Un futuro a batteria: L'ascesa delle batterie agli ioni di litio e il suo significato per gli sforzi di sostenibilità

Mentre ci muoviamo collettivamente verso un futuro più verde, in cui il passaggio a soluzioni energetiche sostenibili è diventato una questione socio-politica globale centrale, le batterie agli ioni di litio sono diventate una possibile soluzione. Grazie alla loro capacità di immagazzinare grandi quantità di energia in una forma relativamente leggera e compatta, hanno rivoluzionato qualsiasi cosa, dagli indossabili ai veicoli elettrici. Ma fino a che punto un futuro a batteria è davvero la soluzione energetica perfetta che stavamo cercando?

Facilitare le opportunità di energia più verde

L'aumento delle batterie agli ioni di litio comporta una serie di vantaggi nel momento in cui ci allontaniamo dalla dipendenza dai combustibili fossili, contribuendo a ridurre in modo significativo le emissioni di gas serra e l'inquinamento atmosferico. Soprattutto in relazione all'elettrificazione dei trasporti attraverso i veicoli elettrici (EV). Alimentando i veicoli elettrici con elettricità pulita immagazzinata nelle batterie, il settore dei trasporti può ridurre la sua dipendenza dai combustibili fossili e diminuire le emissioni di gas serra e di sostanze inquinanti. Man mano che il settore dei veicoli elettrici diventa più competitivo e che molti governi incentivano l'aumento dei veicoli elettrici, i progressi della tecnologia delle batterie continuano a migliorare l'autonomia, la velocità di ricarica e l'accessibilità dei veicoli elettrici, accelerandone l'adozione e riducendo ulteriormente la dipendenza dai veicoli con motore a combustione interna.

Le batterie agli ioni di litio svolgono inoltre un ruolo sempre più cruciale nella stabilizzazione delle reti elettriche, consentendo l'integrazione di fonti energetiche rinnovabili intermittenti, come l'energia solare ed eolica, nella rete elettrica. Il sole non splende sempre e non c'è sempre vento, ma immagazzinando l'energia in eccesso generata durante i periodi di alta produzione e scaricandola quando serve, le batterie facilitano una fornitura affidabile di energia pulita in modo stabile e affidabile, che in precedenza era difficile da ottenere. Ottimizzando la gestione dell'energia e riducendo le perdite associate ai sistemi energetici tradizionali, le batterie contribuiscono a un uso più efficiente e sostenibile dell'energia in vari settori.

Quanto sono ecologiche le batterie agli ioni di litio?

Tuttavia, la crescente diffusione delle batterie ha comportato una serie di implicazioni ambientali. L'estrazione e la lavorazione dei metalli delle terre rare, come il litio e il cobalto, sono spesso condotte in condizioni di sfruttamento nelle regioni minerarie e il processo di estrazione può avere impatti ambientali significativi, tra cui la distruzione degli habitat e l'inquinamento delle acque. Inoltre, anche lo smaltimento delle batterie agli ioni di litio al termine del loro ciclo di vita pone problemi di riciclaggio e di potenziale dispersione di rifiuti pericolosi nell'ambiente.

Tuttavia, c'è un'altra area di preoccupazione per le batterie agli ioni di litio che, con il loro crescente utilizzo, ha portato a un aumento degli incidenti pericolosi: la loro natura volatile e combustibile. Chiunque abbia assistito a una fuga termica delle batterie agli ioni di litio non può fare a meno di riconoscere il rischio connesso al loro uso crescente. Anche il malfunzionamento di piccoli dispositivi elettronici di consumo agli ioni di litio può causare esplosioni e incendi mortali e devastanti, per cui lo stoccaggio e l'uso delle batterie su scala più ampia necessitano di solide misure di sicurezza.

Gestione del rischio con le batterie agli ioni di litio

Fortunatamente, esistono modi per mitigare il rischio legato alle batterie agli ioni di litio. In genere, i sistemi di gestione delle batterie (BMS) vengono utilizzati per monitorare il livello di carica, la tensione, la corrente e la temperatura della batteria, il che può aiutare a identificare i problemi delle batterie. Tuttavia, esiste un metodo più efficiente e affidabile per rilevare il fenomeno della fuga termica: il rilevamento dei gas.

Prima del runaway termico, le batterie subiscono un processo di "off-gassing", durante il quale vengono rilasciate quantità maggiori di COV tossici. Monitorando i gas intorno alle batterie, è possibile identificare i segni di stress o di danneggiamento prima dell'inizio del runaway termico.

Attualmente, molti assicuratori si concentrano sul rischio di incendio, incoraggiando i sistemi di accumulo di energia a batteria (BESS) a dotarsi di processi per garantire che gli incendi possano essere controllati e gestiti nel modo più rapido ed efficace possibile. Tuttavia, poiché le batterie agli ioni di litio sono altamente sensibili alla temperatura, una volta che un incendio è scoppiato in una batteria, è probabile che anche le altre batterie nelle vicinanze vengano irrimediabilmente danneggiate o che inizino a loro volta una fuga termica. La soluzione è semplice: identificare i problemi nella fase più precoce possibile attraverso il rilevamento dei gas e garantire che gli incendi non possano innescarsi per evitare un disastro.

La sicurezza non ha prezzo

Il costo legato all'investimento in un sofisticato sistema di rilevamento dei gas è trascurabile rispetto al costo dell'incendio - circa lo 0,01% del costo di un nuovo progetto - e ciò lo rende una scelta ovvia per chi cerca di mitigare i rischi legati alla produzione, allo stoccaggio e all'utilizzo delle batterie agli ioni di litio. I danni alla proprietà, i costi per la salute umana (e persino per la vita), nonché i danni causati all'ambiente naturale con potenziali problemi di contaminazione a seguito di un guasto della batteria sono tutti ampi e significativi. Se a ciò si aggiunge la minaccia per il mantenimento dell'attività, oltre al controllo dei danni necessari, la necessità di evitare operazioni di bonifica complicate e costose è fondamentale. Questo è un aspetto che il team di Crowcon comprende meglio di chiunque altro.

Crowcon lavorerà a stretto contatto con voi per garantire che la vostra azienda e il vostro personale siano il più possibile al sicuro grazie a una tecnologia di rilevamento dei gas all'avanguardia, come il sensore MPS™. La nostra tecnologia Molecular Property Spectrometer™ (MPS™) rileva con precisione oltre 15 gas pericolosi in un unico strumento, consentendo un più elevato standard di rilevamento dei gas infiammabili e una maggiore fiducia nella sicurezza della batteria.

Clicca qui per parlare con noi di salvaguardiala vostra la vostra azienda

Sebbene la realizzazione del pieno potenziale della tecnologia agli ioni di litio richieda ancora di affrontare le sfide ambientali e sociali associate alla sua produzione, manutenzione e smaltimento, la crescente diffusione delle batterie agli ioni di litio rappresenta un passo significativo verso un futuro energetico più sostenibile e pulito. L'innovazione nella manutenzione e nel miglioramento dell'efficienza delle tecnologie per le energie rinnovabili, come le batterie ricaricabili, è un passo cruciale per allontanare la società dalla dipendenza dai combustibili fossili. Dall'alimentazione dei nostri dispositivi quotidiani alla transizione verso il trasporto elettrico e l'energia rinnovabile, le batterie agli ioni di litio sono in prima linea nella rivoluzione della sostenibilità e il team di Crowcon è a disposizione per contribuire a creare un futuro più verde e sicuro per le generazioni a venire.

