Wprowadzenie do przemysłu morskiego

Sektor morski jest przemysłem globalnym i jest szeroki pod względem zastosowań i różnych typów statków, w tym statków FPSO, promów i łodzi podwodnych.

Rodzaj występujących zagrożeń gazowych, a co za tym idzie wymagania dotyczące detekcji gazu, zależą w dużej mierze od zastosowania i typu używanej jednostki morskiej. W tym blogu przyjrzymy się kilku najczęstszym zagrożeniom gazowym występującym w przemyśle morskim oraz zastosowaniom, w których są one najbardziej prawdopodobne.

Pływające jednostki produkcyjne, magazynowe, przeładunkowe i tankowce

Na pływających jednostkach produkcyjnych, magazynowych i przeładunkowych (FPSO), które są wykorzystywane w produkcji, przetwarzaniu i przechowywaniu ropy naftowej, znajduje się wiele potencjalnych zagrożeń gazowych.

Po pierwsze, istnieje ryzyko zagrożenia pożarowego i wybuchowego, które może prowadzić do katastrofalnych szkód i utraty życia. Zagrożenia gazami palnymi, które mogą występować, obejmują między innymi metan, wodór, propan, LPG, rozpuszczalniki i opary benzyny. Ze względu na to ryzyko, wykrywanie gazów palnych jest niezbędne na statkach FPSO.

Na jednostkach FPSO występują również przestrzenie zamknięte w postaci odwróconych zbiorników lub pustych przestrzeni, co oznacza, że detektory tlenu są niezbędne w tych obszarach, aby chronić przed ryzykiem wyczerpania tlenu, które może powodować dezorientację umysłową, nudności, osłabienie, a w skrajnych przypadkach utratę przytomności i śmierć.

Promy

Chociaż na promach nie ma tak wielu zagrożeń gazowych jak na innych jednostkach pływających, to jednak z pewnością należy być świadomym niektórych z nich. Na przykład na promach przewożących pojazdy, może dojść do dużego nagromadzenia emisji ze spalin samochodowych, które zawierają szkodliwe gazy takie jak tlenek węgla i dwutlenek azotu. Oba gazy są w stanie spowodować szkody dla zdrowia ludzkiego, powodując takie problemy jak mdłości, dezorientacja, zapalenie dróg oddechowych i zwiększoną podatność na infekcje układu oddechowego.

Okręty podwodne

Okręty podwodne mogą być wykorzystywane do różnych celów, w tym do akcji ratowniczych i poszukiwawczych, badań morskich oraz kontroli i konserwacji obiektów. Na tych statkach może istnieć wymóg wykrywania wodoru w magazynach akumulatorów. Wodór jest gazem nietoksycznym, ale jeśli nagromadzi się w środowisku bez wystarczającego przepływu powietrza, może wypierać tlen z powietrza, co prowadzi do ryzyka jego zubożenia.

Nasze rozwiązania

Detektory gazu mogą być dostarczane zarówno w formie stacjonarnej, jak i przenośnej. Nasze przenośne detektory gazu chronią ludzi przed szerokim zakresem zagrożeń gazowych i obejmują T4x, Gas-Pro, T4 oraz Gas-Pro TK. Nasze stacjonarne detektory gazu są stosowane tam, gdzie niezawodność, niezawodność i brak fałszywych alarmów mają kluczowe znaczenie dla wydajnej i skutecznej ochrony zasobów i obszarów. Stacjonarny detektor Sensitron, dostępny teraz w ofercie Crowcon SMART S-MS MED został zaprojektowany specjalnie do użytku w środowisku morskim. Czujka SMART S-MS MED jest w pełni certyfikowana przez Lloyd's Register zgodnie z rozporządzeniem MED/3.54, a także posiada certyfikat SIL-2. Dostępny jest również Multiscan++MED z certyfikatem MED i SIL-2, który może zarządzać i monitorować do 64 detektorów gazu.

Aby dowiedzieć się więcej o zagrożeniach gazowych w sektorze morskim, odwiedź naszą stronę branżową, aby uzyskać więcej informacji.

Protokoły bezpieczeństwa gazowego w uzdatnianiu wody

Woda jest niezbędna w naszym codziennym życiu, zarówno do użytku osobistego i domowego, jak i do zastosowań przemysłowych/handlowych. Jest wszędzie, wspierając niektóre reakcje chemiczne i hamując inne. Używana jest do czyszczenia powierzchni, przenoszenia chemikaliów do miejsc, w których są używane oraz do odprowadzania niechcianych chemikaliów. Zrób cokolwiek, a wytworzysz gdzieś gaz w jakiejś ilości. Zrób cokolwiek z wodą, jest tyle permutacji rzeczy, które mogą się łączyć i reagować, rozpuszczonych gazów, które mogą wyjść z roztworu, rozpuszczonych cieczy i ciał stałych, które mogą reagować tworząc gazy. Dodatkowo należy określić, jakie gazy powstają podczas zbierania, czyszczenia, przechowywania, transportu lub używania wody. Detektory gazu muszą być dobrane do specyficznego środowiska, w którym pracują, w tym przypadku wysoce wilgotnego, często zanieczyszczonego, ale rzadko poza zakresem temperatur od 4 do 30 stopni C. W tych złożonych środowiskach występują wszystkie zagrożenia, z wieloma zagrożeniami związanymi z gazami toksycznymi i łatwopalnymi, a często także z dodatkowym ryzykiem wyczerpania tlenu.

Zagrożenia gazowe

Oprócz powszechnie znanych w przemyśle zagrożeń gazowych: metanu, siarkowodoru i tlenu, istnieją zagrożenia gazowe związane z produktami ubocznymi oraz zagrożenia gazowe związane z materiałami czyszczącymi, które powstają w wyniku stosowania chemikaliów oczyszczających, takich jak amoniak, chlor, dwutlenek chloru lub ozon, używanych do odkażania wody odpadowej i ściekowej lub do usuwania mikrobów z czystej wody. W wyniku stosowania chemikaliów w przemyśle wodnym istnieje duże prawdopodobieństwo istnienia wielu toksycznych lub wybuchowych gazów. Do tego dochodzą chemikalia, które mogą być rozlane lub zrzucone do systemu ściekowego z przemysłu, rolnictwa lub prac budowlanych.

Chlor (Cl2) ma żółto-zielony kolor i jest używany do sterylizacji wody pitnej. Jednak większość chloru jest wykorzystywana w przemyśle chemicznym, a jego typowe zastosowania obejmują uzdatnianie wody, a także tworzywa sztuczne i środki czyszczące. Chlor gazowy można rozpoznać po ostrym, drażniącym zapachu, który przypomina zapach wybielacza. Silny zapach może stanowić odpowiednie ostrzeżenie dla osób narażonych na jego działanie. Cl2 sam w sobie nie jest łatwopalny, ale może reagować wybuchowo lub tworzyć łatwopalne związki z innymi chemikaliami, takimi jak terpentyna i amoniak.

Amoniak (NH3) jest związkiem azotu i wodoru i jest bezbarwnym i ostrym gazem, znanym również jako wysoce rozpuszczalny w kontakcie z wodą. Oznacza to, że NH3 szybko rozpuszcza się w wodzie. Występuje na bardzo niskim poziomie u ludzi i w przyrodzie. Jest również często stosowany w niektórych domowych środkach czyszczących. Chociaż NH3 ma wiele zalet, w pewnych okolicznościach może być żrący i niebezpieczny. Amoniak może przedostawać się do ścieków z kilku różnych źródeł, w tym z moczu, obornika, chemikaliów czyszczących, chemikaliów procesowych i produktów aminokwasowych. Jeśli NH3 dostanie się do systemu rur miedzianych, może spowodować rozległą korozję. Jeśli NH3 dostanie się do wody, jego toksyczność różni się w zależności od dokładnego pH wody. Amoniak może rozpadać się na jony amonowe, które mogą reagować z innymi obecnymi związkami.

