Waterbehandeling: De noodzaak van gasdetectie bij het detecteren van chloor

Waterbedrijven zorgen voor schoon water om te drinken, in te baden en voor industrieel en commercieel gebruik. Afvalwaterzuiveringsinstallaties en rioleringssystemen helpen onze waterwegen schoon en hygiënisch te houden. In de waterindustrie is het risico op blootstelling aan gassen en gasgerelateerde gevaren aanzienlijk. Schadelijke gassen kunnen worden aangetroffen in watertanks, reservoirs, pompputten, zuiveringseenheden, chemische opslag- en verwerkingsruimtes, putten, riolen, overstorten, boorgaten en mangaten.

Wat is chloor en waarom is het gevaarlijk?

Chloorgas (Cl2) heeft een geelgroene kleur en wordt gebruikt om drinkwater te steriliseren. Het meeste chloor wordt echter gebruikt in de chemische industrie, met typische toepassingen als waterzuivering, kunststoffen en schoonmaakmiddelen. Chloorgas kan worden herkend aan zijn doordringende, irriterende geur, die lijkt op de geur van bleekmiddel. De sterke geur kan mensen voldoende waarschuwen dat ze zijn blootgesteld. Cl2 zelf is niet brandbaar, maar het kan explosief reageren of brandbare verbindingen vormen met andere chemicaliën zoals terpentijn en ammoniak.

Chloorgas kan worden herkend aan de doordringende, irriterende geur, die lijkt op de geur van bleekmiddel. De sterke geur kan mensen voldoende waarschuwen dat ze zijn blootgesteld. Chloor is giftig en kan dodelijk zijn als het in geconcentreerde hoeveelheden wordt ingeademd of gedronken. Als chloorgas vrijkomt in de lucht, kunnen mensen worden blootgesteld via hun huid, ogen of door inademing. Chloor is niet brandbaar, maar kan reageren met de meeste brandbare stoffen, wat brand- en explosiegevaar oplevert. Het reageert ook heftig met organische verbindingen zoals ammoniak en waterstof, waardoor brand en explosies kunnen ontstaan.

Waar wordt chloor voor gebruikt

Waterchlorering begon in Zweden in de18e eeuw met het doel om geuren uit water te verwijderen. Deze methode bleef alleen gebruikt worden om geuren uit water te verwijderen tot 1890, toen chloor werd geïdentificeerd als een effectieve stof voor desinfectiedoeleinden. In het begin van 1900 werd chloor voor het eerst gebruikt voor desinfectie in Groot-Brittannië. In de daaropvolgende eeuw werd chloor de meest gebruikte methode voor waterbehandeling en nu wordt het in de meeste landen wereldwijd gebruikt voor waterbehandeling.

Chlorering is een methode om water met een hoog gehalte aan micro-organismen te desinfecteren, waarbij chloor of chloorhoudende stoffen worden gebruikt om het water te oxideren en te desinfecteren. Er kunnen verschillende processen worden gebruikt om veilige chloorniveaus in drinkwater te bereiken om door water overgebrachte ziekten te voorkomen.

Waarom moet ik chloor detecteren?

Omdat chloor dichter is dan lucht, heeft het de neiging om zich te verspreiden over laaggelegen zones in slecht geventileerde of stilstaande gebieden. Hoewel chloor op zichzelf niet brandbaar is, kan het explosief worden wanneer het in contact komt met stoffen als ammoniak, waterstof, aardgas en terpentijn.

De reactie van het menselijk lichaam op chloor is afhankelijk van verschillende factoren: de concentratie chloor in de lucht, de duur en de frequentie van de blootstelling. De effecten zijn ook afhankelijk van de gezondheid van een individu en de omgevingsomstandigheden tijdens de blootstelling. Wanneer bijvoorbeeld kleine hoeveelheden chloor gedurende korte perioden worden ingeademd, kan dit het ademhalingssysteem aantasten. Andere effecten variëren van hoesten en pijn op de borst tot vochtophoping in de longen en huid- en oogirritaties. Deze effecten vinden niet plaats onder natuurlijke omstandigheden.

