peut être identifiée que par un test de déclenchement avant chaque utilisation pour s'assurer que les performances ne sont pas dégradées.

 

Capteur IR

La technologie des capteurs infrarouges repose sur le principe selon lequel la lumière infrarouge (IR) d'une longueur d'onde particulière est absorbée par le gaz cible. Un capteur comporte généralement deux émetteurs qui génèrent des faisceaux de lumière infrarouge : un faisceau de mesure dont la longueur d'onde est absorbée par le gaz cible, et un faisceau de référence qui n'est pas absorbé. Chaque faisceau est d'intensité égale et est dévié par un miroir à l'intérieur du capteur vers un photorécepteur. La différence d'intensité qui en résulte, entre le faisceau de référence et le faisceau de mesure, en présence du gaz cible, est utilisée pour mesurer la concentration du gaz présent.

Dans de nombreux cas, la technologie des capteurs infrarouges (IR) peut présenter un certain nombre d'avantages par rapport aux pellistors ou être plus fiable dans des domaines où les performances des capteurs à base de pellistors peuvent être altérées, notamment dans les environnements à faible teneur en oxygène et inertes. Seul le faisceau d'infrarouge interagit avec les molécules de gaz environnantes, ce qui donne au capteur l'avantage de ne pas être confronté à la menace d'empoisonnement ou d'inhibition.

La technologie IR permet d'effectuer des tests à sécurité intégrée. Cela signifie que si le faisceau infrarouge devait tomber en panne, l'utilisateur en serait informé.

Gas-Pro TK utilise un double capteur IR - la meilleure technologie pour les environnements spécialisés où les détecteurs de gaz standard ne fonctionnent tout simplement pas, qu'il s'agisse de purger un réservoir ou de libérer du gaz.

L'un de nos détecteurs IR est le Crowcon Gas-Pro IR, idéal pour l'industrie pétrolière et gazière, car il permet de détecter le méthane, le pentane ou le propane dans des environnements potentiellement explosifs et à faible teneur en oxygène, où les capteurs à pellistors peuvent avoir du mal à fonctionner. Nous utilisons également un capteur à double gamme %LEL et %Volume dans notre Gas-Pro TK, qui permet de mesurer et de basculer entre les deux mesures, de sorte qu'il fonctionne toujours en toute sécurité avec le paramètre correct.

Cependant, les capteurs IR ne sont pas tous parfaits car ils n'ont qu'une sortie linéaire par rapport au gaz cible ; la réponse d'un capteur IR à d'autres vapeurs inflammables que le gaz cible sera non linéaire.

Tout comme les pellistors sont sensibles à l'empoisonnement, les capteurs IR sont sensibles aux chocs mécaniques et thermiques sévères et sont également fortement affectés par les changements de pression importants. De plus, les capteurs infrarouges ne peuvent pas être utilisés pour détecter le gaz hydrogène, nous suggérons donc d'utiliser des pellistors ou des capteurs électromécaniques dans ce cas.

L'objectif premier en matière de sécurité est de sélectionner la meilleure technologie de détection pour minimiser les risques sur le lieu de travail. Nous espérons qu'en identifiant clairement les différences entre ces deux capteurs, nous pourrons sensibiliser les gens à la manière dont les divers environnements industriels et dangereux peuvent rester sûrs.

Pour plus d'informations sur les capteurs à pellistor et IR, vous pouvez télécharger notre livre blanc qui comprend des illustrations et des diagrammes pour vous aider à déterminer la meilleure technologie pour votre application.

Une solution ingénieuse au problème du H2S à haute température

En raison de la chaleur extrême au Moyen-Orient, qui peut atteindre 50°C en plein été, la nécessité d'une détection de gaz fiable est cruciale. Dans ce blog, nous nous concentrons sur la nécessité de détecter le sulfure d'hydrogène (H2S) - un défi de longue date pour l'industrie de la détection de gaz au Moyen-Orient.

En combinant une nouvelle astuce avec une ancienne technologie, nous avons trouvé la solution pour une détection fiable des gaz dans les environnements du climat rude du Moyen-Orient. Notre nouveau capteurH2Sà haute température (HT) pour XgardIQ a été revu et amélioré par notre équipe d'experts Crowcon en combinant deux adaptations ingénieuses de sa conception originale.

Dans les capteurs traditionnels deH2S, la détection est basée sur la technologie électrochimique, où des électrodes sont utilisées pour détecter les changements induits dans un électrolyte par la présence du gaz cible. Cependant, les températures élevées combinées à une faible humidité provoquent l'assèchement de l'électrolyte, ce qui altère les performances du capteur et oblige à le remplacer régulièrement, ce qui implique des coûts de remplacement élevés, du temps et des efforts.

Ce qui rend le nouveau capteur si avancé par rapport à son prédécesseur, c'est sa capacité à conserver les niveaux d'humidité à l'intérieur du capteur, empêchant l'évaporation même dans des climats à haute température. Le capteur mis à jour est basé sur un gel électrolytique, adapté pour le rendre plus hygroscopique et éviter la déshydratation plus longtemps.