Dwutlenek chloru (ClO2) jest gazem utleniającym powszechnie stosowanym do dezynfekcji wody pitnej. Stosowany w bardzo małych ilościach jest bezpieczny i nie prowadzi do znaczącego zagrożenia dla zdrowia. ClO2 jest jednak silnym środkiem dezynfekującym, który zabija bakterie, wirusy i grzyby, a stosowany w dużych dawkach może być niebezpieczny dla ludzi, ponieważ może uszkadzać czerwone krwinki i wyściółkę przewodu pokarmowego.

Ozon (O3) to gaz o antyseptycznym zapachu i bezbarwny, który w większości przypadków powstaje naturalnie w środowisku. Wdychany ozon może mieć szereg szkodliwych skutków dla organizmu. Ponieważ jest to gaz bezbarwny, trudno go wykryć bez skutecznego systemu detekcji. Nawet w przypadku wdychania stosunkowo niewielkich ilości, gaz może mieć szkodliwy wpływ na drogi oddechowe, powodując stan zapalny i ból w klatce piersiowej, a także kaszel, duszności i podrażnienie gardła. Może również działać jako czynnik wyzwalający, powodując zaostrzenie chorób takich jak astma.

Wejście do przestrzeni zamkniętej

Rurociągi używane do transportu wody wymagają regularnego czyszczenia i kontroli bezpieczeństwa; podczas tych czynności do ochrony pracowników używane są przenośne monitory wielogazowe. Przed wejściem do jakiejkolwiek przestrzeni zamkniętej należy przeprowadzić kontrole wstępne i zwykle monitorowane są O2, CO,H2Si CH4. Przestrzenie zamknięte są małe, więc przenośne monit ory muszą być kompaktowe i nie rzucać się w oczy użytkownikowi, a jednocześnie być w stanie wytrzymać wilgotne i brudne środowisko, w którym muszą pracować. Wyraźne i natychmiastowe wskazanie każdego wzrostu monitorowanego gazu (lub każdego spadku w przypadku tlenu) ma ogromne znaczenie - głośne i jasne alarmy są skuteczne w informowaniu użytkownika.

Prawodawstwo

Dyrektywa Komisji Europejskiej 2017/164 ustanowiła zwiększoną listę indykatywnych dopuszczalnych wartości narażenia zawodowego (IOELV). IOELV to oparte na zdrowiu, niewiążące wartości, wyprowadzone z najnowszych dostępnych danych naukowych i uwzględniające dostępność wiarygodnych technik pomiarowych. Niewiążące, ale stanowiące najlepszą praktykę. Wykaz obejmuje tlenek węgla, tlenek azotu, dwutlenek azotu, dwutlenek siarki, cyjanowodór, mangan, diacetyl i wiele innych substancji chemicznych. Wykaz opiera się na dyrektywie Rady 98/24/WE, która dotyczy ochrony zdrowia i bezpieczeństwa pracowników przed ryzykiem związanym ze środkami chemicznymi w miejscu pracy. Dla każdego środka chemicznego, dla którego ustalono IOELV na poziomie Unii, państwa członkowskie są zobowiązane do ustanowienia krajowej dopuszczalnej wartości narażenia zawodowego. Są one również zobowiązane do uwzględnienia unijnej wartości granicznej, określając charakter krajowej wartości granicznej zgodnie z krajowym ustawodawstwem i praktyką. Państwa członkowskie będą mogły skorzystać z okresu przejściowego kończącego się najpóźniej w dniu 21 sierpnia 2023 r.

Health and Safety Executive(HSE) stwierdza, że każdego roku wielu pracowników cierpi na co najmniej jeden epizod choroby związanej z pracą. Chociaż większość chorób to stosunkowo łagodne przypadki zapalenia żołądka i jelit, istnieje również ryzyko wystąpienia potencjalnie śmiertelnych chorób, takich jak leptospiroza (choroba Weila) i zapalenie wątroby. Nawet jeśli są one zgłaszane do HSE, może istnieć znaczne niedoinformowanie, ponieważ często nie dostrzega się związku między chorobą a pracą.

Zgodnie z prawem krajowym Health and Safety at Work etc Act 1974, pracodawcy są odpowiedzialni za zapewnienie bezpieczeństwa swoim pracownikom i innym osobom. Ta odpowiedzialność jest wzmocniona przez przepisy.

Przepisy dotyczące przestrzeni zamkniętych z 1997 r. mają zastosowanie w przypadku, gdy ocena wskazuje na ryzyko poważnych obrażeń w wyniku pracy w przestrzeniach zamkniętych. Przepisy te zawierają następujące kluczowe obowiązki:

  • Unikaj wchodzenia do zamkniętych pomieszczeń, np. wykonując pracę z zewnątrz.
  • Jeżeli wejście do zamkniętej przestrzeni jest nieuniknione, należy postępować zgodnie z bezpiecznym systemem pracy.
  • Przed rozpoczęciem pracy należy przygotować odpowiednie rozwiązania awaryjne.

Management of Health and Safety at Work Regulations 1999 wymaga od pracodawców i osób pracujących na własny rachunek przeprowadzenia odpowiedniej i wystarczającej oceny ryzyka dla wszystkich czynności roboczych w celu podjęcia decyzji o środkach niezbędnych dla bezpieczeństwa. W przypadku pracy w zamkniętych przestrzeniach oznacza to identyfikację występujących zagrożeń, ocenę ryzyka i określenie środków ostrożności, które należy podjąć.

Nasze rozwiązanie

Eliminacja tych zagrożeń gazowych jest praktycznie niemożliwa, więc stali pracownicy i wykonawcy muszą polegać na niezawodnym sprzęcie do wykrywania gazu, aby zapewnić im ochronę. Detektory gazu mogą być dostarczane zarówno w formie stacjonarnej, jak i przenośnej. Nasze przenośne detektory gazu chronią ludzi przed szerokim zakresem zagrożeń gazowych i obejmują T4x, Clip SGD, Gasman,Tetra 3, Gas-Pro, T4 oraz Detective+. Nasze stacjonarne detektory gazu są stosowane tam, gdzie niezawodność, niezawodność i brak fałszywych alarmów mają kluczowe znaczenie dla wydajnej i skutecznej ochrony zasobów i obszarów, i obejmują Xgard, Xgard Bright i IRmax . W połączeniu z różnymi naszymi detektorami stacjonarnymi, nasze centrale detekcji gazów oferują elastyczny zakres rozwiązań, które mierzą gazy palne, toksyczne i tlen, zgłaszają ich obecność i aktywują alarmy lub powiązane urządzenia. Gasmaster panel.

Aby dowiedzieć się więcej o zagrożeniach gazowych w ściekach, odwiedź naszą stronę branżową, aby uzyskać więcej informacji.

Niebezpieczeństwa związane z ekspozycją na gaz w winiarniach

Winiarnie stoją przed wyjątkowym zestawem wyzwań, jeśli chodzi o ochronę pracowników przed potencjalnymi szkodami powodowanymi przez niebezpieczne gazy. Narażenie na działanie gazów może wystąpić na każdym etapie procesu produkcji wina, od momentu przybycia winogron do winnicy, poprzez fermentację, aż po butelkowanie. Na każdym etapie należy zachować ostrożność, aby zapewnić, że pracownicy nie są narażeni na niepotrzebne ryzyko. W winiarni istnieje kilka specyficznych środowisk, które stwarzają ryzyko wycieku gazu i narażenia na jego działanie, w tym pomieszczenia fermentacyjne, doły, piwnice z beczkami, studzienki, zbiorniki magazynowe i rozlewnie. Główne zagrożenia gazowe występujące podczas procesu produkcji wina to dwutlenek węgla i wypieranie tlenu, ale także siarkowodór, dwutlenek siarki, alkohol etylowy i tlenek węgla.

Jakie są zagrożenia gazowe?