Onze oplossing

Het gebruik van een chloorgasdetector zorgt voor detectie en meting van deze stof in de lucht om ongelukken te voorkomen. Uitgerust met een elektrochemische chloorsensor bewaakt een vaste of draagbare Cl2-detector met één of meerdere gassen de chloorconcentratie in de omgevingslucht. We hebben een breed assortiment gasdetectieproducten waarmee u kunt voldoen aan de eisen van de waterbehandelingsindustrie.

Vaste gasdetectoren zijn ideaal voor het bewaken en waarschuwen van managers en werknemers van waterzuiveringsinstallaties voor de aanwezigheid van alle belangrijke gasgevaren. De vaste gasdetectoren kunnen permanent worden geplaatst in watertanks, rioleringssystemen en andere gebieden met een hoog risico op blootstelling aan gassen.

Draagbare gasdetectors zijn lichtgewicht en robuuste draagbare gasdetectors. De draagbare gasdetectors geven een geluidssignaal en waarschuwen werknemers wanneer de gasniveaus gevaarlijke concentraties bereiken, zodat actie kan worden ondernomen. Onze Gasmanen Gas-Pro draagbare gasdetectors hebben betrouwbare chloorsensoropties, voor bewaking van één gas en van meerdere gassen.

Bedieningspanelen kunnen worden gebruikt om talrijke vaste gasdetectieapparaten te coördineren en om alarmsystemen in werking te stellen.

Voor meer informatie over gasdetectie in water en waterbehandeling, of om meer te weten te komen over het gasdetectieassortiment van Crowcon, kunt u contact met ons opnemen.

Overzicht van de industrie: Batterijvermogen

Batterijen zijn doeltreffend bij het verminderen van stroomonderbrekingen, aangezien zij ook overtollige traditionele netwerkenergie kunnen opslaan. De in batterijen opgeslagen energie kan worden vrijgegeven wanneer een grote hoeveelheid energie nodig is, bijvoorbeeld tijdens een stroomstoring in een datacentrum om te voorkomen dat gegevens verloren gaan, of als back-upstroomvoorziening voor een ziekenhuis of militaire toepassing om de continuïteit van vitale diensten te waarborgen. Grootschalige batterijen kunnen ook worden gebruikt om kortstondige hiaten in de vraag van het net op te vullen. Deze batterijsamenstellingen kunnen ook in kleinere formaten worden gebruikt om elektrische auto's van stroom te voorzien en kunnen verder worden verkleind om commerciële producten, zoals telefoons, tablets, laptops, luidsprekers en - uiteraard - persoonlijke gasdetectoren, van stroom te voorzien.

De toepassingen omvatten batterijopslag, vervoer en lassen en kunnen worden onderverdeeld in vier hoofdcategorieën: Chemische - b.v. ammoniak, waterstof, methanol en synthetische brandstof, elektrochemische - loodzuur, lithium-ion, Na-Cd, Na-ion, elektrische - supercondensatoren, supergeleidende magnetische opslag en mechanische - perslucht, gepompte hydro, zwaartekracht.

Gasgevaren

Li-ion batterijbranden

Een groot probleem ontstaat wanneer statische elektriciteit of een defecte lader het batterijbeveiligingscircuit beschadigt. Deze schade kan ertoe leiden dat de solid-state schakelaars zonder dat de gebruiker het weet in de stand ON worden gezet. Een batterij met een defect beschermingscircuit kan normaal functioneren, maar biedt geen bescherming tegen kortsluiting. Een gasdetectiesysteem kan vaststellen of er een storing is en kan worden gebruikt in een feedbackloop om de stroom uit te schakelen, de ruimte af te sluiten en een inert gas (zoals stikstof) in de ruimte vrij te laten om brand of een explosie te voorkomen.

