Xgard Tipo 3: il vantaggio di mV

Xgard Tipo 3 è la soluzione ideale per il rilevamento di gas infiammabili più leggeri dell'aria, come metano e idrogeno. In queste applicazioni, i rilevatori devono essere montati in alto nei tetti o sopra le apparecchiature, dove l'accesso per la calibrazione e la manutenzione può presentare problemi.

I rilevatori di gas richiedono la calibrazione (di solito ogni sei mesi) e i sensori possono dover essere sostituiti ogni 3-5 anni. Queste attività richiedono solitamente l'accesso diretto al rilevatore per effettuare le regolazioni e sostituire le parti. Le normative nazionali, come la "UK Work at Height Regulations 2005", stabiliscono pratiche di lavoro sicure quando si opera su apparecchiature in altezza, e la loro osservanza richiede solitamente l'uso di ponteggi o di "cherry picker" mobili, che comportano costi e disagi significativi in loco.

Il vantaggio dei rivelatori a pellistore mV

I termini "mV" e "4-20mA" descrivono il tipo di segnale che viene trasmesso attraverso il cavo tra il rilevatore di gas e il sistema di controllo (ad esempio un Crowcon Gasmaster). La calibrazione di un rilevatore 4-20mA (ad esempio Xgard Type 5) richiede la rimozione del coperchio e l'azzeramento/calibrazione dell'amplificatore mediante un misuratore, test-point e potenziometri. Anche i rilevatori più sofisticati, dotati di un display e di una calibrazione non intrusiva, richiedono un accesso diretto al sistema di menu tramite un magnete per eseguire la calibrazione.

Xgard Tipo 3 è un rilevatore basato su pellistor mV che non ha elettronica interna (cioè non ha amplificatore); solo terminali da collegare tramite tre fili al sistema di controllo (ad esempio, Gasmaster). La messa in funzione consiste semplicemente nel misurare la "tensione di testa" ai terminali del rilevatore e nell'eseguire le regolazioni di zero e di calibrazione sul modulo di ingresso Gasmaster . Le calibrazioni semestrali vengono poi eseguite applicando gas a distanza (tramite un accessorio "deflettore di spruzzi" o "cono collettore") e le regolazioni necessarie vengono effettuate a livello del suolo tramite il modulo di ingresso del sistema di controllo.

Pertanto, una volta messi in funzione, i rivelatori a pellistore mV non necessitano di accesso fino a quando il sensore non deve essere sostituito, di solito 3-5 anni dopo l'installazione. In questo modo si evita la necessità di ricorrere a costose attrezzature per l'accesso, come impalcature o cestini.

Xgard Tipo 3 può essere collegato direttamente ai sistemi Gasmaster e Gasmonitor , e aVortex tramite un accessorio 'Accessory Enclosure' che converte i segnali mV in 4-20mA.

Calibrazione a distanza di un rivelatore a pellistor in mV
Calibrazione a distanza di un rivelatore a pellistor in mV.

L'importanza del rilevamento dei gas nell'industria energetica

L'industria energetica è la spina dorsale del nostro mondo industriale e domestico, in quanto fornisce energia essenziale a clienti industriali, manifatturieri, commerciali e residenziali in tutto il mondo. Comprendendo le industrie dei combustibili fossili (petrolio, carbone, GNL), la generazione, la distribuzione e la vendita di energia elettrica, l'energia nucleare e l'energia rinnovabile, il settore della generazione di energia è essenziale per sostenere la crescente domanda di energia da parte dei Paesi emergenti e della popolazione mondiale in aumento.

Pericoli di gas nel settore energetico

I sistemi di rilevamento dei gas sono stati ampiamente installati nell'industria energetica per ridurre al minimo le potenziali conseguenze attraverso il rilevamento dell'esposizione ai gas; chi lavora in questo settore è esposto a una serie di rischi legati ai gas delle centrali elettriche.

Monossido di carbonio

Il trasporto e la polverizzazione del carbone comportano un alto rischio di combustione. La polvere di carbone fine diventa sospesa nell'aria e altamente esplosiva. La più piccola scintilla, per esempio dall'attrezzatura dell'impianto, può accendere la nube di polvere e causare un'esplosione che solleva altra polvere, che esplode a sua volta, e così via in una reazione a catena. Le centrali a carbone ora richiedono la certificazione per le polveri combustibili, oltre a quella per i gas pericolosi.

