Przegląd branży: Waste to Energy

Przemysł przetwarzania odpadów na energię wykorzystuje kilka metod przetwarzania odpadów. Stałe odpady komunalne i przemysłowe są przetwarzane na energię elektryczną, a czasami na ciepło dla przetwórstwa przemysłowego i systemów ciepłowniczych. Głównym procesem jest oczywiście spalanie, ale pośrednie etapy pirolizy, gazyfikacji i fermentacji beztlenowej są czasami wykorzystywane do przekształcenia odpadów w użyteczne produkty uboczne, które są następnie wykorzystywane do generowania energii przez turbiny lub inne urządzenia. Technologia ta zyskuje szerokie uznanie na całym świecie jako bardziej ekologiczna i czystsza forma energii niż tradycyjne spalanie paliw kopalnych oraz jako sposób na zmniejszenie produkcji odpadów.

Rodzaje przetwarzania odpadów na energię

Spalanie

Spalanie jest procesem przetwarzania odpadów, który polega na spalaniu bogatych w energię substancji zawartych w materiałach odpadowych, zazwyczaj w wysokiej temperaturze około 1000 stopni C. Przemysłowe instalacje do spalania odpadów są powszechnie określane jako instalacje do pozyskiwania energii z odpadów i często są to duże elektrownie. Spalanie i inne wysokotemperaturowe systemy przetwarzania odpadów są często określane jako "obróbka termiczna". Podczas tego procesu odpady są przekształcane w ciepło i parę, które mogą być wykorzystane do napędzania turbiny w celu wytworzenia energii elektrycznej. Wydajność tej metody wynosi obecnie ok. 15-29%, choć ma ona potencjał poprawy.

Piroliza

Piroliza to inny proces przetwarzania odpadów, w którym rozkład stałych odpadów węglowodorowych, zwykle tworzyw sztucznych, odbywa się w wysokiej temperaturze bez obecności tlenu, w atmosferze gazów obojętnych. Obróbka ta jest zwykle prowadzona w temperaturze 500 °C lub wyższej, co zapewnia wystarczającą ilość ciepła do rozłożenia długołańcuchowych cząsteczek, w tym biopolimerów, na prostsze węglowodory o niższej masie.

Gazyfikacja

Proces ten jest stosowany do wytwarzania paliw gazowych z cięższych paliw oraz z odpadów zawierających materiał palny. W tym procesie substancje węglowe są w wysokiej temperaturze przekształcane w dwutlenek węgla (CO2), tlenek węgla (CO) i niewielką ilość wodoru. W tym procesie powstaje gaz, który jest dobrym źródłem energii użytkowej. Gaz ten może być następnie wykorzystany do produkcji energii elektrycznej i ciepła.

Zgazowanie łukiem plazmowym

W tym procesie palnik plazmowy jest używany do jonizacji materiału bogatego w energię. Powstaje syngaz, który może być następnie wykorzystany do produkcji nawozu lub wytworzenia energii elektrycznej. Metoda ta jest bardziej techniką utylizacji odpadów niż poważnym sposobem generowania gazu, często zużywa tyle energii, ile może dostarczyć produkowany przez nią gaz.

Przyczyny przekształcania odpadów w energię

Ponieważ technologia ta zyskuje szerokie uznanie na świecie w odniesieniu do produkcji odpadów i zapotrzebowania na czystą energię.

  • Unikanie emisji metanu ze składowisk odpadów
  • Kompensuje emisję gazów cieplarnianych (GHG) z produkcji energii elektrycznej z paliw kopalnych
  • Odzyskuje i przetwarza cenne zasoby, takie jak metale
  • Wytwarza czystą, niezawodną energię i parę z obciążeniem podstawowym
  • Wykorzystuje mniej gruntów na megawat niż inne źródła energii odnawialnej
  • Trwałe i stabilne źródło paliwa odnawialnego (w porównaniu do wiatru i słońca)
  • Niszczy odpady chemiczne
  • Rezultatem są niskie poziomy emisji, zwykle znacznie poniżej dozwolonych poziomów
  • Katalitycznie niszczy tlenki azotu (NOx), dioksyny i furany za pomocą selektywnej redukcji katalitycznej (SCR)

Jakie są zagrożenia gazowe?