Per ulteriori informazioni sulla sicurezza delle batterie, scaricate il nostro eBook "The Battery Boom: The Explosive Rise of Thermal Runaway and how you can prevent it".

Ottenete una copia GRATUITA dell'eBook "Il boom delle batterie".

Volete saperne di più su come Crowcon può aiutarvi a salvaguardare il futuro della vostra azienda con sistemi di rilevamento di gas di prima qualità? Cliccate qui per contattare un membro del nostro team per una chiacchierata senza impegno.

Spettrometro di proprietà molecolare™ Sensori di gas infiammabili

Sviluppati da NevadaNano, i sensori Molecular Property Spectrometer™ (MPS™) rappresentano la nuova generazione di rilevatori di gas infiammabili. la prossima generazione di rilevatori di gas infiammabili. MPS™ è in grado di rilevare rapidamente oltre 15 gas infiammabili caratterizzati contemporaneamente. Fino a poco tempo fa, chi aveva bisogno di monitorare i gas infiammabili doveva scegliere un rilevatore di gas infiammabili tradizionale contenente un sensore a pellistor calibrato per un gas specifico, oppure un sensore a infrarossi (IR) che varia anch'esso in uscita a seconda del gas infiammabile da misurare e quindi deve essere calibrato per ogni gas. Pur rimanendo soluzioni vantaggiose, non sempre sono ideali. Ad esempio, entrambi i tipi di sensori richiedono una calibrazione regolare e i sensori a pellistor catalitici necessitano anche di frequenti bump test per assicurarsi che non siano stati danneggiati da agenti contaminanti (noti come "agenti di avvelenamento del sensore") o da condizioni difficili. In alcuni ambienti, i sensori devono essere sostituiti frequentemente, il che è costoso sia in termini di denaro che di tempi di inattività o di disponibilità del prodotto. La tecnologia IR non è in grado di rilevare l'idrogeno, che non ha una firma IR, e sia i rivelatori IR che quelli a pellistor a volte rilevano incidentalmente altri gas (cioè non calibrati), fornendo letture imprecise che possono innescare falsi allarmi o preoccupare gli operatori.

Basandosi su oltre 50 anni di esperienza nel settore dei gas, Crowcon è all'avanguardia nella tecnologia dei sensori tecnologia del sensore MPS che rileva e identifica con precisione oltre 15 diversi gas infiammabili in un unico dispositivo. Ora è disponibile nei rivelatori fissi e portatili di Crowcon. Xgard Bright rivelatori fissi e portatili di Crowcon Gasman e T4x.

Vantaggi dei sensori per gas infiammabili Molecular Property Spectrometer™

Il sensore MPS offre caratteristiche chiave che forniscono vantaggi tangibili all'operatore e ai lavoratori. Queste caratteristiche includono:

Nessuna calibrazione

Quando si implementa un sistema contenente un rilevatore a testina fissa, è prassi comune eseguire la manutenzione secondo un programma raccomandato dal produttore. Ciò comporta costi periodici e la possibilità di interrompere la produzione o il processo per effettuare la manutenzione o addirittura accedere al rilevatore o a più rilevatori. Può anche esserci un rischio per il personale quando i rilevatori sono montati in ambienti particolarmente pericolosi. L'interazione con un sensore MPS è meno severa perché non ci sono modalità di guasto non rivelate, a condizione che sia presente aria. Sarebbe sbagliato dire che non c'è alcun requisito di calibrazione. È sufficiente una calibrazione in fabbrica, seguita da un test del gas al momento della messa in servizio, perché la calibrazione interna automatica viene eseguita ogni 2 secondi per tutta la durata di vita del sensore. Ciò che si intende veramente è: nessuna calibrazione da parte del cliente.

Gas multispecie - 'Vero LEL'™

Molti settori e applicazioni utilizzano o hanno come sottoprodotto più gas all'interno dello stesso ambiente. Questo può essere un problema per la tecnologia dei sensori tradizionali, che possono rilevare solo un singolo gas per il quale sono stati calibrati al livello corretto e possono dare luogo a letture imprecise e persino a falsi allarmi che possono arrestare il processo o la produzione se è presente un altro tipo di gas infiammabile. La mancanza di risposta o la risposta eccessiva che si verifica spesso in ambienti con più gas può essere frustrante e controproducente, compromettendo la sicurezza delle migliori pratiche degli utenti. Il sensore MPS™ è in grado di rilevare con precisione più gas contemporaneamente e di identificare istantaneamente il tipo di gas. Inoltre, il sensore MPS™ dispone di una compensazione ambientale a bordo e non richiede un fattore di correzione applicato esternamente. Letture imprecise e falsi allarmi appartengono al passato.

Nessun avvelenamento del sensore

In alcuni ambienti i sensori tradizionali possono essere a rischio di avvelenamento. Pressione, temperatura e umidità estreme possono danneggiare i sensori, mentre le tossine e i contaminanti ambientali possono "avvelenare" i sensori, compromettendo gravemente le prestazioni. Per i rivelatori che si trovano in ambienti in cui si possono incontrare veleni o inibitori, l'unico modo per garantire che le prestazioni non vengano compromesse è eseguire test regolari e frequenti. I guasti ai sensori dovuti all'avvelenamento possono essere costosi. La tecnologia del sensore MPS™ non è influenzata dai contaminanti presenti nell'ambiente. I processi che presentano contaminazioni hanno ora accesso a una soluzione che funziona in modo affidabile con un design a prova di guasto per avvisare l'operatore e offrire la massima tranquillità al personale e ai beni situati in ambienti pericolosi. Inoltre, il sensore MPS non viene danneggiato da elevate concentrazioni di gas infiammabili, che potrebbero causare cricche nei sensori catalitici tradizionali. Il sensore MPS continua a funzionare.

Idrogeno (H2)

L'uso dell'idrogeno nei processi industriali è in aumento, in quanto si cerca di trovare un'alternativa più pulita all'uso del gas naturale. Il rilevamento dell'idrogeno è attualmente limitato ai pellistor, ai semiconduttori a ossido metallico, alla tecnologia elettrochimica e alla meno accurata tecnologia dei sensori di conducibilità termica, a causa dell'incapacità dei sensori a infrarossi di rilevare l'idrogeno. Di fronte alle sfide evidenziate sopra in termini di avvelenamento o falsi allarmi, l'attuale soluzione può costringere l'operatore a frequenti prove di urto e manutenzione, oltre a problemi di falsi allarmi. Il sensore MPS™ offre una soluzione di gran lunga migliore per il rilevamento dell'idrogeno, eliminando i problemi che si presentano con la tecnologia dei sensori tradizionali. Un sensore di idrogeno a lunga durata e a risposta relativamente rapida che non richiede calibrazione per tutto il ciclo di vita del sensore, senza il rischio di avvelenamento o di falsi allarmi, può far risparmiare in modo significativo sul costo totale di proprietà e riduce l'interazione con l'unità, con conseguente tranquillità e riduzione del rischio per gli operatori che utilizzano la tecnologia MPS™. Tutto questo è possibile grazie alla tecnologia MPS™, che rappresenta la più grande innovazione nel campo del rilevamento dei gas da diversi decenni.

Come funziona il sensore per gas infiammabili Molecular Property Spectrometer™

Un trasduttore del sistema microelettromeccanico (MEMS), costituito da una membrana inerte di dimensioni micrometriche con un riscaldatore e un termometro incorporati, misura le variazioni delle proprietà termiche dell'aria e dei gas nelle sue vicinanze. Le misurazioni multiple, simili a uno "spettro" termico, e i dati ambientali vengono elaborati per classificare il tipo e la concentrazione di gas infiammabili presenti, comprese le miscele di gas. Questa operazione è chiamata VeroLEL.