Le centrali elettriche a carbone generano grandi volumi di monossido di carbonio (CO), altamente tossico e infiammabile, che deve essere accuratamente monitorato. Componente tossico di una combustione incompleta, il CO proviene dalle perdite del rivestimento della caldaia e dal carbone fumante. È fondamentale monitorare il CO nei tunnel del carbone, nei bunker, nelle tramogge e nei locali di ribaltamento, insieme al rilevamento di gas infiammabili a infrarossi per individuare le condizioni di pre-incendio.

Idrogeno

Con la crescente popolarità delle celle a combustibile a idrogeno come alternativa ai combustibili fossili, è importante conoscere i pericoli dell'idrogeno. Come tutti i combustibili, l'idrogeno è altamente infiammabile e in caso di perdite c'è un rischio reale di incendio. L'idrogeno brucia con una fiamma blu pallido, quasi invisibile, che può causare gravi lesioni e seri danni alle apparecchiature. Pertanto, l'idrogeno deve essere monitorato, per evitare incendi del sistema di tenuta-olio, arresti non programmati e per proteggere il personale dalle fiamme.

Inoltre, le centrali elettriche devono disporre di batterie di riserva, per garantire il funzionamento continuo dei sistemi di controllo critici in caso di interruzione dell'alimentazione. I locali delle batterie generano una notevole quantità di idrogeno e il monitoraggio viene spesso effettuato insieme alla ventilazione. Le tradizionali batterie al piombo acido producono idrogeno durante la carica. Queste batterie vengono normalmente caricate insieme, a volte nella stessa stanza o area, il che può generare un rischio di esplosione, soprattutto se la stanza non è adeguatamente ventilata.

Entrata in uno spazio confinato

L'ingresso in spazi confinati (CSE) è spesso considerato un tipo di lavoro pericoloso nella produzione di energia. È quindi importante che l'ingresso sia rigorosamente controllato e che vengano adottate precauzioni dettagliate. La mancanza di ossigeno, i gas tossici e infiammabili sono rischi che possono verificarsi durante il lavoro in spazi confinati, che non dovrebbe mai essere considerato semplice o di routine. Tuttavia, i rischi legati al lavoro in spazi confinati possono essere previsti, monitorati e mitigati attraverso l'uso di dispositivi portatili di rilevamento dei gas. Regolamento sugli spazi confinati del 1997. Il Codice di prassi, i regolamenti e la guida approvati sono destinati ai dipendenti che lavorano negli spazi confinati, a coloro che li impiegano o li formano e a coloro che li rappresentano.

Le nostre soluzioni

L'eliminazione di questi rischi di gas è praticamente impossibile, quindi i lavoratori permanenti e gli appaltatori devono affidarsi a un'apparecchiatura di rilevamento dei gas affidabile per la loro protezione. Il rilevamento dei gas può essere fornito sia in formafissacheportatile. I nostri rilevatori di gas portatili proteggono da un'ampia gamma di rischi di gas, tra cuiT4x,Gasman,Tetra 3,Gas-Pro,T4, eDetective+. I nostri rivelatori di gas fissi sono utilizzati in molte applicazioni in cui l'affidabilità, l'attendibilità e l'assenza di falsi allarmi sono fondamentali per una rivelazione efficiente ed efficace dei gas, tra cuiXgard,Xgard Bright, XgardIQ e IRmax. In combinazione con una serie di rivelatori fissi, le nostre centrali di rivelazione gas offrono una gamma flessibile di soluzioni che misurano gas infiammabili, tossici e ossigeno, ne segnalano la presenza e attivano allarmi o apparecchiature associate. Vortex e Gasmonitor.

Per saperne di più sui rischi del gas nell'industria energetica, visitate la nostrapagina dedicata al settoreper maggiori informazioni.

Introduzione all'industria del petrolio e del gas 

L'industria del petrolio e del gas è una delle più grandi al mondo e contribuisce in modo significativo all'economia globale. Questo vasto settore è spesso separato in tre settori principali: upstream, midstream e downstream. Ogni settore è caratterizzato da rischi specifici per il gas.