Siarkowodór (H2S)

Siarkowodór jest gazem, który może być obecny podczas procesu fermentacji. Jest on częściej obecny w wilgotnych warunkach, gdzie działanie bakterii zadziałało na naturalne oleje. Ukrywa się rozpuszczony w stojącej wodzie, dopóki nie zostanie naruszony. Najbardziej niebezpieczne jest czyszczenie zamkniętej przestrzeni, np. zbiornika, z którego uwolnione gazy nie mogą się łatwo wydostać. Kontrola przed wejściem jest czysta, a stojąca woda zostaje naruszona przy wejściu. Ryzyko związane zH2Spolega na tym, że jest on potencjalnie niebezpieczny dla zdrowia, zaburzając schematy oddychania. Siarkowodór stanowi poważne zagrożenie dla dróg oddechowych, nawet przy stosunkowo niskim stężeniu w powietrzu. Gaz ten jest bardzo łatwo i szybko wchłaniany do krwiobiegu przez tkankę płucną, co oznacza, że bardzo szybko rozprowadzany jest po całym organizmie.

Dwutlenek siarki (SO2)

Dwutlenek siarki jest naturalnym produktem ubocznym fermentacji, ale jest również powszechnie stosowany jako dodatek w procesie organicznego wytwarzania wina. Dodatkowy SO2 jest dodawany podczas procesu produkcji wina, aby zapobiec rozwojowi niepożądanych drożdży i mikrobów w winie. Dwutlenek siarki może być bardzo niebezpieczny dla zdrowia i jest wysoce toksycznym gazem, powodującym liczne podrażnienia w organizmie w momencie kontaktu. Dwutlenek siarki jest gazem, który może powodować podrażnienie dróg oddechowych, nosa i gardła. U pracowników narażonych na wysokie stężenie dwutlenku siarki mogą wystąpić wymioty, nudności, skurcze żołądka oraz podrażnienie lub korozyjne uszkodzenie płuc i dróg oddechowych.

Etanol (alkohol etylowy)

Etanol jest głównym produktem alkoholowym fermentacji wina organicznego. Pomaga utrzymać smak wina i stabilizuje proces starzenia. Etanol powstaje podczas fermentacji, gdy drożdże przetwarzają cukier z winogron. Wino zawiera zazwyczaj od 7% do 15% etanolu, co nadaje napojowi procentową zawartość alkoholu w objętości (ABV). Ilość faktycznie wyprodukowanego etanolu zależy od zawartości cukru w winogronach, temperatury fermentacji i rodzaju użytych drożdży. Etanol jest bezbarwną i bezwonną cieczą, która wydziela łatwopalne i potencjalnie niebezpieczne opary. Opary wydzielane przez etanol lub alkohol etylowy mogą podrażniać drogi oddechowe i płuca w przypadku wdychania, z możliwością intensywnego kaszlu i dławienia się.

Gdzie są zagrożenia?

Otwarte zbiorniki fermentacyjne

Każdy pracownik, którego praca wymaga wykonywania czynności nad otwartym naczyniem fermentacyjnym lub zbiornikiem może być narażony na wysokie ryzyko ekspozycji na gaz, zwłaszcza naCO2 lub wyczerpanie tlenu. Wykazano, że pracownik, który pochyla się nad górną częścią otwartego fermentatora podczas pełnej produkcji, mimo że może znajdować się nawet 10 stóp od ziemi, może być potencjalnie narażony na 100%CO2. Dlatego w tych miejscach należy zachować szczególną ostrożność i uwagę na wykrywanie gazu.

Narażenie na skutek nieodpowiedniej wentylacji

Proces fermentacji musi odbywać się w dobrze wentylowanych pomieszczeniach, aby uniknąć gromadzenia się toksycznych i duszących gazów. Pomieszczenia fermentacyjne, zbiorniki i piwnice to miejsca, które mogą stanowić zagrożenie. Podczas zimnej pogody lub w nocy może dojść do nagromadzenia zwiększonej ilości gazu, ponieważ otwory wentylacyjne w drzwiach i oknach mogą być zamknięte.

Przestrzenie zamknięte

Przestrzenie zamknięte, takie jak doły i studzienki, są często problematyczne i dobrze znane z potencjalnego gromadzenia się niebezpiecznych gazów. Definicja przestrzeni zamkniętej w winiarni to taka, która zawiera lub może zawierać niebezpieczną atmosferę, ma możliwość pochłonięcia przez materiał lub osoba wchodząca do środowiska może zostać uwięziona lub uduszona.

Wiele jednostek

W miarę rozwoju i rozszerzania działalności winiarnia może chcieć dodać nowe jednostki produkcyjne, aby sprostać zapotrzebowaniu. Należy jednak pamiętać, że potencjalne zagrożenia związane z ekspozycją na gaz różnią się w zależności od środowiska, np. zagrożenie gazowe w piwnicy fermentacyjnej nie jest takie samo jak w pomieszczeniu z beczkami. Dlatego w różnych miejscach mogą być potrzebne różne typy detektorów gazu.

Aby uzyskać więcej informacji na temat rozwiązań w zakresie wykrywania gazu dla winiarni lub zadać dalsze pytania, skontaktuj się z nami już dziś.

Zagrożenia gazowe w ściekach

Woda jest niezbędna w naszym codziennym życiu, zarówno do użytku osobistego i domowego, jak i w zastosowaniach przemysłowych i komercyjnych, co sprawia, że miejsca występowania wody są liczne i szeroko rozpowszechnione. Pomimo ilości i lokalizacji miejsc występowania wody, dominują tylko dwa środowiska, i to dość specyficzne. Są to woda czysta i ścieki. W niniejszym blogu przedstawiono zagrożenia gazowe występujące w miejscach występowania ścieków oraz sposoby ich ograniczania.

Przemysł ściekowy jest zawsze mokry, z temperaturami pomiędzy 4 a 20oc w pobliżu wody i rzadko daleko od tego ograniczonego zakresu temperatur, nawet z dala od bezpośredniego miejsca, w którym znajdują się ścieki. 90%+ wilgotność względna, 12 +/- 8occiśnienie atmosferyczne, z wieloma zagrożeniami związanymi z toksycznymi i łatwopalnymi gazami oraz ryzykiem wyczerpania tlenu. Detektory gazu muszą być dobrane do konkretnego środowiska, w którym pracują, i chociaż wysoka wilgotność jest generalnie wyzwaniem dla wszystkich przyrządów, to stałe ciśnienie, umiarkowane temperatury i wąski zakres temperatur są znacznie korzystniejsze dla przyrządów bezpieczeństwa.

Zagrożenia gazowe

Głównymi gazami występującymi w oczyszczalniach ścieków są:

Siarkowodór, metan i dwutlenek węgla są produktami ubocznymi rozkładu materiałów organicznych występujących w strumieniach odpadów zasilających instalację. Nagromadzenie tych gazów może prowadzić do braku tlenu, a w niektórych przypadkach do eksplozji w połączeniu ze źródłem zapłonu.

Siarkowodór (H2S)

Siarkowodór jest powszechnym produktem biodegradacji materii organicznej; kieszenieH2Smogą gromadzić się w gnijącej roślinności lub w samych ściekach i uwalniać się po ich naruszeniu. Pracownicy zakładów kanalizacyjnych i ściekowych oraz rurociągów mogą zostać pokonani przezH2Sze skutkiem śmiertelnym. Jego wysoka toksyczność jest głównym niebezpieczeństwem związanym zH2S. Długotrwałe narażenie na 2-5 części na milion (ppm)H2Smoże powodować nudności i bóle głowy i przynieść łzy do oczu .H2Sjest środkiem znieczulającym, stąd przy 20ppm objawy obejmują zmęczenie, bóle głowy, drażliwość, zawroty głowy, chwilową utratę zmysłu węchu i upośledzenie pamięci. Ciężkość objawów wzrasta wraz ze stężeniem, ponieważ nerwy wyłączają się, poprzez kaszel, zapalenie spojówek, zapaść i szybką utratę przytomności. Narażenie na wyższe poziomy może spowodować gwałtowne powalenie i śmierć. Długotrwałe narażenie na niskie poziomyH2Smoże spowodować przewlekłą chorobę lub może również zabić. Z tego powodu wiele monitorów gazu będzie miało zarówno chwilowe, jak i TWA (Time-Weighted Average).