Lekkage van giftige gassen voorafgaand aan thermische runaway

Thermische runaway van lithium-metaal- en lithium-ioncellen heeft tot verschillende branden geleid. Uit onderzoek is gebleken dat branden worden aangewakkerd door brandbare gassen die tijdens de thermische runaway uit de batterijen vrijkomen. De elektrolyt in een lithium-ion batterij is brandbaar en bevat doorgaans lithiumhexafluorofosfaat (LiPF6) of andere Li-zouten die fluor bevatten. Bij oververhitting zal de elektrolyt verdampen en uiteindelijk uit de batterijcellen ontsnappen. Onderzoekers hebben ontdekt dat commerciële lithium-ionbatterijen tijdens een brand aanzienlijke hoeveelheden waterstoffluoride (HF) kunnen uitstoten, en dat de uitstoot varieert voor verschillende soorten batterijen en laadtoestanden (SOC). Waterstoffluoride kan door de huid dringen en diep huidweefsel en zelfs botten en bloed aantasten. Zelfs bij minimale blootstelling kunnen pijn en symptomen pas na enkele uren optreden, waarna de schade extreem is.

Waterstof en explosiegevaar

Nu brandstofcellen op waterstof aan populariteit winnen als alternatief voor fossiele brandstoffen, is het belangrijk zich bewust te zijn van de gevaren van waterstof. Zoals alle brandstoffen is waterstof zeer ontvlambaar en als het lekt is er een reëel risico van brand. Traditionele lood-zuur batterijen produceren waterstof wanneer ze worden opgeladen. Deze batterijen worden gewoonlijk samen opgeladen, soms in dezelfde kamer of ruimte, wat een explosiegevaar kan opleveren, vooral als de ruimte niet goed geventileerd is. Voor de meeste waterstoftoepassingen kunnen geen geurstoffen worden gebruikt, omdat waterstof zich sneller verspreidt dan geurstoffen. Er bestaan toepasselijke veiligheidsnormen voor waterstoftankstations, waarbij voor alle werknemers passende beschermende uitrusting vereist is. Dit omvat persoonlijke detectoren die zowel waterstof in ppm-niveau als %LEL-niveau kunnen detecteren. De standaard alarmniveaus zijn ingesteld op 20% en 40% LEL, wat 4% volume is, maar sommige toepassingen kunnen een aangepast PPM-bereik en alarmniveaus wensen om waterstofaccumulaties snel op te sporen.

Om meer te weten te komen over de gevaren van gas in batterijvoeding, bezoek onzeindustrie paginavoor meer informatie.

Een korte geschiedenis van gasdetectie 

De evolutie van gasdetectie is in de loop der jaren aanzienlijk veranderd. Nieuwe, innovatieve ideeën, van kanaries tot draagbare bewakingsapparatuur, bieden werknemers continue nauwkeurige gasbewaking.

De industriële revolutie was de katalysator voor de ontwikkeling van gasdetectie door het gebruik van veelbelovende brandstoffen, zoals steenkool. Aangezien steenkool uit de aarde kan worden gewonnen door middel van mijnbouw of ondergrondse mijnbouw, waren hulpmiddelen als helmen en vlammenlampen de enige bescherming tegen de nog te ontdekken gevaren van blootstelling aan methaan onder de grond. Methaangas is kleur- en reukloos, waardoor de aanwezigheid ervan moeilijk te onderkennen is, totdat een merkbaar patroon van gezondheidsproblemen werd ontdekt. De risico's van blootstelling aan gas leidden tot experimenten met detectiemethoden om de veiligheid van de werknemers nog jaren te waarborgen.

Behoefte aan gasdetectie

Toen de blootstelling aan gas eenmaal duidelijk werd, begrepen de mijnwerkers dat zij moesten weten of er in de mijn een zak met methaangas was waar zij werkten. In het begin van de 19e eeuw werd de eerste gasdetector ontwikkeld. Veel mijnwerkers droegen vlamlampen op hun helm om te kunnen zien terwijl ze werkten, zodat het uiterst brandbare methaan kon worden opgespoord. De arbeider droeg een dikke, natte deken over zijn lichaam terwijl hij een lange lont droeg waarvan het uiteinde in brand stond. Als hij de mijnen binnenging, bewoog hij de vlam rond en langs de muren op zoek naar gaszakken. Als die werden gevonden, ontstond er een reactie die aan de bemanning werd meegedeeld, terwijl de persoon die het gas opspoorde beschermd was tegen de deken. Na verloop van tijd werden meer geavanceerde methoden ontwikkeld om gas op te sporen.