A monte

Il settore a monte dell'industria petrolifera e del gas, talvolta definito esplorazione e produzione (o E&P), si occupa della localizzazione di siti per l'estrazione di petrolio e gas, della successiva perforazione, del recupero e della produzione di petrolio greggio e gas naturale. La produzione di petrolio e gas è un'industria ad alta intensità di capitale, che richiede l'uso di macchinari costosi e di lavoratori altamente qualificati. Il settore upstream è molto vasto e comprende operazioni di trivellazione sia onshore che offshore.

Il principale rischio di gas che si incontra nell'upstream petrolifero e del gas è l'idrogeno solforato (H2S), un gas incolore noto per il suo caratteristico odore di uova marce. L'H2Sè un gas altamente tossico e infiammabile che può avere effetti nocivi sulla nostra salute, portando alla perdita di coscienza e persino alla morte a livelli elevati.

La soluzione di Crowcon per il rilevamento dell'idrogeno solforato è rappresentata da , un rilevatore di gas intelligente che aumenta la sicurezza riducendo al minimo il tempo che gli operatori devono dedicare alle aree pericolose. XgardIQ, un rilevatore di gas intelligente che aumenta la sicurezza riducendo al minimo il tempo che gli operatori devono trascorrere nelle aree pericolose. XgardIQ è disponibile con sensoreH2Sad alta temperaturaprogettato specificamente per gli ambienti difficili del Medio Oriente.

Midstream

Il settore midstream dell'industria petrolifera e del gas comprende lo stoccaggio, il trasporto e la lavorazione del petrolio greggio e del gas naturale. Il trasporto di petrolio greggio e gas naturale avviene sia via terra che via mare, con grandi volumi trasportati da navi cisterna e imbarcazioni marine. Sulla terraferma, i metodi di trasporto utilizzati sono le navi cisterna e gli oleodotti. Le sfide del settore midstream includono, ma non solo, il mantenimento dell'integrità delle navi di stoccaggio e trasporto e la protezione dei lavoratori coinvolti nelle attività di pulizia, spurgo e riempimento.

Il monitoraggio dei serbatoi di stoccaggio è essenziale per garantire la sicurezza dei lavoratori e dei macchinari.

A valle

Il settore a valle si riferisce alla raffinazione e alla lavorazione del gas naturale e del petrolio greggio e alla distribuzione dei prodotti finiti. È la fase del processo in cui le materie prime vengono trasformate in prodotti che vengono utilizzati per diversi scopi, come l'alimentazione dei veicoli e il riscaldamento delle abitazioni.

Il processo di raffinazione del petrolio greggio è generalmente suddiviso in tre fasi fondamentali: separazione, conversione e trattamento. Il trattamento del gas naturale prevede la separazione dei vari idrocarburi e fluidi per produrre gas di qualità "da gasdotto".

I rischi di gas tipici del settore downstream sono l'idrogeno solforato, il biossido di zolfo, l'idrogeno e un'ampia gamma di gas tossici. Il sistema Crowcon Xgard e Xgard Bright Crowcon offrono entrambi un'ampia gamma di opzioni di sensori per coprire tutti i rischi di gas presenti in questo settore. Xgard Bright è disponibile anche con il sensore di nuova generazione sensore MPS™ di nuova generazioneper il rilevamento di oltre 15 gas infiammabili in un unico rilevatore. Sono inoltre disponibili monitor personali sia singoli che multigas per garantire la sicurezza dei lavoratori in questi ambienti potenzialmente pericolosi. Questi includono i sensori Gas-Pro e T4x, con Gas-Pro che supporta 5 gas in una soluzione compatta e robusta.

Miniere d'oro: Di quale rilevazione di gas ho bisogno? 

Come si estrae l'oro?

L'oro è una sostanza rara, pari a 3 parti per miliardo dello strato esterno della Terra, e la maggior parte dell'oro disponibile al mondo proviene dall'Australia. L'oro, come il ferro, il rame e il piombo, è un metallo. Esistono due forme principali di estrazione dell'oro: quella a cielo aperto e quella sotterranea. L'estrazione a cielo aperto prevede l'utilizzo di attrezzature di movimento terra per rimuovere la roccia di scarto dal corpo minerario sovrastante, per poi procedere all'estrazione dalla sostanza rimanente. Questo processo richiede che i rifiuti e il minerale vengano colpiti ad alto volume per romperli in dimensioni adatte alla movimentazione e al trasporto verso le discariche e i frantoi. L'altra forma di estrazione dell'oro è il più tradizionale metodo di estrazione sotterranea. In questo caso, i pozzi verticali e i tunnel a spirale trasportano i lavoratori e le attrezzature all'interno e all'esterno della miniera, garantendo la ventilazione e il trasporto in superficie della roccia di scarto e del minerale.