Metan (CH4)

Metan jest bezbarwnym, wysoce łatwopalnym gazem, który jest podstawowym składnikiem gazu ziemnego, zwanego również biogazem. Może być przechowywany i/lub transportowany pod ciśnieniem jako ciekły gaz. CH4 jest gazem cieplarnianym, który występuje również w normalnych warunkach atmosferycznych w ilości około 2 części na milion (ppm). Duże narażenie może prowadzić do niewyraźnej mowy, problemów z widzeniem i utraty pamięci.

Tlen (O2)

Normalne stężenie tlenu w atmosferze wynosi około 20,9% objętości. W przypadku braku odpowiedniej wentylacji, poziom tlen może być zaskakująco szybko obniżony przez procesy oddychania i spalania. O2 może również ulec obniżeniu w wyniku rozcieńczenia przez inne gazy, takie jak dwutlenek węgla (również gaz toksyczny), azot lub hel, oraz absorpcji chemicznej w wyniku procesów korozji i podobnych reakcji. Czujniki tlenu powinny być stosowane w środowiskach, w których istnieje którekolwiek z tych potencjalnych zagrożeń. Podczas lokalizacji czujników tlenu należy wziąć pod uwagę gęstość gazu rozcieńczającego i strefę "oddychania" (poziom nosa).

Uwagi dotyczące bezpieczeństwa

Ocena ryzyka

Ocena ryzyka ma kluczowe znaczenie, ponieważ trzeba mieć świadomość środowiska, do którego się wchodzi, a tym samym w którym się pracuje. Dlatego zrozumienie zastosowań i identyfikacja zagrożeń dotyczących wszystkich aspektów bezpieczeństwa. Skupiając się na monitorowaniu gazu, w ramach oceny ryzyka należy mieć jasność, jakie gazy mogą być obecne.

Dopasowanie do celu

W procesie uzdatniania wody istnieje wiele zastosowań, co powoduje konieczność monitorowania wielu gazów, w tym dwutlenku węgla, siarkowodoru, chloru, metanu, tlenu, ozonu i dwutlenku chloru. Detektory gazu są dostępne w wersjach do monitorowania jednego lub wielu gazów, co czyni je praktycznymi w różnych zastosowaniach, a także daje pewność, że w przypadku zmiany warunków (np. wymieszania szlamu, powodującego nagły wzrost poziomu siarkowodoru i gazów palnych) pracownik jest nadal chroniony.

Prawodawstwo

Dyrektywa Komisji Europejskiej 2017/164 wydana w styczniu 2017 roku, ustanowiła nową listę indykatywnych dopuszczalnych wartości narażenia zawodowego (IOELV). IOELV to oparte na zdrowiu, niewiążące wartości, wyprowadzone z najnowszych dostępnych danych naukowych i uwzględniające dostępność wiarygodnych technik pomiarowych. Wykaz obejmuje tlenek węgla, tlenek azotu, dwutlenek azotu, dwutlenek siarki, cyjanowodór, mangan, diacetyl i wiele innych substancji chemicznych. Wykaz opiera się na dyrektywie Rady 98/24/WE która dotyczy ochrony zdrowia i bezpieczeństwa pracowników przed zagrożeniami związanymi ze środkami chemicznymi w miejscu pracy. Dla każdego środka chemicznego, dla którego ustalono IOELV na poziomie Unii, państwa członkowskie są zobowiązane do ustanowienia krajowej dopuszczalnej wartości narażenia zawodowego. Są one również zobowiązane do uwzględnienia unijnej wartości granicznej, określając charakter krajowej wartości granicznej zgodnie z krajowym ustawodawstwem i praktyką. Państwa członkowskie będą mogły skorzystać z okresu przejściowego kończącego się najpóźniej w dniu 21 sierpnia 2023 r.

Organ wykonawczy ds. zdrowia i bezpieczeństwa (HSE) stwierdza, że każdego roku kilku pracowników cierpi na co najmniej jeden epizod choroby związanej z pracą. Chociaż większość chorób to stosunkowo łagodne przypadki zapalenia żołądka i jelit, istnieje również ryzyko wystąpienia potencjalnie śmiertelnych chorób, takich jak leptospiroza (choroba Weila) i zapalenie wątroby. Nawet jeśli są one zgłaszane do HSE, może istnieć znaczne niedoinformowanie, ponieważ często nie dostrzega się związku między chorobą a pracą.

Nasze rozwiązania

Eliminacja tych zagrożeń gazowych jest praktycznie niemożliwa, dlatego stali pracownicy i wykonawcy muszą polegać na niezawodnym sprzęcie do wykrywania gazu, który zapewni im ochronę. Detekcja gazu może być zapewniona zarówno w stałych i przenośne formie. Nasze przenośne detektory gazu chronią przed szerokim zakresem zagrożeń gazowych, takich jak T4x, Clip SGD, Gasman, Tetra 3, Gas-Pro, T4 oraz Detective+. Nasze stacjonarne detektory gazu są stosowane tam, gdzie niezawodność, niezawodność i brak fałszywych alarmów mają kluczowe znaczenie dla wydajnego i skutecznego wykrywania gazu. Xgard, Xgard Bright i IRmax. W połączeniu z różnymi naszymi detektorami stacjonarnymi, nasze panele sterowania do wykrywania gazów oferują elastyczny zakres rozwiązań, które mierzą gazy palne, toksyczne i tlen, zgłaszają ich obecność i aktywują alarmy lub powiązane urządzenia. Gasmaster.

Aby dowiedzieć się więcej o zagrożeniach gazowych w ściekach, odwiedź naszą strona branżowa aby uzyskać więcej informacji.

Jakie są zagrożenia związane z gazem w telekomunikacji?

Przemysł telekomunikacyjny obejmuje dostawców kablowych, dostawców usług internetowych, dostawców satelitarnych i dostawców telefonicznych oraz przestrzenie zamknięte. Nawet zwykłe naziemne skrzynki zakończeniowe mogą zawierać zagrożenia gazowe powstałe w wyniku przebiegu kabli pod ziemią. Gazy takie jak metan, dwutlenek węgla i siarkowodór mogą przepływać przez rury kablowe gromadząc się w skrzynkach końcowych i objawiając się jako zagrożenie po otwarciu skrzynki końcowej.

Ryzyko niebezpieczeństwa pojawia się, gdy pracownik jest wysyłany do wykonywania zadań związanych z otwieraniem zamkniętych tomów, do których mógł nie mieć dostępu przez pewien czas. Wszystkie firmy telekomunikacyjne mają ich pod dostatkiem.

Jakie są zagrożenia?

Osoby pracujące w branży telekomunikacyjnej są narażone na różne zagrożenia gazowe, z których wiele może spowodować uszczerbek na ich zdrowiu i bezpieczeństwie. Choć mniej oczywiste, zagrożenia te powinny być traktowane równie poważnie jak upadki z wysokości czy porażenia prądem i wymagają podobnego poziomu szkolenia. Pracownik nie może wchodzić na podwyższone stanowisko bez uprzęży, podobnie nie powinien wchodzić do zamkniętych przestrzeni bez odpowiedniego szkolenia w zakresie zamkniętych przestrzeni. Świadomość występujących zagrożeń i minimalizowanie ryzyka, które może prowadzić do negatywnych skutków, to dobrze znana zasada bezpieczeństwa. Szkolenie i odpowiedni sprzęt ochrony osobistej mogą pomóc w ochronie pracowników przed tymi zagrożeniami.

Zagrożenia i ryzyko związane z gazem

Ponieważ w branży telekomunikacyjnej występuje wiele przestrzeni zamkniętych, pracownicy są narażeni na obecność w nich niebezpiecznych i toksycznych gazów. Niebezpieczne gazy mogą być również związane z pozornie prostymi naziemnymi skrzynkami zakończeniowymi. Gazy takie jak metan, dwutlenek węgla i siarkowodór czasami przemieszczają się w kanalizacji kablowej, dlatego też w momencie otwarcia skrzynki zakończeniowej może dojść do uwolnienia tych gazów.