De plus, les pores du boîtier du capteur ont été réduits, ce qui empêche l'humidité de s'échapper. Ce graphique indique une perte de poids qui est une indication de la perte d'humidité. Lorsqu'il est stocké à 55°C ou 65°C pendant un an, il ne perd que 3% de son poids. Un autre capteur typique perdrait 50% de son poids en 100 jours dans les mêmes conditions.

Pour une détection optimale des fuites, notre remarquable nouveau capteur est également doté d'un boîtier de capteur à distance en option, tandis que l'écran d'affichage et les commandes à bouton-poussoir du transmetteur sont positionnés de manière à permettre un accès sûr et facile pour les opérateurs jusqu'à 15 mètres de distance.

 

Les résultats de notre nouveau capteur HTH2Spour XgardIQ parlent d'eux-mêmes, avec un environnement de fonctionnement allant jusqu'à 70°C à 0-95%rh, ainsi qu'un temps de réponse de 0-200ppm et T90 de moins de 30 secondes. Contrairement à d'autres capteurs pour la détection duH2S, il offre une durée de vie de plus de 24 mois, même dans des climats difficiles comme celui du Moyen-Orient.

La réponse aux défis de la détection des gaz au Moyen-Orient se trouve entre les mains de notre nouveau capteur, qui offre à ses utilisateurs des performances rentables et fiables.

Cliquez ici pour plus d'informations sur le détecteur Crowcon HT H2Sou.

Combien de temps il te reste à vivre ?

Lorsque quelque chose ne fonctionne plus, vous êtes rarement prévenu. À quand remonte la dernière fois où vous avez appuyé sur un interrupteur et où votre ampoule s'est éteinte ? Ou avez-vous eu un matin froid et glacial cet hiver où votre voiture n'a tout simplement pas démarré ?

Continuez à lire "Combien de temps vous reste-t-il à vivre ?"

Péché mortel n° 1 - ne pas calibrer

Nous avons récemment publié une série d'articles intitulée "Les sept péchés capitaux de la détection de gaz". En mettant en évidence les causes et les effets les plus courants de chaque "péché", nous voulions sensibiliser les responsables et les employés à ce que nous pensons être les sept péchés capitaux de la détection de gaz, à la manière de les éviter et de sauver des vies. C'est pour cette même raison que nous les partageons dans nos articles de blog au cours des sept prochaines semaines.

Continuer la lecture "Péché mortel n° 1 - ne pas calibrer

Détection des COV avec PID - comment ça marche ?

Après avoir récemment partagé notre vidéo sur les pellistors et leur fonctionnement, nous avons pensé qu'il serait judicieux de publier également notre vidéo sur la détection par photo-ionisation (PID). Il s'agit de la technologie de choix pour surveiller l'exposition aux niveaux toxiques d'un autre groupe de gaz importants - les composés organiques volatils (COV).

Continuer la lecture "Détecter les COV avec PID - comment ça marche ?

Les capteurs à pellistors - comment ils fonctionnent

Les capteurs de gaz à pellistors (ou capteurs de gaz à perles catalytiques) constituent la principale technologie de détection des gaz inflammables depuis les années 60. Bien que nous ayons abordé un certain nombre de questions relatives à la détection des gaz inflammables et des COV, nous n'avons pas encore examiné le fonctionnement des pellistors. Pour y remédier, nous avons inclus une explication vidéo, que nous espérons que vous téléchargerez et utiliserez dans le cadre de vos formations.

Un pellistor est basé sur un circuit en pont de Wheatstone, et comprend deux "perles", qui renferment toutes deux des bobines de platine. L'une des billes (la bille "active") est traitée avec un catalyseur, qui abaisse la température à laquelle le gaz qui l'entoure s'enflamme. Cette bille devient chaude à cause de la combustion, ce qui entraîne une différence de température entre cette bille active et l'autre bille "de référence". Cela provoque une différence de résistance, qui est mesurée ; la quantité de gaz présente est directement proportionnelle à cette différence, de sorte que la concentration de gaz en pourcentage de sa limite inférieure d'explosivité (%LEL*) peut être déterminée avec précision.

La perle chaude et le circuit électrique sont contenus dans un boîtier de capteur antidéflagrant, derrière le pare-flamme en métal fritté (ou frittage) à travers lequel passe le gaz. Confiné dans ce boîtier de capteur, qui maintient une température interne de 500°C, une combustion contrôlée peut se produire, isolée de l'environnement extérieur. Lorsque la concentration de gaz est élevée, le processus de combustion peut être incomplet, ce qui entraîne la formation d'une couche de suie sur la bille active. Ce phénomène altère partiellement ou totalement les performances. Il convient d'être prudent dans les environnements où des niveaux de gaz supérieurs à 70 % LIE peuvent être rencontrés.

Pour plus d'informations sur la technologie des capteurs de gaz pour les gaz inflammables, lisez notre article comparatif sur les pellistors et la technologie des capteurs de gaz à infrarouge : Les implants en silicone dégradent-ils votre détection de gaz ?

*La limite inférieure d'explosivité - En savoir plus

Cliquez dans le coin supérieur droit de la vidéo, pour accéder à un fichier qui peut être téléchargé.