Rilevamento dei gas nell'industria mineraria

Quando si tratta di rilevamento di gas, il processo di salute e sicurezza all'interno delle miniere si è sviluppato notevolmente nel corso dell'ultimo secolo, passando dall'uso grezzo del test della parete dello stoppino di metano, dei canarini e della sicurezza della fiamma alle moderne tecnologie e processi di rilevamento dei gas così come li conosciamo. Assicurarsi che venga utilizzato il tipo corretto di apparecchiatura di rilevamento, sia essa fisso fisso o portatileprima di entrare in questi spazi. L'uso corretto dell'apparecchiatura garantisce il monitoraggio accurato dei livelli di gas e l'allerta dei lavoratori in caso di concentrazioni pericolose. concentrazioni pericolose pericolose all'interno dell'atmosfera alla prima occasione.

Quali sono i rischi del gas e quali i pericoli?

I pericoli che corrono coloro che lavorano nell'industria mineraria sono rappresentati da numerosi rischi e malattie professionali e dalla possibilità di infortuni mortali. Pertanto, è importante comprendere gli ambienti e i pericoli a cui possono essere esposti.

Ossigeno (O2)

L'ossigeno (O2), normalmente presente nell'aria al 20,9%, è essenziale per la vita umana. Ci sono tre ragioni principali per cui l'ossigeno rappresenta una minaccia per i lavoratori dell'industria mineraria. Queste includono carenza o arricchimento di ossigenoLa carenza di ossigeno può impedire al corpo umano di funzionare, causando la perdita di coscienza del lavoratore. Se il livello di ossigeno non viene riportato a un livello medio, il lavoratore è a rischio di morte. Un'atmosfera è carente quando la concentrazione di O2 è inferiore al 19,5%. Di conseguenza, un ambiente con una quantità eccessiva di ossigeno è altrettanto pericoloso, in quanto comporta un aumento del rischio di incendio e di esplosione. Si parla di atmosfera carente quando il livello di concentrazione di O2 è superiore al 23,5%.

Monossido di carbonio (CO)

In alcuni casi, possono essere presenti alte concentrazioni di monossido di carbonio (CO). Tra gli ambienti in cui ciò può accadere vi è l'incendio di una casa, per cui i vigili del fuoco sono a rischio di avvelenamento da CO. In questo ambiente può essere presente nell'aria fino al 12,5% di CO; quando il monossido di carbonio sale al soffitto insieme ad altri prodotti di combustione e la concentrazione raggiunge il 12,5% in volume, si verifica una sola cosa, il cosiddetto flashover. Questo è il momento in cui l'intera massa si incendia come combustibile. A parte gli oggetti che cadono addosso ai vigili del fuoco, questo è uno dei pericoli più estremi che corrono quando lavorano all'interno di un edificio in fiamme. Poiché le caratteristiche del CO sono difficili da identificare (gas incolore, inodore, insapore e velenoso), può essere necessario del tempo per rendersi conto di essere intossicati dal CO. Gli effetti del CO possono essere pericolosi, perché il CO impedisce al sistema sanguigno di trasportare efficacemente l'ossigeno nel corpo, in particolare agli organi vitali come il cuore e il cervello. Dosi elevate di CO, quindi, possono causare la morte per asfissia o per mancanza di ossigeno al cervello. Secondo le statistiche del Ministero della Salute, l'indicazione più comune di avvelenamento da CO è il mal di testa, che viene riferito dal 90% dei pazienti, mentre il 50% riferisce nausea e vomito, oltre a vertigini. La confusione e i cambiamenti di coscienza e la debolezza rappresentano il 30% e il 20% delle segnalazioni.

Solfuro di idrogeno (H2S)

L'idrogeno solforato (H2S) è un gas incolore e infiammabile con un odore caratteristico di uova marce. Può verificarsi un contatto con la pelle e con gli occhi. Tuttavia, il sistema nervoso e il sistema cardiovascolare sono i più colpiti dall'idrogeno solforato, che può provocare una serie di sintomi. Singole esposizioni ad alte concentrazioni possono causare rapidamente difficoltà respiratorie e morte.