Zamknięte lub częściowo zamknięte przestrzenie z wysokim poziomem metanu w powietrzu zmniejszają ilość tlenu dostępnego do oddychania i dlatego mogą powodować zmiany nastroju, problemy z mową i widzeniem, utratę pamięci, nudności, choroby, zaczerwienienie twarzy i bóle głowy. W cięższych przypadkach i przy długotrwałym narażeniu mogą wystąpić zmiany w oddychaniu i tętnie, problemy z równowagą, drętwienie i utrata przytomności. Istnieje również ryzyko pożaru, ponieważ metan jest wysoce łatwopalny.

Zużycie tlenku węgla (CO) również stwarza poważne problemy zdrowotne dla pracowników, przy czym osoby spożywające tę toksyczną substancję mogą doświadczyć objawów grypopodobnych, bólu w klatce piersiowej, dezorientacji, omdlenia, arytmii, drgawek lub nawet gorszych skutków zdrowotnych w przypadku wysokiego lub długotrwałego narażenia. Zatrucie siarkowodorem (H2S) powoduje podobne problemy, jak również delirium, drżenia, konwulsje oraz podrażnienie skóry i oczu. Dwutlenek węgla jest gazem duszącym, który może wypierać tlen i powodować zawroty głowy.

Nasze rozwiązanie

Detekcja gazu może być realizowana zarówno w formie stacjonarnej, jak i przenośnej. Nasze przenośne detektory gazu chronią przed szerokim zakresem zagrożeń gazowych, takich jak Tetra 3 oraz T4. Nasze stacjonarne detektory gazu są stosowane tam, gdzie niezawodność, niezawodność i brak fałszywych alarmów mają kluczowe znaczenie dla wydajnego i skutecznego wykrywania gazu. Xgard Bright. W połączeniu z różnymi naszymi detektorami stacjonarnymi, nasze panele sterowania detekcją gazów oferują elastyczny zakres rozwiązań, które są w stanie mierzyć gazy palne, toksyczne i tlen, zgłaszać ich obecność i aktywować alarmy lub powiązane urządzenia, dla przemysłu telekomunikacyjnego nasze panele obejmują Gasmaster.

Aby dowiedzieć się więcej o zagrożeniach gazowych w telekomunikacji odwiedź naszą stronę branżową, aby uzyskać więcej informacji.

Transport i kluczowe wyzwania związane z gazem 

Na stronie transport Sektor transportowy jest jednym z największych sektorów przemysłu na świecie, obejmującym wiele różnych zastosowań. Sektor oferuje usługi związane z przemieszczaniem ludzi i wszelkiego rodzaju ładunków, w zakresie frachtu lotniczego i logistyki, linii lotniczych i usług lotniskowych, transportu drogowego i kolejowego, infrastruktury transportowej, transportu ciężarowego, autostrad, torów kolejowych oraz portów i usług morskich.

Zagrożenia gazowe podczas transportu

Transport towarów niebezpiecznych jest regulowany w celu zapobiegania wypadkom z udziałem ludzi lub mienia, zniszczeniu środowiska. Istnieje wiele zagrożeń gazowych, w tym transport materiałów niebezpiecznych, emisje z klimatyzacji, spalanie w kabinie i wycieki z hangaru.

Transport materiałów niebezpiecznych stwarza ryzyko dla osób w nim uczestniczących. Istnieje dziewięć obszarów klasyfikacji określonych przez Organizację Narodów Zjednoczonych (ONZ) Są to materiały wybuchowe, gazy, ciecze i substancje stałe łatwopalne, substancje utleniające, substancje toksyczne, materiały radioaktywne, substancje żrące i towary różne. W przypadku transportu tych materiałów ryzyko wypadku jest bardziej prawdopodobne. Jednak największym powodem do niepokoju w branży transportu niepalnych i nietoksycznych gazów jest uduszenie. Powolny wyciek w pojemniku magazynowym może spowodować odpływ całego tlenu z powietrza i uduszenie się osób znajdujących się w otoczeniu.

Wycieki w hangarach lotniczych i magazynach paliwa lotniczego o wysokiej wybuchowości to obszar, który musi być monitorowany, aby zapobiec pożarom, uszkodzeniom sprzętu, a w najgorszym przypadku ofiarom śmiertelnym. Istotny jest wybór odpowiedniego rozwiązania do wykrywania gazu, które skupia się na samolocie, a nie na hangarze, pozwala uniknąć fałszywych alarmów i może monitorować duże obszary.

Nie tylko środowisko zewnętrzne stanowi zagrożenie gazowe w transporcie, również osoby pracujące w tym sektorze stają przed podobnymi wyzwaniami. Emisje z klimatyzacji stanowią zagrożenie gazowe ze względu na spalanie paliw kopalnych prowadzące do późniejszej emisji tlenku węgla (CO). wysokie poziomy CO w zamkniętej przestrzeni w zamkniętym obszarze takie jak kabina pojazdu, przekraczający normalny poziom (30ppm) lub poziom tlenu poniżej normy (19%) może powodować zawroty głowy, złe samopoczucie, zmęczenie i dezorientację, bóle brzucha, duszności i trudności w oddychaniu. Dlatego też właściwa wentylacja w tych pomieszczeniach z pomocą detektora gazu jest najważniejsza dla zapewnienia bezpieczeństwa osób pracujących w branży transportowej.

Podobnie w sektorze lotniczym, spalanie w kabinie i pożary kadłuba, w centralnej części samolotu, stanowią realne zagrożenie. Pomimo zastosowania materiałów ognioodpornych, w przypadku wybuchu pożaru, elementy wykończenia kabiny mogą generować toksyczne gazy i opary, które mogą być bardziej niebezpieczne niż sam pożar. Wdychanie szkodliwych gazów spowodowanych przez pożar w tym środowisku jest zazwyczaj główną bezpośrednią przyczyną zgonów.

Normy i certyfikaty dotyczące transportu

Każdy rodzaj transportu, (drogowy, kolejowy, lotniczy, morski i śródlądowy) ma swoje własne przepisy, ale są one generalnie zharmonizowane z Europejskiej Komisji Gospodarczej Organizacji Narodów Zjednoczonych (UNECE). Ustawa o transporcie materiałów niebezpiecznych (HMTA), uchwalona w USA w 1975 r., stanowi, że niezależnie od rodzaju transportu każda firma, której towary należą do jednej z dziewięciu kategorii określonych przez ONZ jako niebezpieczne, musi przestrzegać przepisów lub ryzykować grzywny i kary.

Osoby pracujące w sektorze transportowym w Wielkiej Brytanii muszą spełniać wymagania określone w Regulaminie Modelowym ONZ które przypisują każdej niebezpiecznej substancji lub artykułowi określoną klasę, która odpowiada temu, jak bardzo jest on niebezpieczny. Odbywa się to poprzez klasyfikację grupy pakowania (PG), zgodnie z PG I, PG II lub PG III.

Z europejskiego punktu widzenia Międzynarodowy przewóz drogowy towarów niebezpiecznych (ADR) reguluje przepisy dotyczące klasyfikacji, pakowania, etykietowania i certyfikowania towarów niebezpiecznych. Zawiera również wymagania dotyczące pojazdów i zbiorników oraz inne wymagania operacyjne. Przepisy dotyczące przewozu towarów niebezpiecznych i stosowania przenośnych urządzeń ciśnieniowych (2009) są również istotne w Anglii, Walii i Szkocji.

Inne istotne przepisy to m.in. Międzynarodowy przewóz towarów niebezpiecznych żeglugą śródlądową (ADN), Międzynarodowy Międzynarodowy Morski Przewóz Towarów Niebezpiecznych (IMDG) oraz Instrukcję Techniczną Organizacji Międzynarodowego Lotnictwa Cywilnego (ICAO).