De introductie van kanaries

De gasdetectie verschoof van mensen naar kanaries vanwege hun luide getjilp en vergelijkbare zenuwstelsels voor het controleren van ademhalingspatronen. De kanaries werden in bepaalde delen van de mijn geplaatst, van waaruit arbeiders de kanaries controleerden om ze te verzorgen en na te gaan of hun gezondheid was aangetast. Tijdens het werk luisterden de mijnwerkers naar het getjilp van de kanaries. Als een kanarie met zijn kooi begon te schudden, was dat een sterke indicator van een blootstelling aan een gaszak die zijn gezondheid begon aan te tasten. De mijnwerkers evacueerden dan de mijn en merkten op dat het onveilig was om de mijn te betreden. In sommige gevallen, als de kanarie helemaal ophield met tsjirpen, wisten de mijnwerkers dat ze de mijn sneller moesten verlaten voordat de blootstelling aan gas hun gezondheid kon aantasten.

De Vlam Licht

De vlamlamp was de volgende evolutie voor gasdetectie in de mijn, als gevolg van zorgen over de veiligheid van de dieren. Terwijl de vlam licht gaf aan de mijnwerkers, werd hij ondergebracht in een vlamdover die alle hitte absorbeerde en de vlam opving om te voorkomen dat eventueel aanwezig methaan zou ontbranden. De buitenmantel bevatte een stuk glas met drie horizontale insnijdingen. De middelste lijn was ingesteld als de ideale gasomgeving, terwijl de onderste lijn een zuurstofarme omgeving aangaf, en de bovenste lijn blootstelling aan methaan of een zuurstofrijke omgeving. Mijnwerkers staken de vlam aan in een omgeving met frisse lucht. Als de vlam daalde of begon af te sterven, zou dit erop wijzen dat de atmosfeer een lage zuurstofconcentratie had. Als de vlam groter werd, wisten de mijnwerkers dat er methaan met zuurstof aanwezig was, wat in beide gevallen aangaf dat ze de mijn moesten verlaten.

De katalytische sensor

Hoewel de vlamlamp een ontwikkeling was in de gasdetectietechnologie, was het echter geen "one size fits all"-benadering voor alle industrieën. Daarom was de katalytische sensor de eerste gasdetector die lijkt op de moderne technologie. De sensoren werken volgens het principe dat wanneer een gas oxideert, het warmte produceert. De katalytische sensor werkt via temperatuursverandering, die evenredig is met de concentratie van het gas. Hoewel dit een stap vooruit was in de ontwikkeling van de voor gasdetectie vereiste technologie, was aanvankelijk nog handmatige bediening nodig om een meting te krijgen.

Moderne technologie

De gasdetectietechnologie is enorm ontwikkeld sinds het begin van de 19e eeuw, toen de eerste gasdetector werd geregistreerd. Nu worden in alle bedrijfstakken meer dan vijf verschillende soorten sensoren gebruikt, waaronder Elektrochemische, Katalytische korrels (Pellistor), Fotoionisatiedetector (PID) en infraroodtechnologie (IR), samen met de modernste sensoren Moleculaire Eigenschappen Spectrometer™ (MPS) en Zuurstof met lange levensduur (LLO2), zijn de moderne gasdetectoren uiterst gevoelig, nauwkeurig maar vooral betrouwbaar, waardoor al het personeel veilig kan blijven en het aantal dodelijke ongevallen op de werkplek wordt verminderd.

Hoe werken elektrochemische sensoren? 

Elektrochemische sensoren worden het meest gebruikt in de diffusiemodus, waarbij gas uit de omgeving door een gat in het oppervlak van de cel binnendringt. Sommige instrumenten gebruiken een pomp om lucht of gasmonsters naar de sensor te voeren. Over het gat is een PTFE-membraan aangebracht om te voorkomen dat water of olie de cel binnendringt. Het bereik en de gevoeligheid van de sensor kunnen worden gevarieerd door gaten van verschillende grootte te gebruiken. Grotere gaten geven een hogere gevoeligheid en resolutie, terwijl kleinere gaten de gevoeligheid en resolutie verminderen maar het bereik vergroten.

