Elettrolisi dell'idrogeno

Attualmente la tecnologia più sviluppata commercialmente per produrre idrogeno è quella dell'elettrolisi. L'elettrolisi è un percorso ottimistico per la produzione di idrogeno senza carbonio da risorse rinnovabili e nucleari. L'elettrolisi dell'acqua è la decomposizione dell'acqua (H2O) nei suoi componenti di base, idrogeno (H2) e ossigeno (O2), attraverso il passaggio di corrente elettrica. L'acqua è una fonte completa per produrre idrogeno e l'unico sottoprodotto rilasciato durante il processo è l'ossigeno. Questo processo utilizza energia elettrica che può poi essere immagazzinata come energia chimica sotto forma di idrogeno.

Qual è il processo?

Per produrre idrogeno, l'elettrolisi converte l'energia elettrica in energia chimica immagazzinando elettroni in legami chimici stabili. Come le celle a combustibile, gli elettrolizzatori sono composti da un anodo e un catodo separati da un elettrolita acquoso secondo il tipo di materiale elettrolitico coinvolto e le specie ioniche che conduce. L'elettrolita è una parte obbligatoria, poiché l'acqua pura non ha la capacità di trasportare abbastanza carica perché manca di ioni. All'anodo, l'acqua viene ossidata in ossigeno gassoso e ioni di idrogeno. Mentre al catodo, l'acqua viene ridotta a idrogeno gassoso e ioni idrossido. Attualmente ci sono tre principali tecnologie di elettrolisi.

Elettrolizzatori alcalini (AEL)

Questa tecnologia è stata usata su scala industriale per oltre 100 anni. Gli elettrolizzatori alcalini funzionano tramite il trasporto di ioni idrossido (OH-) attraverso l'elettrolita dal catodo all'anodo con l'idrogeno generato sul lato catodico. Operando a 100°-150°C, gli elettrolizzatori usano una soluzione liquida alcalina di idrossido di sodio o di potassio (KOH) come elettrolita. In questo processo l'anodo e il catodo sono separati da un diaframma che impedisce il rimescolamento. Al catodo, l'acqua viene scissa per formare H2 e rilascia anioni idrossido che passano attraverso il diaframma per ricombinarsi all'anodo dove viene prodotto ossigeno. Trattandosi di una tecnologia consolidata, il costo di produzione è relativamente basso, così come la stabilità a lungo termine. Tuttavia, ha un crossover nei gas che può compromettere il suo grado di purezza e richiede l'uso di un elettrolita liquido corrosivo.

Elettrolizzatori a membrana elettrolitica polimerica (PEM)

La membrana elettrolitica polimerica è l'ultima tecnologia ad essere usata commercialmente per produrre idrogeno. In un elettrolizzatore PEM, l'elettrolita è un materiale plastico solido speciale. Gli elettrolizzatori PEM funzionano a 70°-90°C. In questo processo l'acqua reagisce all'anodo per formare ossigeno e ioni di idrogeno caricati positivamente (protoni). Gli elettroni fluiscono attraverso un circuito esterno e gli ioni di idrogeno si muovono selettivamente attraverso il PEM verso il catodo. Al catodo, gli ioni di idrogeno si combinano con gli elettroni del circuito esterno per formare idrogeno gassoso. Rispetto all'AEL ci sono diversi vantaggi: la purezza del gas prodotto è alta in un funzionamento a carico parziale, il design del sistema è compatto e ha una rapida risposta del sistema. Tuttavia, il costo dei componenti è alto e la durata è bassa.

Elettrolizzatori a ossido solido (SOE)

Gli elettrolizzatori AEL e PEM sono conosciuti come elettrolizzatori a bassa temperatura (LTE). Tuttavia, l'elettrolizzatore a ossido solido (SOE) è conosciuto come elettrolizzatore ad alta temperatura (HTE). Questa tecnologia è ancora in fase di sviluppo. In SOE, il materiale ceramico solido è usato come elettrolita che conduce ioni di ossigeno caricati negativamente (O2-) a temperature elevate, genera idrogeno in un modo leggermente diverso. Ad una temperatura di circa 700°-800°C il vapore al catodo si combina con gli elettroni del circuito esterno per formare idrogeno gassoso e ioni di ossigeno caricati negativamente. Gli ioni di ossigeno passano attraverso la membrana di ceramica solida e reagiscono all'anodo per formare ossigeno gassoso e generare elettroni per il circuito esterno. I vantaggi di questa tecnologia sono che combina un'alta efficienza termica e di potenza, oltre a produrre basse emissioni a un costo relativamente basso. Anche se, a causa dell'alto calore e della potenza richiesti, il tempo di avviamento richiede più tempo.

Perché l'idrogeno è considerato un carburante alternativo?

L'idrogeno è considerato un carburante alternativo secondo l'Energy Policy Act del 1992. L'idrogeno prodotto per elettrolisi può contribuire a zero emissioni di gas serra, a seconda della fonte dell'elettricità usata. Questa tecnologia viene perseguita per lavorare con opzioni di energia rinnovabile (eolica, solare, idroelettrica, geotermica) e nucleare per consentire virtualmente zero emissioni di gas serra e altri inquinanti. Anche se questo tipo di produzione richiederà che il costo sia diminuito significativamente per essere competitivo con percorsi più maturi basati sul carbonio come il reforming del gas naturale. C'è un potenziale di sinergia con la produzione di energia elettrica da fonti rinnovabili. Il combustibile idrogeno e la generazione di energia elettrica potrebbero essere distribuiti e situati nei parchi eolici, consentendo così la flessibilità di spostare la produzione per abbinare al meglio la disponibilità della risorsa con le esigenze operative del sistema e i fattori di mercato.