Nasze rozwiązanie

Detekcja gazu może być zapewniona zarówno w stałe i przenośnych formach. Nasze przenośne detektory gazu chronią przed szerokim zakresem zagrożeń gazowych, takich jak T4x, Clip SGD, Gasman, Tetra 3, Gas-prooraz T4. Nasze stacjonarne detektory gazu są stosowane tam, gdzie niezawodność, niezawodność i brak fałszywych alarmów mają kluczowe znaczenie dla wydajnego i skutecznego wykrywania gazu. Xgard, Xgard Bright, i IRmax. W połączeniu z różnymi naszymi detektorami stacjonarnymi, nasze panele sterowania do wykrywania gazów oferują elastyczny zakres rozwiązań, które są w stanie mierzyć gazy palne, toksyczne i tlen, zgłaszać ich obecność i aktywować alarmy lub powiązane urządzenia, dla przemysłu transportowego nasze panele obejmują Gasmaster oraz Vortex.

Aby dowiedzieć się więcej o zagrożeniach związanych z gazem w transporcie, odwiedź naszą stronę strona branżowa aby uzyskać więcej informacji.

Wykrywanie zagrożeń w mleczarstwie: Na jakie gazy powinieneś zwracać uwagę? 

Globalny popyt na mleko wciąż rośnie w dużej mierze z powodu wzrostu populacji, rosnących dochodów i urbanizacji. Miliony rolników na całym świecie hodują około 270 milionów krów mlecznych, które produkują mleko. W całym przemyśle mleczarskim istnieje wiele zagrożeń gazowych, które stanowią ryzyko dla osób pracujących w przemyśle mleczarskim.

Na jakie niebezpieczeństwa narażeni są pracownicy w przemyśle mleczarskim?

Środki chemiczne

W przemyśle mleczarskim środki chemiczne są używane do różnych zadań, w tym do czyszczenia, stosowania różnych zabiegów, takich jak szczepienia lub leki, antybiotyki, sterylizacja i opryski. Jeśli te chemikalia i substancje niebezpieczne nie są prawidłowo stosowane lub przechowywane, może to spowodować poważne szkody dla pracowników lub otaczającego środowiska. Te chemikalia mogą nie tylko powodować choroby, ale istnieje również ryzyko śmierci, jeśli osoba jest narażona. Niektóre substancje chemiczne mogą być łatwopalne i wybuchowe, podczas gdy inne są żrące i trujące.

Istnieje kilka sposobów zarządzania tymi zagrożeniami chemicznymi, chociaż głównym problemem powinno być wdrożenie procesu i procedury. Procedura ta powinna zapewnić przeszkolenie całego personelu w zakresie bezpiecznego stosowania chemikaliów oraz prowadzenie dokumentacji. Jako część procedury chemicznej, powinno to obejmować manifest chemiczny do celów śledzenia. Ten rodzaj zarządzania inwentarzem pozwala wszystkim pracownikom na dostęp do kart charakterystyki (SDS), jak również rejestrów użycia i lokalizacji. Wraz z tym manifestem należy rozważyć przegląd bieżącej działalności.

  • Jaka jest obecna procedura?
  • Jakie środki ochrony indywidualnej są wymagane?
  • Jaki jest proces pozbywania się przestarzałych chemikaliów i czy istnieje substytut, który mógłby stanowić mniejsze zagrożenie dla pracowników?

Przestrzenie zamknięte

Istnieje wiele okoliczności, które mogą wymagać od pracownika wejścia do zamkniętej przestrzeni, w tym silosy na paszę, kadzie na mleko, zbiorniki na wodę i doły w przemyśle mleczarskim. Najbezpieczniejszym sposobem wyeliminowania zagrożenia związanego z ograniczoną przestrzenią, o czym wspomina wiele organizacji branżowych, jest zastosowanie bezpiecznego projektu. Obejmuje to usunięcie wszelkich potrzeb związanych z wejściem do zamkniętej przestrzeni. Chociaż może to nie być realne i od czasu do czasu trzeba przeprowadzić procedury czyszczenia lub może dojść do zablokowania, istnieje jednak wymóg zapewnienia właściwych procedur w celu rozwiązania problemu zagrożenia.

Środki chemiczne stosowane w zamkniętej przestrzeni mogą zwiększać ryzyko uduszenia, ponieważ gazy wypierają tlen. Jednym ze sposobów wyeliminowania tego ryzyka jest czyszczenie kadzi od zewnątrz za pomocą węża wysokociśnieniowego. Jeżeli pracownik musi wejść do zamkniętej przestrzeni, należy sprawdzić, czy umieszczono odpowiednie oznakowanie, ponieważ punkty wejścia i wyjścia będą ograniczone. Należy rozważyć zastosowanie wyłączników izolacyjnych i sprawdzić, czy pracownicy rozumieją prawidłową procedurę ratunkową w razie wystąpienia awarii.

Zagrożenia gazowe

Amoniak (NH3) znajduje się w odpadach zwierzęcych i gnojowicy rozrzucanych na terenach rolniczych i uprawnych. Jest to charakterystyczny bezbarwny gaz o ostrym zapachu, który powstaje w wyniku rozkładu związków azotu w odpadach zwierzęcych. Jest on nie tylko szkodliwy dla zdrowia ludzi, ale również dla dobrostanu zwierząt gospodarskich, ponieważ może powodować choroby układu oddechowego u zwierząt gospodarskich, a także podrażnienie oczu, ślepotę, uszkodzenie płuc, obok uszkodzenia nosa i gardła, a nawet śmierć u ludzi. Wentylacja jest kluczowym wymogiem w zapobieganiu problemom zdrowotnym, ponieważ słaba wentylacja zwiększa szkody spowodowane przez ten gaz.

Dwutlenek węgla (CO2) jest naturalnie produkowany w atmosferze; chociaż jego poziom jest zwiększany przez rolnictwo i procesy rolnicze.CO2 jest bezbarwny, bezwonny i jest emitowany ze sprzętu rolniczego, produkcji roślinnej i zwierzęcej oraz innych procesów rolniczych.CO2 może gromadzić się obszarach, takich jak zbiorniki odpadów i silosów. Powoduje to wypieranie tlenu z powietrza i zwiększenie ryzyka uduszenia się zwierząt i ludzi. Szczególnie niebezpieczne są szczelnie zamknięte silosy, zbiorniki na odpady i magazyny zbożowe, ponieważ może się w nich gromadzićCO2 , co prowadzi do tego, że bez zewnętrznego dopływu powietrza nie nadają się one dla ludzi.

Dwutlenek azotu (NO2) jest jednym z grupy wysoce reaktywnych gazów znanych jako tlenki azotu lub tlenki azotu (NOx). Aajgorsze jest to, że może powodować nagłą śmierć po spożyciu, nawet przy krótkotrwałym narażeniu. Gaz ten może powodować uduszenie i jest emitowany z silosów w wyniku określonych reakcji chemicznych materiału roślinnego. Rozpoznawalny jest po zapachu przypominającym bielmo, a jego właściwości powodują powstawanie czerwono-brązowej mgły. Ponieważ gromadzi się nad niektórymi powierzchniami, może przedostawać się do obszarów, na których znajdują się zwierzęta gospodarskie, poprzez zsypy silosów, i dlatego stanowi realne zagrożenie dla ludzi i zwierząt w okolicy. Może również wpływać na funkcje płuc, powodować krwawienie wewnętrzne i ciągłe problemy z oddychaniem.

Kiedy należy stosować detektory gazu?

Detektory gazu stanowią wartość dodaną wszędzie w gospodarstwach mlecznych i wokół silosów gnojowicy, ale przede wszystkim:

  • Kiedy i gdzie miesza się gnojowicę
  • Podczas pompowania i wywożenia gnojowicy
  • Na ciągniku i wokół niego podczas mieszania gnojowicy lub jej rozrzucania
  • W stajni podczas prac konserwacyjnych na pompach szlamowych, zgarniaczach gnojowicy itp.
  • W pobliżu i wokół małych otworów i pęknięć w podłodze, np. wokół robotów udojowych
  • Nisko przy ziemi w słabo wentylowanych narożnikach i pomieszczeniach (H2S jest cięższy od powietrza i opada na podłogę)
  • W silosach na gnojówkę
  • W zbiornikach na gnojówkę

Produkty, które mogą pomóc w ochronie

Detekcja gazu może być zapewniona zarówno w przypadku stałe i przenośnych w formie stałej lub przenośnej. Instalacja stacjonarnego detektora gazu może być korzystna dla większej przestrzeni, zapewniając ciągłą ochronę obszaru i personelu przez 24 godziny na dobę. Jednak przenośny detektor może być bardziej odpowiedni dla bezpieczeństwa pracowników.