Voordelen

Elektrochemische sensoren hebben verschillende voordelen.

  • Kan specifiek zijn voor een bepaald gas of een bepaalde damp in het parts-per-million bereik. De mate van selectiviteit hangt echter af van het type sensor, het doelgas en de gasconcentratie waarvoor de sensor is ontworpen.
  • Hoge herhaalbaarheid en nauwkeurigheid. Eenmaal gekalibreerd naar een bekende concentratie, zal de sensor een nauwkeurige aflezing geven naar een doelgas die herhaalbaar is.
  • Niet gevoelig voor vergiftiging door andere gassen, waarbij de aanwezigheid van andere omgevingsdampen de levensduur van de sensor niet zal verkorten of bekorten.
  • Minder duur dan de meeste andere gasdetectietechnologieën, zoals IR of PID technologieën. Elektrochemische sensoren zijn ook economischer.

Problemen met kruisgevoeligheid

Kruisgevoeligheid Er is sprake van kruisgevoeligheid wanneer een ander gas dan het gas dat wordt bewaakt/gedetecteerd, de meting door een elektrochemische sensor kan beïnvloeden. Hierdoor reageert de elektrode in de sensor ook als het doelgas in werkelijkheid niet aanwezig is, of het veroorzaakt een anderszins onnauwkeurige uitlezing en/of alarm voor dat gas. Kruisgevoeligheid kan leiden tot verschillende soorten onnauwkeurige meetwaarden in elektrochemische gasdetectoren. Deze kunnen positief zijn (de aanwezigheid van een gas aangeven, ook al is het gas in werkelijkheid niet aanwezig, of een niveau van dat gas aangeven dat boven de werkelijke waarde ligt), negatief (een verminderde reactie op het doelgas, waarbij wordt gesuggereerd dat het gas afwezig is terwijl het wel aanwezig is, of een aflezing die suggereert dat de concentratie van het doelgas lager is dan het geval is), of het interfererende gas kan remming veroorzaken.

Factoren die de levensduur van elektrochemische sensoren beïnvloeden

Er zijn drie belangrijke factoren die de levensduur van de sensor beïnvloeden, waaronder temperatuur, blootstelling aan extreem hoge gasconcentraties en vochtigheid. Andere factoren zijn de sensorelektroden en extreme trillingen en mechanische schokken.

Extreme temperaturen kunnen de levensduur van de sensor beïnvloeden. De fabrikant zal een bedrijfstemperatuurbereik voor het instrument aangeven: meestal -30˚C tot +50˚C. Hoogwaardige sensoren zijn echter bestand tegen tijdelijke schommelingen buiten deze grenzen. Korte blootstelling (1-2 uur) aan 60-65˚C voor H2S of CO sensoren (bijvoorbeeld) is aanvaardbaar, maar herhaalde incidenten zullen resulteren in verdamping van de elektrolyt en verschuivingen in de basislijn (nul) aflezing en tragere reactie.

Blootstelling aan extreem hoge gasconcentraties kan ook de sensorprestaties in gevaar brengen. Elektrochemische sensoren worden doorgaans getest door blootstelling aan wel tienmaal hun ontwerpgrenswaarde. Sensoren die met hoogwaardig katalysatormateriaal zijn vervaardigd, moeten bestand zijn tegen dergelijke blootstellingen zonder veranderingen in de chemie of prestatieverlies op lange termijn. Sensoren met een lagere katalysatorbelasting kunnen schade oplopen.

De vochtigheid heeft de grootste invloed op de levensduur van de sensor. De ideale omgevingsconditie voor elektrochemische sensoren is 20˚Celsius en 60% RH (relatieve vochtigheid). Wanneer de omgevingsvochtigheid boven 60%RH stijgt, zal water in het elektrolyt worden geabsorbeerd, waardoor verdunning optreedt. In extreme gevallen kan het vochtgehalte 2-3 keer toenemen, wat kan resulteren in lekkage uit de sensorbehuizing, en vervolgens via de pennen. Onder 60%RH zal het water in het elektrolyt beginnen te dehydrateren. De responstijd kan aanzienlijk langer worden naarmate het elektrolyt of dehydratatie optreedt. Sensorelektroden kunnen in ongewone omstandigheden worden vergiftigd door storende gassen die aan de katalysator adsorberen of ermee reageren, waardoor bijproducten ontstaan die de katalysator remmen.