Biossido di zolfo (SO2)

L'anidride solforosa (SO2) può provocare diversi effetti nocivi sull'apparato respiratorio, in particolare sui polmoni. Può anche causare irritazioni cutanee. Il contatto con la pelle (SO2) provoca dolore pungente, arrossamento della pelle e vesciche. Il contatto della pelle con il gas o il liquido compresso può causare congelamento. Il contatto con gli occhi provoca lacrimazione e, nei casi più gravi, cecità.

Metano (CH4)

Il metano (CH4) è un gas incolore e altamente infiammabile, il cui componente principale è il gas naturale. Livelli elevati di (CH4) possono ridurre la quantità di ossigeno respirato nell'aria, con conseguenti cambiamenti d'umore, eloquio rallentato, problemi alla vista, perdita di memoria, nausea, vomito, arrossamento del viso e mal di testa. Nei casi più gravi, possono verificarsi alterazioni della respirazione e della frequenza cardiaca, problemi di equilibrio, intorpidimento e perdita di coscienza. Tuttavia, se l'esposizione è prolungata, può essere fatale.

Idrogeno (H2)

L'idrogeno gassoso è un gas incolore, inodore e insapore, più leggero dell'aria. Essendo più leggero dell'aria, significa che fluttua più in alto della nostra atmosfera, il che significa che non si trova in natura, ma deve essere creato. L'idrogeno rappresenta un rischio di incendio o di esplosione, oltre che di inalazione. Elevate concentrazioni di questo gas possono causare un ambiente con carenza di ossigeno. Chi respira un'atmosfera di questo tipo può accusare sintomi quali mal di testa, ronzio alle orecchie, vertigini, sonnolenza, incoscienza, nausea, vomito e depressione di tutti i sensi.

Ammoniaca (NH3)

L'ammoniaca (NH3) è una delle sostanze chimiche più utilizzate a livello globale, prodotta sia dal corpo umano che dalla natura. Pur essendo prodotta naturalmente, l'NH3 è corrosiva e costituisce un problema per la salute. Un'elevata esposizione nell'aria può provocare un immediato bruciore agli occhi, al naso, alla gola e alle vie respiratorie. In casi gravi può provocare cecità.

Altri rischi legati al gas

Sebbene il cianuro di idrogeno (HCN) non persista nell'ambiente, lo stoccaggio, la manipolazione e la gestione impropria dei rifiuti possono comportare gravi rischi per la salute umana e per l'ambiente. Il cianuro interferisce con la respirazione umana a livello cellulare e può causare effetti gravi e acuti, tra cui respirazione rapida, tremori e asfissia.

L'esposizione al particolato diesel può verificarsi nelle miniere sotterranee a causa delle attrezzature mobili alimentate a diesel utilizzate per la perforazione e il trasporto. Sebbene le misure di controllo includano l'uso di carburante diesel a basso tenore di zolfo, la manutenzione dei motori e la ventilazione, le implicazioni per la salute includono un rischio eccessivo di cancro ai polmoni.

Prodotti che possono aiutare a proteggersi

Crowcon offre una gamma di prodotti per il rilevamento di gas, sia portatili che fissi, tutti adatti al rilevamento di gas nell'industria mineraria.

Per saperne di più, visitate la nostra pagina del settore qui.

Cosa c'è da sapere sull'idrogeno?

L'idrogeno, insieme ad altre fonti rinnovabili e al gas naturale, ha un ruolo sempre più vitale nel panorama dell'energia pulita. L'idrogeno si trova in vari elementi, tra cui la luce, l'acqua, l'aria, le piante e gli animali, ma è spesso combinato con altre sostanze chimiche; la combinazione più nota è quella con l'ossigeno per ottenere l'acqua.

Cos'è l'idrogeno e quali sono i suoi benefici?

Storicamente, l'idrogeno gassoso è stato usato come componente per il combustibile dei razzi e nelle turbine a gas per produrre elettricità o per bruciare per far funzionare i motori a combustione per la generazione di energia. Nell'industria del petrolio e del gas, l'idrogeno in eccesso dal reforming catalitico della nafta è stato usato come combustibile per altre operazioni di unità.