Aby dowiedzieć się więcej o zagrożeniach w rolnictwie i hodowli, odwiedź naszą strona przemysłu aby uzyskać więcej informacji.

Czy znasz tester szczelności Sprint Pro ?

Próby ciśnieniowe to dla wielu inżynierów gazownictwa codzienna praca, ale odpowiedni sprzęt może zrobić różnicę.

Czy wiesz, że możesz użyć Sprint Pro do przeprowadzania testów szczelności, bez konieczności stosowania dodatkowych manometrów U lub innego nieporęcznego sprzętu? W tym poście zbadamy, jak i dlaczego można przeprowadzić test szczelności za pomocą analizatora spalin. Sprint Pro.

Na czym polega badanie szczelności?

Próba szczelności jest rodzajem próby ciśnieniowej, stosowanej w systemie zasilania gazem przy liczniku. Inne formy testów ciśnieniowych obejmują test let-by (sprawdzający nieszczelności w awaryjnym zaworze sterującym [ECV]), test stabilizacji temperatury, test ciśnienia stojącego na liczniku (pomiar gazu w stanie spoczynku) oraz test ciśnienia roboczego/eksploatacyjnego na liczniku (oceniający przepływ i ciśnienie gazu podczas korzystania z urządzeń).

Próba szczelności polega na pomiarze ciśnienia w przewodach gazowych w celu znalezienia dowodów na nieszczelności. Próba szczelności jest zazwyczaj przeprowadzana po próbie szczelności i próbie stabilizacji temperatury. Po próbie szczelności czasami następuje przedmuch, a następnie próba ciśnienia stałego, po której następuje próba ciśnienia roboczego/operacyjnego na liczniku. Pozwala to inżynierowi na dokonanie pełnej oceny systemu.

Wykorzystanie strony Sprint Pro do przeprowadzenia testu szczelności

Wszystkie modele Sprint Pro z wyjątkiem Sprint Pro 1 mogą być używane do testowania szczelności. Aby rozpocząć, należy przejść do menu ciśnienia i wybrać opcję let-by/tightness. Będziesz musiał podłączyć rurkę i pasujący zawór nadmiarowy ciśnienia do wlotu nadciśnienia Sprint Pro- zawór bardzo ułatwia ustawienie żądanego ciśnienia i dostosowanie go w razie potrzeby.

Podczas przewijania menu ciśnienia na stronie Sprint Promożna zauważyć, że test szczelności następuje po teście wpuszczania i stabilizacji temperatury. Pełne instrukcje dotyczące testowania szczelności znajdują się w podręczniku Sprint Pro (kliknij tutaj, aby uzyskać wersję PDF).

Należy pamiętać, że parametry próby szczelności oraz dopuszczalne wzrosty/spadki ciśnienia zależą od wielu zmiennych, takich jak wiek i rozmiar instalacji rurowej, czy podłączone są urządzenia i kilka innych. Ostatecznie to inżynier musi zdecydować o pozytywnym lub negatywnym wyniku próby szczelności, gdy analizator wyświetli jej wyniki.

Po zakończeniu testu można od razu wydrukować wyniki (choć to wymazuje je z systemu) lub zapisać je w dzienniku (i zawsze można je stamtąd wydrukować). Alternatywnie, jeśli posiadasz aplikację Sprint Mobile/Crowcon HVAC Companion, możesz przesłać Bluetooth bezpośrednio do tabletu lub smartfona.

Dlaczego warto używać Sprint Pro do testowania szczelności?

Używanie Sprint Pro do testowania ciśnienia oznacza mniej do noszenia (na przykład brak nieporęcznych wodomierzy) i przejrzystość wyników wyświetlanych cyfrowo. Sprint Pro tworzy również ścieżkę audytu w postaci cyfrowych dzienników, co może zapewnić duży spokój ducha w przypadku jakichkolwiek sporów lub zapytań.

Korzyści wynikające z zastosowania czujników MPS 

Opracowany przezNevadaNano, czujniki Molecular Property Spectrometer™ (MPS™) stanowią nową generację detektorów gazów palnych. MPS™ może szybko wykryć ponad 15 scharakteryzowanych gazów palnych jednocześnie. Do niedawna każdy, kto potrzebował monitorować gazy palne, musiał wybrać albo tradycyjny detektor gazów palnych zawierający pelistor kalibrowany dla konkretnego gazu, albo zawierający czujnik podczerwieni (IR), którego moc wyjściowa również różni się w zależności od mierzonego gazu palnego, a zatem musi być kalibrowana dla każdego gazu. Chociaż są to korzystne rozwiązania, nie zawsze są idealne. Na przykład oba typy czujników wymagają regularnej kalibracji, a katalityczne czujniki pelistorowe wymagają również częstych testów uderzeniowych, aby upewnić się, że nie zostały uszkodzone przez zanieczyszczenia (znane jako czynniki "zatruwające" czujniki) lub przez trudne warunki. W niektórych środowiskach czujniki muszą być często wymieniane, co jest kosztowne zarówno pod względem pieniędzy, jak i czasu przestoju lub dostępności produktu. Technologia IR nie może wykryć wodoru - który nie ma sygnatury IR, a zarówno detektory IR, jak i pelistorowe czasami przypadkowo wykrywają inne (tj. nieskalibrowane) gazy, dając niedokładne odczyty, które mogą wywołać fałszywe alarmy lub zaniepokoić operatorów.

Strona MPS™ oferuje kluczowe funkcje, które zapewniają operatorowi i pracownikom rzeczywiste, wymierne korzyści. Są to między innymi:

Brak kalibracji

Przy wdrażaniu systemu zawierającego czujkę stałogłowicową powszechną praktyką jest serwisowanie zgodnie z zalecanym harmonogramem określonym przez producenta. Wiąże się to z bieżącymi, regularnymi kosztami, a także z potencjalnymi zakłóceniami produkcji lub procesu w celu przeprowadzenia serwisu lub nawet uzyskania dostępu do czujki lub wielu czujek. Może to również stwarzać zagrożenie dla personelu, jeśli czujki są zamontowane w szczególnie niebezpiecznych środowiskach. Interakcja z czujnikiem MPS jest mniej rygorystyczna, ponieważ nie ma żadnych nieujawnionych trybów awarii, pod warunkiem że jest obecne powietrze. Błędem byłoby stwierdzenie, że nie ma wymogu kalibracji. Wystarczy jedna kalibracja fabryczna, a następnie test gazowy podczas uruchamiania, ponieważ wewnętrzna automatyczna kalibracja jest wykonywana co 2 sekundy przez cały okres eksploatacji czujnika. W rzeczywistości chodzi o to, aby nie wykonywać kalibracji u klienta.

W przypadku Xgard Bright z technologią MPS nie wymaga kalibracji. To z kolei zmniejsza interakcję z czujnikiem, co skutkuje niższym całkowitym kosztem posiadania w całym cyklu życia czujnika oraz zmniejszonym ryzykiem dla personelu i wydajności produkcji w celu przeprowadzenia regularnej konserwacji. Nadal zaleca się sprawdzanie czystości detektora gazu od czasu do czasu, ponieważ gaz nie może przedostać się przez grube nagromadzenia materiału przeszkadzającego i nie dotrze do czujnika.

Gaz wielogatunkowy - "True LEL"™.