Extreme trillingen en mechanische schokken kunnen de sensoren ook beschadigen doordat de lasnaden die de platina elektroden, verbindingsstrips (of draden in sommige sensoren) en pennen met elkaar verbinden, breken.

"Normale" levensduur van elektrochemische sensor

Elektrochemische sensoren voor gewone gassen zoals koolmonoxide of waterstofsulfide hebben een operationele levensduur die gewoonlijk op 2-3 jaar wordt gesteld. Meer exotische gassensoren, zoals waterstoffluoride, hebben soms een levensduur van slechts 12-18 maanden. Onder ideale omstandigheden (stabiele temperatuur en vochtigheid in de buurt van 20˚C en 60%RH) zonder inwerking van verontreinigingen, is van elektrochemische sensoren bekend dat zij meer dan 4000 dagen (11 jaar) in bedrijf zijn. Periodieke blootstelling aan het doelgas beperkt de levensduur van deze kleine brandstofcellen niet: kwalitatief hoogwaardige sensoren hebben een grote hoeveelheid katalysatormateriaal en robuuste geleiders die niet uitgeput raken door de reactie.

Producten

Aangezien elektrochemische sensoren zuiniger zijn, hebben we een gamma van draagbare producten en vaste producten die dit type sensor gebruiken om gassen te detecteren.

Om meer te ontdekken, bezoek onze technische pagina voor meer informatie.

Hoe lang gaat mijn gassensor mee?

Gasdetectoren worden op grote schaal gebruikt in tal van industrieën (zoals waterbehandeling, raffinage, petrochemie, staalindustrie en bouwnijverheid, om er maar enkele te noemen) om personeel en apparatuur te beschermen tegen gevaarlijke gassen en de effecten daarvan. Gebruikers van draagbare en vaste apparaten zijn bekend met de potentieel aanzienlijke kosten om hun instrumenten gedurende hun operationele levensduur veilig te laten werken. Gassensoren worden geacht een meting te verrichten van de concentratie van een analyt van belang, zoals CO (koolmonoxide), CO2 (kooldioxide), of NOx (stikstofoxide). Er zijn twee gassensoren die het meest worden gebruikt in industriële toepassingen: elektrochemische voor het meten van toxische gassen en zuurstof, en pellistors (of katalytische bolletjes) voor brandbare gassen. De laatste jaren is de invoering van zowel zuurstof en MPS (Molecular Property Spectrometer) sensoren de veiligheid verbeterd.

Hoe weet ik wanneer mijn sensor defect is?

In de afgelopen decennia zijn verschillende octrooien en technieken toegepast op gasdetectoren die beweren te kunnen bepalen wanneer een elektrochemische sensor is uitgevallen. De meeste van deze technieken leiden echter alleen af dat de sensor werkt door een of andere vorm van stimulatie van de elektrode en kunnen een vals gevoel van veiligheid geven. De enige zekere methode om aan te tonen dat een sensor werkt, is testgas toe te dienen en de respons te meten: een bumptest of volledige ijking.

Elektrochemische sensor

Elektrochemische sensoren worden het meest gebruikt in de diffusiemodus, waarbij gas uit de omgeving door een gat in het oppervlak van de cel binnendringt. Sommige instrumenten gebruiken een pomp om lucht of gasmonsters naar de sensor te voeren. Over het gat is een PTFE-membraan aangebracht om te voorkomen dat water of olie de cel binnendringt. Het bereik en de gevoeligheid van de sensor kunnen worden gevarieerd door gaten van verschillende grootte te gebruiken. Grotere gaten geven een hogere gevoeligheid en resolutie, terwijl kleinere gaten de gevoeligheid en resolutie verminderen maar het bereik vergroten.