  1. Il gas si disinnesca rapidamente attraverso la griglia del sensore e nella camera del sensore, entrando nel modulo del sensore MEMS.
  2. Il riscaldatore a joule riscalda rapidamente la piastra.
  3. Le condizioni ambientali in tempo reale (temperatura, pressione e umidità) sono misurate dal sensore ambientale integrato.
  4. L'energia necessaria per riscaldare il campione viene misurata con precisione mediante una termoresistenza.
  5. Il livello di gas, corretto per la categoria di gas e le condizioni ambientali, viene calcolato e inviato al rilevatore di gas.

MPS nei nostri prodotti

Xgard Bright

Molti settori e applicazioni utilizzano o hanno come sottoprodotto più gas all'interno dello stesso ambiente. Ciò può costituire una sfida per la tecnologia dei sensori tradizionali, che possono rilevare solo un singolo gas per il quale sono stati calibrati al livello corretto, con conseguenti letture imprecise. 

Xgard Bright con la tecnologia del sensore MPS™ fornisce un'TrueLEL™'per tutti i gas infiammabili in qualsiasi ambiente multispecie, senza bisogno dirichiedere la calibrazioneomanutenzione programmatanel corso del suociclo di vita di oltre 5 anniriducendo le interruzioni delle operazioni e aumentando il tempo di attività. A sua volta, questo riduce l'interazione con il rilevatore, con conseguente riduzione del costo totale di proprietà.un costo totale di proprietà inferioreper il ciclo di vita del sensore e un rischio ridotto per il personale e la produzione per completare la manutenzione regolare.Xgard Bright MPS™ èè fatto su misura per il rilevamento dell'idrogenoCon il sensore MPS™ è sufficiente un solo dispositivo per risparmiare spazio senza compromettere la sicurezza.

Gasman

La nostra tecnologia dei sensori MPS™ è stata progettata per gli ambienti multigas di oggi, resiste alla contaminazione e previene l'avvelenamento del sensore. Offrite ai vostri team la massima tranquillità con un dispositivo costruito appositamente per qualsiasi ambiente. La tecnologia MPS dei nostri monitor portatili per gas rileva automaticamente l'idrogeno e gli idrocarburi comuni in un unico sensore. I nostri Gasman sono affidabili e sicuri, con la tecnologia dei sensori leader del settore che le vostre applicazioni richiedono.

Gasman MPS™ fornisce un'TrueLEL™'per tutti i gas infiammabili in qualsiasi ambiente multi specie, senzarichiedere la calibrazioneomanutenzione programmatanel corso del suociclo di vita di oltre 5 anniriducendo le interruzioni delle operazioni e aumentando il tempo di attività.Essereresistente al velenoe condurata della batteria raddoppiatagli operatori hanno maggiori probabilità di non rimanere mai senza il dispositivo.Gasman MPS™ è omologato ATEXZona 0consentendo agli operatori di entrare in un'area in cui è presente un'atmosfera di gas esplosivi in modo continuativo o per lunghi periodi senza temere che il loro Gasman possa incendiare l'ambiente circostante.

T4x

T4xPoiché il settore richiede continuamente miglioramenti in termini di sicurezza, riduzione dell'impatto ambientale e riduzione dei costi di gestione, i nostri prodotti portatili affidabili e affidabili sono in grado di soddisfare le esigenze dei clienti. T4x risponde a queste esigenze con le sue tecnologie di sensori leader del settore. È progettato specificamente per soddisfare le esigenze delle vostre applicazioni. 

T4x aiuta i team operativi a concentrarsi su attività a maggior valore aggiunto, riducendo il numero di sostituzioni dei sensori.riducendo il numero di sostituzioni dei sensoridel 75% e aumentando l'affidabilità dei sensori.

Garantendo la conformità in tutto il sito T4x aiuta i responsabili della salute e della sicurezzaeliminando la necessità di garantire la calibrazione di ogni dispositivoper il gas infiammabile in questione, poiché ne rileva accuratamente più di 15 contemporaneamente.Essendo resistente al velenoe condurata della batteria raddoppiatagli operatori hanno maggiori probabilità di non rimanere mai senza dispositivo.T4x riduce il costo totale di proprietà a 5 anni.costo totale di proprietà a 5 annidi oltre il 25% erisparmia 12 g di piombo per piombo per rilevatoreche lo rende molto più facile da riciclare alla fine del suo ciclo di vita e migliore per il pianeta.

Per saperne di più sulla Crowcon, visitare https://www.crowcon.com o per saperne di più su MPS visitare https://www.crowcon.com/mpsinfixed/

Introduzione all'industria del petrolio e del gas 

L'industria del petrolio e del gas è una delle più grandi al mondo e contribuisce in modo significativo all'economia globale. Questo vasto settore è spesso separato in tre settori principali: upstream, midstream e downstream. Ogni settore è caratterizzato da rischi specifici per il gas.

A monte

Il settore a monte dell'industria petrolifera e del gas, talvolta definito esplorazione e produzione (o E&P), si occupa della localizzazione di siti per l'estrazione di petrolio e gas, della successiva perforazione, del recupero e della produzione di petrolio greggio e gas naturale. La produzione di petrolio e gas è un'industria ad alta intensità di capitale, che richiede l'uso di macchinari costosi e di lavoratori altamente qualificati. Il settore upstream è molto vasto e comprende operazioni di trivellazione sia onshore che offshore.

Il principale rischio di gas che si incontra nell'upstream petrolifero e del gas è l'idrogeno solforato (H2S), un gas incolore noto per il suo caratteristico odore di uova marce. L'H2Sè un gas altamente tossico e infiammabile che può avere effetti nocivi sulla nostra salute, portando alla perdita di coscienza e persino alla morte a livelli elevati.

La soluzione di Crowcon per il rilevamento dell'idrogeno solforato è rappresentata da , un rilevatore di gas intelligente che aumenta la sicurezza riducendo al minimo il tempo che gli operatori devono dedicare alle aree pericolose. XgardIQ, un rilevatore di gas intelligente che aumenta la sicurezza riducendo al minimo il tempo che gli operatori devono trascorrere nelle aree pericolose. XgardIQ è disponibile con sensoreH2Sad alta temperaturaprogettato specificamente per gli ambienti difficili del Medio Oriente.

Midstream

Il settore midstream dell'industria petrolifera e del gas comprende lo stoccaggio, il trasporto e la lavorazione del petrolio greggio e del gas naturale. Il trasporto di petrolio greggio e gas naturale avviene sia via terra che via mare, con grandi volumi trasportati da navi cisterna e imbarcazioni marine. Sulla terraferma, i metodi di trasporto utilizzati sono le navi cisterna e gli oleodotti. Le sfide del settore midstream includono, ma non solo, il mantenimento dell'integrità delle navi di stoccaggio e trasporto e la protezione dei lavoratori coinvolti nelle attività di pulizia, spurgo e riempimento.

Il monitoraggio dei serbatoi di stoccaggio è essenziale per garantire la sicurezza dei lavoratori e dei macchinari.

A valle

Il settore a valle si riferisce alla raffinazione e alla lavorazione del gas naturale e del petrolio greggio e alla distribuzione dei prodotti finiti. È la fase del processo in cui le materie prime vengono trasformate in prodotti che vengono utilizzati per diversi scopi, come l'alimentazione dei veicoli e il riscaldamento delle abitazioni.