L'idrogeno gassoso è un gas incolore, inodore e insapore, più leggero dell'aria. Essendo più leggero dell'aria, questo significa che galleggia più in alto della nostra atmosfera, il che significa che non si trova in natura, ma deve essere creato. Questo viene fatto separandolo da altri elementi e raccogliendo il vapore. L'elettrolisi si completa prendendo l'acqua liquida e separandola dagli elementi chimici che si trovano al suo interno. Nell'acqua le molecole di idrogeno e di ossigeno si separano lasciando due legami di idrogeno e un legame di ossigeno. Gli atomi di idrogeno formano un gas che viene catturato e immagazzinato fino al momento del bisogno, gli atomi di ossigeno vengono rilasciati nell'aria perché non sono più utili. Il gas di idrogeno che viene prodotto non lascia alcun impatto dannoso sull'ambiente, portando molti esperti a credere che questo sia il futuro.

Perché l'idrogeno è visto come un futuro più pulito.

Per produrre energia si brucia un combustibile che è una sostanza chimica. Questo processo di solito significa che i legami chimici vengono rotti e combinati con l'ossigeno. Tradizionalmente, il gas metano è stato il gas naturale di scelta con l'85% delle case e il 40% dell'elettricità del Regno Unito che dipende dal gas. Il metano era visto come un gas più pulito rispetto al carbone, tuttavia, quando viene bruciato, l'anidride carbonica viene prodotta come prodotto di scarto, contribuendo così al cambiamento climatico. Il gas idrogeno quando viene bruciato produce solo vapore acqueo come prodotto di scarto, essendo questo già una risorsa naturale.

La differenza tra l'idrogeno blu e l'idrogeno verde.

L'idrogeno blu viene prodotto da fonti energetiche non rinnovabili, attraverso due metodi: a vapore o autotermico. La riformazione del metano a vapore è il metodo più comune per la produzione di idrogeno in massa. Questo metodo utilizza un reformer che produce vapore ad alta temperatura e pressione e viene combinato con il metano e un catalizzatore al nichel per produrre idrogeno e monossido di carbonio. Il reforming autotermico utilizza lo stesso processo, ma con ossigeno e anidride carbonica. Entrambi i metodi producono carbonio come sottoprodotto.

L'idrogeno verde viene prodotto utilizzando l'elettricità per alimentare un elettrolizzatore che separa l'idrogeno dalla molecola d'acqua producendo ossigeno come sottoprodotto. Inoltre, l'elettricità in eccesso può essere utilizzata per l'elettrolisi per creare idrogeno gassoso che può essere immagazzinato per il futuro.

Le caratteristiche che l'idrogeno presenta, ha creato un precedente per il futuro dell'energia. Il governo britannico l'ha visto come una via da seguire per un modo di vivere più verde e ha fissato un obiettivo per una fiorente economia dell'idrogeno entro il 2030. Mentre il Giappone, la Corea del Sud e la Cina sono in procinto di fare progressi significativi nello sviluppo dell'idrogeno con obiettivi fissati per eguagliare il Regno Unito per il 2030. Allo stesso modo, la Commissione europea ha presentato una strategia sull'idrogeno in cui l'idrogeno potrebbe fornire il 24% dell'energia mondiale entro il 2050.

Per ulteriori informazioni, visitate la nostra pagina dedicata al settore e date un'occhiata ad altre risorse sull'idrogeno:

I pericoli dell'idrogeno

Idrogeno verde - una panoramica

Idrogeno blu - Una panoramica

Xgard Bright MPS fornisce il rilevamento dell'idrogeno nell'applicazione di stoccaggio dell'energia

 

 

Sensibilità incrociata dei sensori tossici: Chris studia i gas a cui il sensore è esposto

Lavorando nell'assistenza tecnica, una delle domande più comuni da parte dei clienti riguarda le configurazioni su misura dei sensori di gas tossici. Questo porta spesso a un'indagine sulla sensibilità incrociata dei diversi gas a cui il sensore sarà esposto.

Le risposte alla sensibilità incrociata variano da un tipo di sensore all'altro, e i fornitori spesso esprimono la sensibilità incrociata in percentuale, mentre altri specificano in livelli effettivi di parti per milione (ppm).

Continua a leggere "Sensibilità incrociata dei sensori tossici: Chris studia i gas a cui il sensore è esposto"