W wielu branżach i zastosowaniach wykorzystuje się wiele gazów w tym samym środowisku lub jest to produkt uboczny. Może to stanowić wyzwanie dla tradycyjnych czujników, które mogą wykrywać tylko jeden gaz, dla którego zostały skalibrowane na odpowiednim poziomie, co może skutkować niedokładnymi odczytami, a nawet fałszywymi alarmami, które mogą zatrzymać proces lub produkcję w przypadku obecności innego rodzaju gazu palnego. Brak reakcji lub nadmierna reakcja, często spotykana w środowiskach wielogazowych, może być frustrująca i przynosić efekty odwrotne do zamierzonych, zagrażając bezpieczeństwu najlepszych praktyk użytkownika. Czujnik MPS™ może dokładnie wykryć wiele gazów jednocześnie i natychmiast zidentyfikować rodzaj gazu. Dodatkowo, czujnik MPS™ posiada wbudowaną kompensację środowiskową i nie wymaga stosowania zewnętrznego współczynnika korekcyjnego. Niedokładne odczyty i fałszywe alarmy należą do przeszłości.

Brak zatrucia czujników

W pewnych środowiskach tradycyjne typy czujników mogą być narażone na zatrucie. Ekstremalne ciśnienie, temperatura i wilgotność mogą potencjalnie uszkodzić czujniki, natomiast toksyny i zanieczyszczenia środowiskowe mogą "zatruć" czujniki, prowadząc do poważnego obniżenia ich wydajności. W przypadku detektorów pracujących w środowisku, w którym mogą występować trucizny lub inhibitory, regularne i częste testy są jedynym sposobem zapewnienia, że ich działanie nie ulega pogorszeniu. Awaria czujnika spowodowana zatruciem może być kosztownym doświadczeniem. Na technologię zastosowaną w czujniku MPS™ nie mają wpływu zanieczyszczenia znajdujące się w środowisku. Procesy, w których występują zanieczyszczenia, mają teraz dostęp do rozwiązania, które działa niezawodnie i jest zaprojektowane w taki sposób, aby ostrzegać operatora i zapewniać spokój personelowi i aktywom znajdującym się w niebezpiecznym środowisku. Dodatkowo, czujnikowi MPS nie szkodzą podwyższone stężenia gazów palnych, które mogą powodować np. pękanie konwencjonalnych czujników katalitycznych. Czujnik MPS pracuje dalej.

Wodór (H2)

Wykorzystanie wodoru w procesach przemysłowych rośnie wraz z poszukiwaniem czystszej alternatywy dla gazu ziemnego. Wykrywanie wodoru jest obecnie ograniczone do czujników pelistorowych, półprzewodnikowych tlenków metali, elektrochemicznych i mniej dokładnych czujników przewodności cieplnej, ponieważ czujniki podczerwieni nie są w stanie wykrywać wodoru. W obliczu powyższych wyzwań związanych z zatruciem lub fałszywymi alarmami, obecne rozwiązanie może wymagać od operatora częstych testów i serwisowania, a także fałszywych alarmów. Czujnik MPS™ zapewnia znacznie lepsze rozwiązanie do wykrywania wodoru, eliminując wyzwania związane z tradycyjną technologią czujników. Trwały, stosunkowo szybko reagujący czujnik wodoru, który nie wymaga kalibracji przez cały cykl życia czujnika, bez ryzyka zatrucia lub fałszywych alarmów, może znacznie obniżyć całkowity koszt posiadania i zmniejszyć interakcję z urządzeniem, co skutkuje spokojem ducha i zmniejszonym ryzykiem dla operatorów korzystających z technologii MPS™. Wszystko to jest możliwe dzięki technologii MPS™, która jest największym przełomem w wykrywaniu gazów od kilku dekad. Gazem Gasman z MPS jest gotowy na wodór (H2). Pojedynczy czujnik MPS dokładnie wykrywa wodór i typowe węglowodory w niezawodnym, odpornym na trucizny rozwiązaniu bez konieczności ponownej kalibracji.

Więcej informacji na temat Crowconu można znaleźć na stronie https://www.crowcon.com lub więcej na temat MPSTM odwiedź . https://www.crowcon.com/mpsinfixed/

Dwutlenek węgla: Jakie są zagrożenia w przemyśle spożywczym i napojów? 

Prawie wszystkie branże muszą monitorować zagrożenia gazowe, a przemysł spożywczy i napojów nie jest tu wyjątkiem. Chociaż brakuje świadomości na temat zagrożeń związanych z dwutlenkiem węgla (CO2) i niebezpieczeństw, na które narażeni są pracownicy tej branży.CO2 jest najbardziej rozpowszechnionym gazem w przemyśle spożywczym i napojów, ponieważ jest używany do saturacji napojów, do napędzania napojów do kranu w pubach i restauracjach oraz do utrzymywania żywności w chłodzie podczas transportu w postaci suchego lodu. Jest on również naturalnie wytwarzany w procesach produkcji napojów przez czynniki rozczynowe, takie jak drożdże i cukier. ChociażCO2 może wydawać się nieszkodliwy na pierwszy rzut oka, ponieważ wydychamy go z każdym oddechem, a rośliny potrzebują go do przetrwania, obecność dwutlenku węgla staje się problemem, gdy jego stężenie wzrasta do niebezpiecznych poziomów.

Niebezpieczeństwa związane zCO2

Dwutlenek węgla występuje naturalnie w atmosferze (zwykle 0,04% w powietrzu).CO2 jest bezbarwny i bezwonny, cięższy od powietrza i ma tendencję do opadania na podłogę.CO2 gromadzi się w piwnicach oraz na dnie pojemników i przestrzeni zamkniętych, takich jak zbiorniki lub silosy.

PonieważCO2 jest cięższy od powietrza, szybko wypiera tlen w wysokich stężeniach może spowodować uduszenie z powodu braku tlenu lub powietrza do oddychania. Narażenie naCO2 jest łatwe, zwłaszcza w zamkniętej przestrzeni, takiej jak zbiornik lub piwnica. Wczesne objawy narażenia na wysoki poziom dwutlenku węgla to zawroty głowy, bóle głowy i dezorientacja, a następnie utrata przytomności. W przemyśle spożywczym i napojów zdarzają się wypadki i ofiary śmiertelne spowodowane wyciekiem dwutlenku węgla. Bez odpowiednich metod i procesów wykrywania, każdy w zakładzie może być zagrożony.

Monitory gazów - jakie są korzyści?

Każde zastosowanie, w którym wykorzystuje się dwutlenek węgla, naraża pracowników na ryzyko, a jedynym sposobem na wykrycie wysokich poziomów, zanim będzie za późno, jest użycie monitorów gazu.

Detektory gazu mogą być dostarczane zarówno w formie stałej, jak i przenośnej. Instalacja stacjonarnego detektora gazu może być korzystna dla większych przestrzeni, takich jak pomieszczenia fabryczne, zapewniając ciągłą ochronę obszaru i personelu przez 24 godziny na dobę. Jednak przenośny detektor może być bardziej odpowiedni do zapewnienia bezpieczeństwa pracowników w obszarze przechowywania butli i wokół niego oraz w miejscach oznaczonych jako przestrzeń zamknięta. Jest to szczególnie istotne w przypadku pubów i punktów wydawania napojów ze względu na bezpieczeństwo pracowników i osób nieobeznanych z tym środowiskiem, takich jak kierowcy dostaw, zespoły sprzedaży lub technicy sprzętu. Przenośne urządzenie może być łatwo przypięte do odzieży i będzie wykrywać kieszenieCO2 za pomocą alarmów i sygnałów wizualnych, wskazując, że użytkownik powinien natychmiast opuścić obszar.

Osobiste detektory gazu, jeśli są prawidłowo noszone, stale monitorują powietrze w strefie oddychania pracowników, aby zapewnić im lepszą świadomość i informacje potrzebne do podejmowania mądrych decyzji w obliczu zagrożenia. Monitory gazu nie tylko wykrywają dwutlenek węgla w powietrzu, ale mogą również ostrzegać innych, jeśli pracownik jest w niebezpieczeństwie. Dwutlenek węgla może być monitorowany za pomocą pojedynczego monitora gazowego lub za pomocą monitora wielogazowego z dedykowanym czujnikiem dwutlenku węgla. Ważne jest, aby zauważyć, że dwutlenek węgla może wzrosnąć do niebezpiecznego poziomu, zanim czujnik tlenu uruchomi alarm.