Il processo di raffinazione del petrolio greggio è generalmente suddiviso in tre fasi fondamentali: separazione, conversione e trattamento. Il trattamento del gas naturale prevede la separazione dei vari idrocarburi e fluidi per produrre gas di qualità "da gasdotto".

I rischi di gas tipici del settore downstream sono l'idrogeno solforato, il biossido di zolfo, l'idrogeno e un'ampia gamma di gas tossici. Il sistema Crowcon Xgard e Xgard Bright Crowcon offrono entrambi un'ampia gamma di opzioni di sensori per coprire tutti i rischi di gas presenti in questo settore. Xgard Bright è disponibile anche con il sensore di nuova generazione sensore MPS™ di nuova generazioneper il rilevamento di oltre 15 gas infiammabili in un unico rilevatore. Sono inoltre disponibili monitor personali sia singoli che multigas per garantire la sicurezza dei lavoratori in questi ambienti potenzialmente pericolosi. Questi includono i sensori Gas-Pro e T4x, con Gas-Pro che supporta 5 gas in una soluzione compatta e robusta.

Breve storia del rilevamento dei gas 

L'evoluzione del rilevamento dei gas è cambiata notevolmente nel corso degli anni. Nuove idee innovative, dai canarini alle apparecchiature di monitoraggio portatili, forniscono ai lavoratori un monitoraggio continuo e preciso dei gas.

La rivoluzione industriale è stata il catalizzatore dello sviluppo del rilevamento dei gas grazie all'uso di combustibili molto promettenti, come il carbone. Poiché il carbone può essere estratto dalla terra attraverso l'estrazione mineraria o sotterranea, strumenti come elmetti e lampade a fiamma erano l'unica protezione dai pericoli dell'esposizione al metano nel sottosuolo, ancora da scoprire. Il gas metano è incolore e inodore, per cui è difficile accorgersi della sua presenza fino a quando non si scopre un modello evidente di problemi di salute. I rischi dell'esposizione al gas hanno portato a sperimentare metodi di rilevamento per preservare la sicurezza dei lavoratori per gli anni a venire.

Necessità di rilevare i gas

Quando l'esposizione al gas divenne evidente, i minatori capirono che dovevano sapere se nella miniera c'era una sacca di gas metano dove stavano lavorando. All'inizio del XIX secolo è stato registrato il primo rilevatore di gas e molti minatori indossavano luci a fiamma sull'elmetto per poter vedere mentre lavoravano, quindi la capacità di rilevare il metano, estremamente infiammabile, era fondamentale. Il lavoratore indossava una spessa coperta bagnata sul corpo e portava con sé un lungo stoppino con l'estremità accesa. Entrando nelle miniere, l'individuo muoveva la fiamma intorno e lungo le pareti alla ricerca di sacche di gas. Se le trovava, la reazione si accendeva e veniva segnalata all'equipaggio mentre la persona che rilevava era protetta dalla coperta. Con il tempo sono stati sviluppati metodi più avanzati per rilevare il gas.

L'introduzione dei canarini

Il rilevamento del gas è passato dagli esseri umani ai canarini, grazie ai loro forti cinguettii e ai sistemi nervosi simili per il controllo dei modelli di respirazione. I canarini venivano posizionati in determinate aree della miniera e da lì gli operai controllavano i canarini per prendersene cura e per verificare se la loro salute era stata compromessa. Durante i turni di lavoro, i minatori ascoltavano il cinguettio dei canarini. Se un canarino iniziava a scuotere la gabbia, era un forte indicatore dell'esposizione a una sacca di gas che aveva iniziato a compromettere la sua salute. I minatori evacuavano quindi la miniera e notavano che non era sicuro entrare. In alcune occasioni, se il canarino smetteva di cinguettare, i minatori sapevano di poter uscire più rapidamente prima che l'esposizione al gas avesse la possibilità di compromettere la loro salute.

La luce della fiamma

La lampada a fiamma è stata l'evoluzione successiva per il rilevamento del gas in miniera, a seguito delle preoccupazioni per la sicurezza degli animali. Pur fornendo luce ai minatori, la fiamma era alloggiata in un guscio antifiamma che assorbiva il calore e catturava la fiamma per evitare che incendiasse il metano eventualmente presente. Il guscio esterno conteneva un pezzo di vetro con tre incisioni orizzontali. La linea centrale era impostata come ambiente ideale per il gas, quella inferiore indicava un ambiente con carenza di ossigeno e quella superiore indicava l'esposizione al metano o un ambiente arricchito di ossigeno. I minatori accendevano la fiamma in un ambiente con aria fresca. Se la fiamma si abbassava o iniziava a spegnersi, indicava che l'atmosfera aveva una bassa concentrazione di ossigeno. Se la fiamma si allargava, i minatori sapevano che era presente metano con ossigeno, e in entrambi i casi indicavano che dovevano lasciare la miniera.

Il sensore catalitico

Sebbene la lampada a fiamma abbia rappresentato un'evoluzione nella tecnologia di rilevamento dei gas, non si trattava tuttavia di un approccio "unico" per tutti i settori. Pertanto, il sensore catalitico è stato il primo rilevatore di gas ad assomigliare alla tecnologia moderna. I sensori funzionano in base al principio che quando un gas si ossida, produce calore. Il sensore catalitico funziona attraverso la variazione di temperatura, che è proporzionale alla concentrazione del gas. Pur rappresentando un passo avanti nello sviluppo della tecnologia necessaria per il rilevamento dei gas, all'inizio richiedeva ancora un'operazione manuale per ricevere una lettura.

Tecnologia moderna

La tecnologia di rilevamento dei gas si è sviluppata enormemente dall'inizio del XIX secolo, quando fu registrato il primo rilevatore di gas. Oggi sono oltre cinque i diversi tipi di sensori comunemente utilizzati in tutti i settori industriali, tra cui Elettrochimico, Perle catalitiche (Pellistor), Rivelatore a fotoionizzazione (PID) e tecnologia a infrarossi (IR), insieme ai più moderni sensori Spettrometro di proprietà molecolare (MPS) e Ossigeno a lunga vita (LLO2), i moderni rilevatori di gas sono altamente sensibili, precisi e soprattutto affidabili, il che consente a tutto il personale di rimanere al sicuro riducendo il numero di incidenti sul lavoro.

I vantaggi dei sensori MPS 

Sviluppato daNevadaNanoi sensori Molecular Property Spectrometer™ (MPS™) rappresentano la nuova generazione di rilevatori di gas infiammabili. MPS™ sono in grado di rilevare rapidamente oltre 15 gas infiammabili caratterizzati contemporaneamente. Fino a poco tempo fa, chi aveva bisogno di monitorare i gas infiammabili doveva scegliere un rilevatore di gas infiammabili tradizionale contenente un sensore a pellistore sensore a pellistor calibrato per un gas specifico, oppure un rilevatore di gas infiammabili a infrarosso (IR) che varia anch'esso in base al gas infiammabile da misurare e quindi deve essere calibrato per ogni gas. Pur rimanendo soluzioni vantaggiose, non sempre sono ideali. Ad esempio, entrambi i tipi di sensori richiedono una calibrazione regolare e i sensori a pellistor catalitici necessitano anche di frequenti bump test per assicurarsi che non siano stati danneggiati da agenti contaminanti (noti come "agenti di avvelenamento del sensore") o da condizioni difficili. In alcuni ambienti, i sensori devono essere sostituiti frequentemente, il che è costoso sia in termini di denaro che di tempi di inattività o di disponibilità del prodotto. La tecnologia IR non è in grado di rilevare l'idrogeno, che non ha una firma IR, e sia i rivelatori IR che quelli a pellistor a volte rilevano incidentalmente altri gas (cioè non calibrati), fornendo letture imprecise che possono innescare falsi allarmi o preoccupare gli operatori.