Istnieje wiele procesów przekształcania odpadów w energię, należą do nich, biogazownie, wykorzystanie odpadów, basen z odciekami, spalanie i odzysk ciepła. Wszystkie te procesy stwarzają zagrożenia gazowe dla osób pracujących w tych środowiskach.

W biogazowni wytwarzany jest biogaz. Powstaje on, gdy materiały organiczne, takie jak odpady rolnicze i spożywcze, są rozkładane przez bakterie w środowisku pozbawionym tlenu. Jest to proces zwany fermentacją beztlenową. Po wychwyceniu biogazu można go wykorzystać do produkcji ciepła i energii elektrycznej dla silników, mikroturbin i ogniw paliwowych. Oczywiście biogaz ma wysoką zawartość metanu, jak również znaczną zawartość siarkowodoru (H2S), a to generuje wiele poważnych zagrożeń gazowych. (Więcej informacji na temat biogazu można znaleźć na naszym blogu). Istnieje podwyższone ryzyko pożaru i eksplozji, zagrożeń związanych z ograniczoną przestrzenią, uduszenia, wyczerpania tlenu i zatrucia gazem, zwykleH2Slub amoniakiem (NH3). Pracownicy w biogazowni muszą mieć osobiste detektory gazu, które wykrywają i monitorują gaz palny, tlen i gazy toksyczne, takie jakH2Si CO.

W zbiornikach na śmieci często można znaleźć gaz palny metan (CH4) oraz gazy toksyczneH2S, CO i NH3. Dzieje się tak dlatego, że bunkry na śmieci są budowane kilka metrów pod ziemią, a detektory gazu są zwykle montowane wysoko w pomieszczeniach, co utrudnia ich serwisowanie i kalibrację. W wielu przypadkach praktycznym rozwiązaniem jest system próbkowania, ponieważ próbki powietrza można przynieść w dogodne miejsce i dokonać pomiaru.

Odciek to ciecz, która odpływa (wypłukuje) z obszaru, w którym gromadzone są odpady, przy czym baseny z odciekiem stanowią szereg zagrożeń gazowych. Obejmują one ryzyko wystąpienia gazu palnego (zagrożenie wybuchem),H2S(trucizna, korozja), amoniaku (trucizna, korozja), CO (trucizna) oraz niekorzystnego poziomu tlenu (uduszenie). Basen odcieków i przejścia prowadzące do basenu odcieków wymagające monitorowania CH4,H2S, CO, NH3, tlenu (O2) iCO2. Wzdłuż dróg prowadzących do basenu odciekowego należy umieścić różne detektory gazowe, z wyjściem podłączonym do zewnętrznych central sterujących.

Spalanie i odzyskiwanie ciepła wymaga wykrywania O2 oraz toksycznych gazów: dwutlenku siarki (SO2) i CO. Wszystkie te gazy stanowią zagrożenie dla osób pracujących w pomieszczeniach kotłowni.

Innym procesem, który jest klasyfikowany jako zagrożenie gazowe, jest płuczka powietrza wylotowego. Proces ten jest niebezpieczny, ponieważ spaliny ze spalania są wysoce toksyczne. Zawierają one bowiem takie zanieczyszczenia jak dwutlenek azotu (NO2), SO2, chlorowodór (HCL) i dioksyny. NO2 i SO2 są głównymi gazami cieplarnianymi, natomiast HCL wszystkie wymienione tu rodzaje gazów są szkodliwe dla zdrowia człowieka.

Aby przeczytać więcej o branży waste to energy, odwiedź naszą stronę branżową.

Dlaczego przy produkcji cementu emitowany jest gaz?