Factoren die de levensduur van elektrochemische sensoren beïnvloeden

Er zijn drie belangrijke factoren die de levensduur van de sensor beïnvloeden: temperatuur, blootstelling aan extreem hoge gasconcentraties en vochtigheid. Andere factoren zijn de sensorelektroden en extreme trillingen en mechanische schokken.

Extreme temperaturen kunnen de levensduur van de sensor beïnvloeden. De fabrikant zal een bedrijfstemperatuurbereik voor het instrument aangeven: meestal -30˚C tot +50˚C. Hoogwaardige sensoren zijn echter bestand tegen tijdelijke schommelingen buiten deze grenzen. Korte blootstelling (1-2 uur) aan 60-65˚C voor H2S of CO sensoren (bijvoorbeeld) is aanvaardbaar, maar herhaalde incidenten zullen resulteren in verdamping van de elektrolyt en verschuivingen in de basislijn (nul) aflezing en tragere reactie.

Blootstelling aan extreem hoge gasconcentraties kan ook de sensorprestaties in gevaar brengen. Elektrochemische sensoren worden doorgaans getest door blootstelling aan wel tienmaal hun ontwerpgrenswaarde. Sensoren die met hoogwaardig katalysatormateriaal zijn vervaardigd, moeten bestand zijn tegen dergelijke blootstellingen zonder veranderingen in de chemie of prestatieverlies op lange termijn. Sensoren met een lagere katalysatorbelasting kunnen schade oplopen.

De vochtigheid heeft de grootste invloed op de levensduur van de sensor. De ideale omgevingsconditie voor elektrochemische sensoren is 20˚Celsius en 60% RH (relatieve vochtigheid). Wanneer de omgevingsvochtigheid boven 60%RH stijgt, zal water in het elektrolyt worden geabsorbeerd, waardoor verdunning optreedt. In extreme gevallen kan het vochtgehalte 2-3 keer toenemen, wat kan resulteren in lekkage uit de sensorbehuizing, en vervolgens via de pennen. Onder 60%RH zal het water in het elektrolyt beginnen te dehydrateren. De responstijd kan aanzienlijk langer worden naarmate het elektrolyt of dehydratatie optreedt. Sensorelektroden kunnen in ongewone omstandigheden worden vergiftigd door storende gassen die aan de katalysator adsorberen of ermee reageren, waardoor bijproducten ontstaan die de katalysator remmen.

Extreme trillingen en mechanische schokken kunnen de sensoren ook beschadigen doordat de lasnaden die de platina elektroden, verbindingsstrips (of draden in sommige sensoren) en pennen met elkaar verbinden, breken.

"Normale" levensduur van elektrochemische sensor

Elektrochemische sensoren voor gewone gassen zoals koolmonoxide of waterstofsulfide hebben een levensduur die gewoonlijk op 2-3 jaar wordt gesteld. Meer exotische gassensoren, zoals waterstoffluoride, hebben soms een levensduur van slechts 12-18 maanden. Onder ideale omstandigheden (stabiele temperatuur en vochtigheid in de buurt van 20˚C en 60%RH) zonder inwerking van verontreinigingen, is van elektrochemische sensoren bekend dat zij meer dan 4000 dagen (11 jaar) in bedrijf zijn. Periodieke blootstelling aan het doelgas beperkt de levensduur van deze kleine brandstofcellen niet: kwalitatief hoogwaardige sensoren hebben een grote hoeveelheid katalysatormateriaal en robuuste geleiders die niet uitgeput raken door de reactie.

Pellistor Sensor

Pellistor-sensoren bestaan uit twee bij elkaar passende draadspoelen, elk ingebed in een keramische kraal. Stroom wordt door de spoelen geleid, waardoor de korrels worden verhit tot ongeveer 500˚C. Brandbaar gas verbrandt op de kraal en de extra opgewekte warmte veroorzaakt een verhoging van de spoelweerstand die door het instrument wordt gemeten om de gasconcentratie aan te geven.