Il MPS™ offre caratteristiche chiave che forniscono vantaggi tangibili all'operatore e ai lavoratori. Queste caratteristiche includono:

Nessuna calibrazione

Quando si implementa un sistema che contiene un rilevatore a testa fissa, è prassi comune eseguire la manutenzione secondo un programma raccomandato dal produttore. Ciò comporta costi periodici e la possibilità di interrompere la produzione o il processo per effettuare la manutenzione o addirittura accedere al rilevatore o a più rilevatori. Può anche esserci un rischio per il personale quando i rilevatori sono montati in ambienti particolarmente pericolosi. L'interazione con un sensore MPS è meno severa perché non ci sono modalità di guasto non rivelate, a condizione che sia presente aria. Sarebbe sbagliato dire che non c'è alcun requisito di calibrazione. È sufficiente una calibrazione in fabbrica, seguita da un test del gas al momento della messa in servizio, perché la calibrazione interna automatizzata viene eseguita ogni 2 secondi per tutta la durata di vita del sensore. Ciò che si intende veramente è: nessuna calibrazione da parte del cliente.

Il Xgard Bright con tecnologia MPS™ non richiede calibrazione. Ciò riduce l'interazione con il rilevatore, con conseguente riduzione del costo totale di proprietà per il ciclo di vita del sensore e del rischio per il personale e la produzione di completare la manutenzione regolare. È comunque consigliabile controllare di tanto in tanto la pulizia del rilevatore di gas, poiché il gas non riesce a passare attraverso spessi accumuli di materiale ostruente e non raggiungerebbe quindi il sensore.

Gas multispecie - 'Vero LEL'™

Molti settori e applicazioni utilizzano o hanno come sottoprodotto più gas all'interno dello stesso ambiente. Ciò può costituire una sfida per la tecnologia dei sensori tradizionali, che possono rilevare solo un singolo gas per il quale sono stati calibrati al livello corretto e possono dare luogo a letture imprecise e persino a falsi allarmi che possono arrestare il processo o la produzione se è presente un altro tipo di gas infiammabile. La mancanza di risposta o la risposta eccessiva che si verifica spesso in ambienti con più gas può essere frustrante e controproducente, compromettendo la sicurezza delle migliori pratiche degli utenti. Il sensore MPS™ è in grado di rilevare con precisione più gas contemporaneamente e di identificare istantaneamente il tipo di gas. Inoltre, il sensore MPS™ dispone di una compensazione ambientale a bordo e non richiede un fattore di correzione applicato esternamente. Letture imprecise e falsi allarmi appartengono al passato.

Nessun avvelenamento del sensore

In alcuni ambienti i sensori tradizionali possono essere a rischio di avvelenamento. Pressione, temperatura e umidità estreme possono danneggiare i sensori, mentre le tossine e i contaminanti ambientali possono "avvelenare" i sensori, compromettendo gravemente le prestazioni. Per i rivelatori che si trovano in ambienti in cui si possono incontrare veleni o inibitori, l'unico modo per garantire che le prestazioni non vengano compromesse è eseguire test regolari e frequenti. I guasti ai sensori dovuti all'avvelenamento possono essere costosi. La tecnologia del sensore MPS™ non è influenzata dai contaminanti presenti nell'ambiente. I processi che presentano contaminazioni hanno ora accesso a una soluzione che funziona in modo affidabile con un design a prova di guasto per avvisare l'operatore e offrire la massima tranquillità al personale e ai beni situati in ambienti pericolosi. Inoltre, il sensore MPS non viene danneggiato da elevate concentrazioni di gas infiammabili, che potrebbero causare cricche nei sensori catalitici tradizionali. Il sensore MPS continua a funzionare.

Idrogeno (H2)

L'uso dell'idrogeno nei processi industriali è in aumento, in quanto si cerca di trovare un'alternativa più pulita all'uso del gas naturale. Il rilevamento dell'idrogeno è attualmente limitato ai pellistor, ai semiconduttori a ossido metallico, alla tecnologia elettrochimica e alla meno accurata tecnologia dei sensori di conducibilità termica, a causa dell'incapacità dei sensori a infrarossi di rilevare l'idrogeno. Di fronte alle sfide evidenziate sopra in termini di avvelenamento o falsi allarmi, l'attuale soluzione può costringere l'operatore a frequenti prove di urto e manutenzione, oltre a problemi di falsi allarmi. Il sensore MPS™ offre una soluzione di gran lunga migliore per il rilevamento dell'idrogeno, eliminando i problemi che si presentano con la tecnologia dei sensori tradizionali. Un sensore di idrogeno a lunga durata e a risposta relativamente rapida, che non richiede la calibrazione per tutto il ciclo di vita del sensore, senza il rischio di avvelenamento o di falsi allarmi, può far risparmiare in modo significativo sul costo totale di proprietà e riduce l'interazione con l'unità, con conseguente tranquillità e riduzione del rischio per gli operatori che utilizzano la tecnologia MPS™. Tutto questo è possibile grazie alla tecnologia MPS™, che rappresenta la più grande innovazione nel campo del rilevamento dei gas da diversi decenni. Il Gasman con MPS è pronto per l'idrogeno (H2). Un singolo sensore MPS rileva con precisione l'idrogeno e gli idrocarburi comuni in una soluzione a prova di guasto e resistente ai veleni, senza necessità di ricalibrazione.

Per saperne di più sulla Crowcon, visitare https://www.crowcon.com o per saperne di più su MPSTM visitare il sito https://www.crowcon.com/mpsinfixed/

Vertice mondiale sull'idrogeno 2022

Crowcon ha partecipato al World Hydrogen Summit & Exhibition 2022, tenutosi dal 9 all'11 maggio 2022, nell'ambito dell'evento progettato per promuovere lo sviluppo del settore dell'idrogeno. Con sede a Rotterdam e prodotta dal Sustainable Energy Council (SEC), la mostra di quest'anno è stata la prima a cui Crowcon ha partecipato. Eravamo entusiasti di far parte di un'occasione che favorisce le connessioni e la collaborazione tra coloro che sono all'avanguardia nell'industria pesante e fa progredire il settore dell'idrogeno.

I rappresentanti del nostro team hanno incontrato diversi operatori del settore e hanno presentato le nostre soluzioni a idrogeno per il rilevamento dei gas. Il nostro sensore MPS offre uno standard più elevato di rilevamento dei gas infiammabili grazie alla sua pionieristica tecnologia avanzata di spettrometro delle proprietà molecolari (MPS™), in grado di rilevare e identificare con precisione oltre 15 diversi gas infiammabili. Si tratta di una soluzione ideale per il rilevamento dell'idrogeno, le cui proprietà consentono una facile accensione e un'intensità di combustione più elevata rispetto a quella della benzina o del gasolio, con conseguente rischio di esplosione. Per saperne di più, leggete il nostro blog.

La nostra tecnologia MPS ha suscitato interesse perché non richiede la calibrazione per tutto il ciclo di vita del sensore e rileva i gas infiammabili senza il rischio di avvelenamento o di falsi allarmi, con un notevole risparmio sul costo totale di proprietà e una riduzione dell'interazione con le unità, garantendo in ultima analisi tranquillità e minori rischi per gli operatori.