Factoren die de levensduur van de Pellistor-sensor beïnvloeden

De twee belangrijkste factoren die van invloed zijn op de levensduur van de sensor zijn blootstelling aan hoge gasconcentraties en het inbranden of blokkeren van de sensor. Extreme mechanische schokken of trillingen kunnen ook de levensduur van de sensor beïnvloeden. De capaciteit van het katalysatoroppervlak om het gas te oxideren vermindert wanneer het vergiftigd of geremd is. Een sensorlevensduur van meer dan tien jaar is gebruikelijk in toepassingen waar geen remmende of vergiftigende verbindingen aanwezig zijn. Pellistors met een hoger vermogen hebben een grotere katalytische activiteit en zijn minder gevoelig voor vergiftiging. Poreuzere korrels hebben ook een grotere katalytische activiteit naarmate hun oppervlaktevolume toeneemt. Vakkundig initieel ontwerp en gesofisticeerde fabricageprocessen zorgen voor een maximale porositeit van de korrels. Blootstelling aan hoge gasconcentraties (>100%LEL) kan ook de prestaties van de sensor aantasten en een afwijking in het nul/basislijnsignaal veroorzaken. Onvolledige verbranding leidt tot koolstofafzetting op de kraal: de koolstof "groeit" in de poriën en veroorzaakt mechanische schade. De koolstof kan er echter na verloop van tijd worden afgebrand, zodat de katalytische plaatsen weer vrijkomen. Extreme mechanische schokken of trillingen kunnen in zeldzame gevallen ook een breuk in de pellistorspoelen veroorzaken. Dit probleem doet zich vaker voor bij draagbare dan bij vaste gasdetectoren, omdat de kans groter is dat ze vallen en omdat de gebruikte pellistors een lager stroomverbruik hebben (om de levensduur van de batterij te maximaliseren) en dus dunnere spoelen van dunner draad gebruiken.

Hoe weet ik wanneer mijn sensor defect is?

Een pellistor die vergiftigd is, blijft elektrisch operationeel maar reageert mogelijk niet op gas. De gasdetector en het controlesysteem kunnen dus in een gezonde toestand lijken te verkeren, maar een brandbaar gaslek kan niet worden gedetecteerd.

Zuurstofsensor

Pictogram Lang Leven 02

Onze nieuwe loodvrije zuurstofsensor met lange levensduur heeft geen samengeperste strengen lood waar het elektrolyt doorheen moet dringen, waardoor een dik elektrolyt kan worden gebruikt, wat betekent: geen lekken, geen corrosie door lekken, en een grotere veiligheid. De extra robuustheid van deze sensor stelt ons in staat vol vertrouwen een garantie van 5 jaar te bieden voor extra gemoedsrust.

Oxygen-sensoren met lange levensduur hebben een lange levensduur van 5 jaar, met minder uitvaltijd, lagere eigendomskosten en minder impact op het milieu. Ze meten nauwkeurig zuurstof over een breed bereik van concentraties van 0 tot 30% volume en zijn de volgende generatie O2-gasdetectie.

MPS-sensor

MPS sensor biedt een geavanceerde technologie die de noodzaak tot kalibreren wegneemt en een 'True LEL (lower explosive limit)' oplevert voor het aflezen van vijftien brandbare gassen, maar kan alle brandbare gassen in een omgeving met meerdere soorten detecteren, wat resulteert in lagere lopende onderhoudskosten en minder interactie met het toestel. Dit vermindert het risico voor het personeel en voorkomt kostbare uitvaltijd. De MPS-sensor is ook immuun voor sensorvergiftiging.  

Sensorstoringen door verontreiniging kunnen een frustrerende en dure ervaring zijn. De technologie in de MPS™-sensorwordt niet beïnvloed door verontreinigingen in de omgeving. Processen met verontreinigingen hebben nu toegang tot een oplossing die betrouwbaar werkt met een fail safe ontwerp om de operator te waarschuwen en gemoedsrust te bieden voor personeel en activa in een gevaarlijke omgeving. Het is nu mogelijk om meerdere brandbare gassen te detecteren, zelfs in ruwe omgevingen, met slechts één sensor die niet gekalibreerd hoeft te worden en een verwachte levensduur van ten minste 5 jaar heeft.