Il vertice ci ha permesso di comprendere lo stato attuale del mercato dell'idrogeno, compresi gli attori principali e i progetti in corso, consentendoci di sviluppare una maggiore comprensione delle esigenze dei nostri prodotti per svolgere un ruolo importante nel futuro del rilevamento dei gas di idrogeno.

Non vediamo l'ora di partecipare l'anno prossimo!

T4x un monitor a 4 gas di conformità 

È fondamentale assicurarsi che il sensore di gas utilizzato sia completamente ottimizzato e affidabile per il rilevamento e la misurazione accurata di gas e vapori infiammabili, indipendentemente dall'ambiente o dal luogo di lavoro in cui si trova.

Fisso o portatile?

I rilevatori di gas sono disponibili in diverse forme; più comunemente sono conosciuti come fisso, portatili o trasportabili, in cui questi dispositivi sono progettati per soddisfare le esigenze dell'utente e dell'ambiente, proteggendo al contempo la sicurezza di coloro che vi operano.

I rilevatori fissi vengono utilizzati come dispositivi permanenti all'interno di un ambiente per fornire un monitoraggio continuo di impianti e apparecchiature. Secondo le linee guida del Health and Safety Executive (HSE), questi tipi di sensori sono particolarmente utili quando esiste la possibilità di una perdita in uno spazio chiuso o parzialmente chiuso che potrebbe portare all'accumulo di gas infiammabili. Il Codice internazionale dei trasportatori di gas (Codice IGC) stabilisce che le apparecchiature di rilevamento dei gas devono essere installate per controllare l'integrità dell'ambiente che devono monitorare e devono essere testate in conformità agli standard riconosciuti. Per garantire il funzionamento efficace del sistema fisso di rilevamento dei gas, è fondamentale una calibrazione tempestiva e accurata dei sensori.

I rilevatori portatili sono normalmente costituiti da un dispositivo piccolo e portatile che può essere utilizzato in ambienti di dimensioni ridotte, spazi confinatiper rintracciare perdite o per segnalare la presenza di gas e vapori infiammabili in aree pericolose. I rilevatori trasportabili non sono portatili, ma possono essere facilmente spostati da un luogo all'altro per fungere da monitor "di riserva" mentre un sensore fisso è sottoposto a manutenzione.

Che cos'è un monitor di conformità a 4 gas?

I sensori di gas sono principalmente ottimizzati per rilevare gas o vapori specifici attraverso la progettazione o la calibrazione. È auspicabile che un sensore di gas tossici, ad esempio un sensore che rileva il monossido di carbonio o di idrogeno solforato, fornisca un'indicazione accurata della concentrazione del gas target piuttosto che una risposta a un altro composto interferente. I monitor di sicurezza personale spesso combinano diversi sensori per proteggere l'utente da rischi specifici legati ai gas. Tuttavia, un "monitor Compliance 4-Gas" comprende sensori per la misurazione dei livelli di monossido di carbonio (CO), idrogeno solforato (H2S), ossigeno (O2) e di gas infiammabili; normalmente il metano (CH4) in un unico dispositivo.

Il T4x monitor con l'innovativo sensore sensore MPS è in grado di fornire protezione da CO, H2S, O2 con una misurazione accurata di più gas e vapori infiammabili utilizzando una calibrazione di base del metano.

È necessario un monitor di conformità a 4 gas?

Molti dei sensori di gas infiammabili utilizzati nei monitor convenzionali sono ottimizzati per rilevare un gas o un vapore specifico attraverso la calibrazione, ma rispondono a molti altri composti. Ciò è problematico e potenzialmente pericoloso, in quanto la concentrazione di gas indicata dal sensore non sarà accurata e potrebbe indicare una concentrazione di gas/vapori superiore (o più pericolosa) rispetto a quella presente. Poiché i lavoratori sono spesso potenzialmente esposti ai rischi derivanti da diversi gas e vapori infiammabili all'interno del loro luogo di lavoro, è incredibilmente importante garantire la loro protezione attraverso l'implementazione di un sensore accurato e affidabile.

Come si differenzia il rilevatore di gas portatile 4-in-1 T4x ?

Per garantire l'affidabilità e l'accuratezza del rilevatore T4x . Il rilevatore utilizza la funzionalità del sensore MPS™ (Molecular Property Spectrometry) all'interno della sua robusta unità che offre una serie di funzioni per garantire la sicurezza. Offre protezione contro i quattro gas più comuni: monossido di carbonio, idrogeno solforato, gas infiammabili e impoverimento di ossigeno, mentre il rilevatore multigas T4x è ora dotato di una migliore rilevazione di pentano, esano e altri idrocarburi a catena lunga. È dotato di un grande pulsante singolo e di un sistema di menu facile da seguire, che ne facilita l'uso anche da parte di chi indossa i guanti e ha seguito un addestramento minimo. Robusto ma portatile, il rilevatore T4x è dotato di una custodia in gomma integrata e di un filtro opzionale a clip che può essere facilmente rimosso e sostituito quando necessario. Queste caratteristiche consentono ai sensori di rimanere protetti anche negli ambienti più sporchi, per garantirne la costanza.

Un vantaggio unico del rilevatore T4x è che garantisce il calcolo accurato dell'esposizione ai gas tossici per l'intero turno di lavoro, anche se il rilevatore viene spento momentaneamente, durante una pausa o durante il trasferimento in un altro sito. La funzione TWA consente un monitoraggio ininterrotto e senza interruzioni: all'accensione, il rilevatore riparte da zero, come se iniziasse un nuovo turno di lavoro, ignorando tutte le misurazioni precedenti. Il sito T4x consente all'utente di includere le misurazioni precedenti nell'arco di tempo corretto. Il rilevatore non è solo affidabile in termini di rilevamento e misurazione accurati di quattro gas, ma anche per la durata della batteria. La batteria ha una durata di 18 ore ed è utile per l'utilizzo in più turni di lavoro o per turni più lunghi, senza doverla ricaricare regolarmente.

Durante l'uso, T4 utilizza un pratico display a "semaforo" che garantisce costantemente il corretto funzionamento e la conformità alla politica di test e calibrazione del sito. I LED luminosi verdi e rossi di sicurezza positiva sono visibili a tutti e, di conseguenza, offrono un'indicazione rapida, semplice e completa dello stato del monitor sia all'utente che a chi lo circonda.

T4x aiuta i team operativi a concentrarsi su attività a maggior valore aggiunto, riducendo il numero di sostituzioni dei sensori del 75% e aumentandone l'affidabilità. Garantendo la conformità in tutto il sito, T4x aiuta i responsabili della salute e della sicurezza eliminando la necessità di garantire che ogni dispositivo sia calibrato per il gas infiammabile in questione, poiché ne rileva accuratamente 19 contemporaneamente. Grazie alla resistenza al veleno e alla durata raddoppiata delle batterie, è più probabile che gli operatori non rimangano mai senza il dispositivo. T4x riduce il costo totale di proprietà a 5 anni di oltre il 25% e consente di risparmiare 12 g di piombo per ogni rilevatore, rendendolo molto più facile da riciclare alla fine del suo ciclo di vita.

Complessivamente, grazie alla combinazione di tre sensori (tra cui due nuove tecnologie di sensore MPS e O2) all'interno di un già popolare rilevatore multigas portatile. Crowcon ha permesso di migliorare la sicurezza, l'economicità e l'efficienza di singole unità e di intere flotte. Il nuovo T4x offre una maggiore durata e una maggiore precisione per il rilevamento dei rischi legati ai gas, fornendo al contempo una struttura più sostenibile rispetto al passato.

Quanto durerà il mio sensore di gas?

I rilevatori di gas sono ampiamente utilizzati in molti settori industriali (come il trattamento delle acque, la raffineria, il petrolchimico, l'acciaio e l'edilizia, per citarne alcuni) per proteggere il personale e le apparecchiature dai gas pericolosi e dai loro effetti. Gli utenti di dispositivi portatili e fissi conoscono bene i costi potenzialmente significativi per mantenere i loro strumenti in condizioni di sicurezza durante la loro vita operativa. I sensori di gas sono intesi per fornire una misura della concentrazione di un analita di interesse, come CO (monossido di carbonio), CO2 (anidride carbonica) o NOx (ossido di azoto). I sensori di gas più utilizzati nelle applicazioni industriali sono due: elettrochimici per la misurazione dei gas tossici e dell'ossigeno e pellistori (o sfere catalitiche) per i gas infiammabili. Negli ultimi anni, l'introduzione di entrambi ossigeno e MPS (Molecular Property Spectrometer) ha permesso di migliorare la sicurezza.

Come faccio a sapere quando il mio sensore è guasto?

Ci sono stati diversi brevetti e tecniche applicate ai rivelatori di gas negli ultimi decenni che sostengono di essere in grado di determinare quando un sensore elettrochimico ha fallito. La maggior parte di queste, tuttavia, deduce solo che il sensore sta funzionando attraverso una qualche forma di stimolazione dell'elettrodo e potrebbe fornire un falso senso di sicurezza. L'unico metodo sicuro per dimostrare che un sensore sta funzionando è applicare un gas di prova e misurare la risposta: un bump test o una calibrazione completa.

Sensore elettrochimico

I sensorielettrochimici sono i più utilizzati in modalità di diffusione, in cui il gas dell'ambiente circostante entra attraverso un foro nella faccia della cella. Alcuni strumenti utilizzano una pompa per fornire aria o campioni di gas al sensore. Il foro è coperto da una membrana in PTFE che impedisce all'acqua o agli oli di entrare nella cella. Le gamme e le sensibilità dei sensori possono essere variate utilizzando fori di dimensioni diverse. I fori più grandi garantiscono una maggiore sensibilità e risoluzione, mentre quelli più piccoli riducono la sensibilità e la risoluzione ma aumentano la portata.

Fattori che influenzano la vita del sensore elettrochimico

Ci sono tre fattori principali che influenzano la vita del sensore, tra cui la temperatura, l'esposizione a concentrazioni di gas estremamente elevate e l'umidità. Altri fattori sono gli elettrodi del sensore e le vibrazioni estreme e gli shock meccanici.

Le temperature estreme possono influenzare la vita del sensore. Il produttore indicherà un intervallo di temperatura operativa per lo strumento: tipicamente da -30˚C a +50˚C. I sensori di alta qualità saranno comunque in grado di sopportare escursioni temporanee oltre questi limiti. Una breve (1-2 ore) esposizione a 60-65˚C per i sensori H2S o CO (per esempio) è accettabile, ma incidenti ripetuti provocheranno l'evaporazione dell'elettrolita e spostamenti nella lettura di base (zero) e una risposta più lenta.

Anche l'esposizione a concentrazioni di gas estremamente elevate può compromettere le prestazioni del sensore. I sensori elettrochimici sono tipicamente testati dall'esposizione fino a dieci volte il loro limite di progetto. I sensori costruiti con materiale catalizzatore di alta qualità dovrebbero essere in grado di resistere a tali esposizioni senza cambiamenti nella chimica o perdita di prestazioni a lungo termine. I sensori con un carico di catalizzatore inferiore possono subire danni.

L'influenza più considerevole sulla vita del sensore è l'umidità. La condizione ambientale ideale per i sensori elettrochimici è 20˚Celsius e 60% RH (umidità relativa). Quando l'umidità ambientale aumenta oltre il 60%RH, l'acqua viene assorbita nell'elettrolita causandone la diluizione. In casi estremi il contenuto di liquido può aumentare di 2-3 volte, provocando potenzialmente una perdita dal corpo del sensore e quindi attraverso i pin. Al di sotto del 60%RH l'acqua nell'elettrolito inizierà a disidratarsi. Il tempo di risposta può essere significativamente esteso come l'elettrolita o disidratato. Gli elettrodi del sensore possono, in condizioni insolite, essere avvelenati da gas interferenti che adsorbono sul catalizzatore o reagiscono con esso creando sottoprodotti che inibiscono il catalizzatore.

Le vibrazioni estreme e gli urti meccanici possono anche danneggiare i sensori rompendo le saldature che legano insieme gli elettrodi di platino, le strisce di collegamento (o i fili in alcuni sensori) e i perni.

Aspettativa di vita "normale" del sensore elettrochimico

I sensori elettrochimici per i gas comuni come il monossido di carbonio o il solfuro di idrogeno hanno una vita operativa tipicamente dichiarata di 2-3 anni. Sensori di gas più esotici come il fluoruro di idrogeno possono avere una vita di soli 12-18 mesi. In condizioni ideali (temperatura e umidità stabili nella regione di 20˚C e 60%RH) senza incidenza di contaminanti, i sensori elettrochimici sono noti per funzionare più di 4000 giorni (11 anni). L'esposizione periodica al gas bersaglio non limita la vita di queste piccole celle a combustibile: i sensori di alta qualità hanno una grande quantità di materiale catalizzatore e conduttori robusti che non si esauriscono con la reazione.

Sensore a pellistor

I sensoria pellistore sono costituiti da due bobine di filo abbinate, ciascuna inserita in una perla di ceramica. La corrente viene fatta passare attraverso le bobine, riscaldando le perle a circa 500˚C. Il gas infiammabile brucia sulla perlina e il calore aggiuntivo generato produce un aumento della resistenza della bobina che viene misurata dallo strumento per indicare la concentrazione del gas.

Fattori che influenzano la durata del sensore a pellistor

I due fattori principali che influenzano la vita del sensore sono l'esposizione ad un'alta concentrazione di gas e il bilanciamento o l'inibizione del sensore. Anche gli urti meccanici estremi o le vibrazioni possono influenzare la vita del sensore. La capacità della superficie del catalizzatore di ossidare il gas si riduce quando è stata avvelenata o inibita. Una durata del sensore superiore ai dieci anni è comune nelle applicazioni in cui non sono presenti composti inibitori o avvelenanti. I pellistori più potenti hanno una maggiore attività catalitica e sono meno vulnerabili all'avvelenamento. Le perle più porose hanno anche una maggiore attività catalitica in quanto il loro volume superficiale è aumentato. Un'abile progettazione iniziale e sofisticati processi di fabbricazione assicurano la massima porosità delle perle. L'esposizione ad alte concentrazioni di gas (>100%LEL) può anche compromettere le prestazioni del sensore e creare un offset nel segnale zero/linea di base. Una combustione incompleta porta a depositi di carbonio sul tallone: il carbonio "cresce" nei pori e crea danni meccanici. Il carbonio può comunque essere bruciato nel tempo per far riemergere i siti catalitici. Urti meccanici estremi o vibrazioni possono in rari casi causare anche una rottura delle bobine del pellistore. Questo problema è più prevalente nei rivelatori di gas portatili piuttosto che in quelli a punto fisso, poiché è più probabile che cadano, e i pellistori utilizzati sono a bassa potenza (per massimizzare la durata della batteria) e quindi utilizzano bobine di filo più sottili e delicate.

Come faccio a sapere quando il mio sensore è guasto?

Un pellistor che è stato avvelenato rimane elettricamente operativo ma può non rispondere al gas. Quindi il rivelatore di gas e il sistema di controllo possono sembrare in uno stato sano, ma una perdita di gas infiammabile può non essere rilevata.

Sensore di ossigeno

Icona Lunga Vita 02

Il nostro nuovo sensore di ossigeno senza piombo e di lunga durata non ha fili di piombo compressi che l'elettrolita deve penetrare, permettendo l'uso di un elettrolita spesso che significa nessuna perdita, nessuna corrosione indotta da perdite e una maggiore sicurezza. La robustezza aggiuntiva di questo sensore ci permette di offrire con fiducia una garanzia di 5 anni per una maggiore tranquillità.

I sensori diossigeno a lunga durata hanno una durata di vita di 5 anni, con tempi di inattività ridotti, costi di gestione inferiori e un impatto ambientale ridotto. Misurano con precisione l'ossigeno in un'ampia gamma di concentrazioni, dallo 0 al 30% del volume, e rappresentano la nuova generazione di sensori di gas O2.

Sensore MPS

MPS Il sensore offre una tecnologia avanzata che elimina la necessità di calibrare e fornisce un "vero LEL (limite inferiore di esplosività)" per la lettura di quindici gas infiammabili, ma è in grado di rilevare tutti i gas infiammabili in un ambiente multispecie, con conseguenti minori costi di manutenzione continua e una ridotta interazione con l'unità. Ciò riduce il rischio per il personale ed evita costosi tempi di inattività. Il sensore MPS è inoltre immune all'avvelenamento del sensore.  

Il guasto del sensore dovuto all'avvelenamento può essere un'esperienza frustrante e costosa. La tecnologia del sensore MPS™non è influenzata dai contaminanti presenti nell'ambiente. I processi che presentano contaminazioni hanno ora accesso a una soluzione che funziona in modo affidabile con un design a prova di guasto per avvisare l'operatore e offrire la massima tranquillità al personale e ai beni situati in ambienti pericolosi. È ora possibile rilevare più gas infiammabili, anche in ambienti difficili, utilizzando un solo sensore che non richiede calibrazione e ha una durata prevista di almeno 5 anni.

I pericoli dell'idrogeno

Come combustibile, l'idrogeno è altamente infiammabile e le perdite generano un grave rischio di incendio. Tuttavia, gli incendi di idrogeno sono nettamente diversi da quelli che coinvolgono altri combustibili. Quando i combustibili e gli idrocarburi più pesanti, come la benzina o il gasolio, perdono, si accumulano vicino al suolo. L'idrogeno, invece, è uno degli elementi più leggeri del pianeta, quindi quando si verifica una perdita il gas si disperde rapidamente verso l'alto. Ciò rende meno probabile l'accensione, ma un'ulteriore differenza è che l'idrogeno si accende e brucia più facilmente della benzina o del gasolio. Infatti, in presenza di idrogeno, anche una scintilla di elettricità statica proveniente dal dito di una persona è sufficiente a innescare un'esplosione. La fiamma dell'idrogeno è anche invisibile, quindi è difficile individuare il punto in cui si trova il "fuoco" vero e proprio, ma genera un basso calore radiante a causa dell'assenza di carbonio e tende a spegnersi rapidamente.

L'idrogeno è inodore, incolore e insapore, quindi le perdite sono difficili da rilevare con i soli sensi umani. L'idrogeno non è tossico, ma in ambienti chiusi, come i magazzini delle batterie, può accumularsi e causare asfissia sostituendo l'ossigeno. Questo pericolo può essere in parte compensato dall'aggiunta di odori al carburante a idrogeno, che gli conferiscono un odore artificiale e avvisano gli utenti in caso di perdita. Ma poiché l'idrogeno si disperde rapidamente, è improbabile che l'odorante viaggi con esso. L'idrogeno che fuoriesce in ambienti chiusi si raccoglie rapidamente, inizialmente a livello del soffitto e alla fine riempie la stanza. Pertanto, il posizionamento dei rilevatori di gas è fondamentale per individuare tempestivamente una perdita.

L'idrogeno è solitamente immagazzinato e trasportato in serbatoi di idrogeno liquefatto. L'ultima preoccupazione è che essendo compresso, l'idrogeno liquido è estremamente freddo. Se l'idrogeno dovesse uscire dal suo serbatoio ed entrare in contatto con la pelle, può causare gravi congelamenti o addirittura la perdita delle estremità.

Quale tecnologia di sensori è migliore per rilevare l'idrogeno?

Crowcon dispone di un'ampia gamma di prodotti per il rilevamento dell'idrogeno. Le tecnologie tradizionali dei sensori per il rilevamento dei gas infiammabili sono i pellistor e gli infrarossi (IR). I sensori di gas a pellistore (chiamati anche sensori di gas a perle catalitiche) sono stati la tecnologia principale per il rilevamento dei gas infiammabili fin dagli anni '60 e per saperne di più sui sensori a pellistore si può consultare la nostra pagina delle soluzioni. Tuttavia, il loro svantaggio principale è che in ambienti a basso contenuto di ossigeno i sensori a pellistore non funzionano correttamente e possono addirittura fallire. In alcune installazioni, i pellistor rischiano di essere avvelenati o inibiti, lasciando i lavoratori senza protezione. Inoltre, i sensori a pellistor non sono a prova di guasto e un guasto del sensore non viene rilevato se non viene applicato un gas di prova.

I sensori a infrarossi sono un modo affidabile per rilevare gli idrocarburi infiammabili in ambienti a basso contenuto di ossigeno. Non sono suscettibili di essere avvelenati, quindi gli IR possono migliorare significativamente la sicurezza in queste condizioni. Per saperne di più sui sensori IR, consultate la nostra pagina delle soluzioni e le differenze tra pellistori e sensori IR, consultate il seguente blog.

Proprio come i pellistori sono suscettibili all'avvelenamento, i sensori IR sono suscettibili di gravi shock meccanici e termici e sono anche fortemente influenzati da grossolani cambiamenti di pressione. Inoltre, i sensori IR non possono essere utilizzati per rilevare l'idrogeno. Quindi l'opzione migliore per il rilevamento di gas infiammabili all'idrogeno è la tecnologia dei sensori MPS™ (molecular property spectrometer). Questa non richiede la calibrazione per tutto il ciclo di vita del sensore, e poiché MPS rileva i gas infiammabili senza il rischio di avvelenamento o di falsi allarmi, può risparmiare significativamente sul costo totale di proprietà e ridurre l'interazione con le unità, con conseguente tranquillità e meno rischi per gli operatori. Il rilevamento dei gas con lo spettrometro di proprietà molecolare è stato sviluppato all'Università del Nevada ed è attualmente l'unica tecnologia di rilevamento dei gas in grado di rilevare più gas infiammabili, compreso l'idrogeno, simultaneamente, in modo molto accurato e con un unico sensore.

Leggete il nostro libro bianco per saperne di più sulla tecnologia dei sensori MPS e per ulteriori informazioni sul rilevamento dell'idrogeno gassoso visitate la nostra pagina del settore e date un'occhiata ad altre risorse sull'idrogeno:

Cosa c'è da sapere sull'idrogeno?

Idrogeno verde - una panoramica

Idrogeno blu - Una panoramica

Xgard Bright MPS fornisce il rilevamento dell'idrogeno nell'applicazione di stoccaggio dell'energia