Jak produkuje się cement?

Beton jest jednym z najważniejszych i najczęściej stosowanych materiałów w światowym budownictwie. Beton jest szeroko stosowany w budowie zarówno budynków mieszkalnych, jak i komercyjnych, mostów, dróg i innych.

Kluczowym składnikiem betonu jest cement, substancja wiążąca, która spaja wszystkie pozostałe składniki betonu (na ogół żwir i piasek). Każdego roku na świecie zużywa się ponad 4 miliardy ton cementuilustrując ogromną skalę globalnego przemysłu budowlanego.

Wytwarzanie cementu to złożony proces, rozpoczynający się od surowców, takich jak wapień i glina, które umieszczane są w dużych piecach o długości do 120 m, które są podgrzewane do temperatury 1500°C. Podczas podgrzewania w tak wysokiej temperaturze, reakcje chemiczne powodują łączenie się tych surowców, tworząc cement.

Jak wiele procesów przemysłowych, produkcja cementu nie jest pozbawiona zagrożeń. Produkcja cementu może potencjalnie uwalniać gazy, które są szkodliwe dla pracowników, społeczności lokalnych i środowiska.

Jakie zagrożenia gazowe występują przy produkcji cementu?

Gazy emitowane zazwyczaj w cementowniach to dwutlenek węgla (CO2), tlenki azotu (NOx) i dwutlenek siarki (SO2), przy czymCO2 stanowi większość emisji.

Dwutlenek siarki obecny w cementowniach pochodzi z reguły z surowców, które są wykorzystywane w procesie produkcji cementu. Głównym zagrożeniem gazowym, na które należy zwrócić uwagę jest dwutlenek węgla, przy czym przemysł cementowy odpowiada za ogromne 8% światowej emisjiCO2 ..

Większość emisji dwutlenku węgla powstaje w wyniku procesu chemicznego zwanego kalcynacją. Ma to miejsce, gdy wapień jest podgrzewany w piecach, co powoduje jego rozpad naCO2 i tlenek wapnia. Innym głównym źródłemCO2 jest spalanie paliw kopalnych. Piece używane w produkcji cementu są zazwyczaj ogrzewane przy użyciu gazu ziemnego lub węgla, co dodaje kolejne źródło dwutlenku węgla do tego, które jest generowane przez kalcynację.

Wykrywanie gazu w produkcji cementu

W przemyśle, który jest dużym producentem niebezpiecznych gazów, wykrywanie jest kluczowe. Crowcon oferuje szeroki zakres zarówno stałych jak i przenośnych rozwiązań detekcji.

Xgard Bright to nasz adresowalny stacjonarny detektor gazu z wyświetlaczem, zapewniający łatwość obsługi i niższe koszty instalacji. Xgard Bright posiada opcje wykrywania dwutlenku węgla i dwutlenku siarki. i dwutlenku siarkigazów, które stanowią największe zagrożenie podczas mieszania cementu.

Wytrzymała, przenośna i lekka konstrukcja Gasmanwytrzymała, a jednocześnie przenośna i lekka konstrukcja sprawiają, że jest to idealne rozwiązanie jednogazowe do produkcji cementu, dostępne w bezpiecznej wersjiCO2 oferującej pomiar 0-5% dwutlenku węgla.

W celu zwiększenia ochrony Gas-Pro detektor wielogazowy może być wyposażony w maksymalnie 5 czujników, w tym wszystkie najczęściej stosowane w produkcji cementu, CO2, SO2 i NO2.

Znaczenie detekcji gazów w sektorze medycznym i opieki zdrowotnej

Potrzeba wykrywania gazów w sektorze medycznym i opieki zdrowotnej może być mniej zrozumiała poza tą branżą, niemniej jednak wymóg ten istnieje. W sytuacji, gdy pacjenci w wielu miejscach poddawani są różnym zabiegom i terapiom medycznym, w których wykorzystywane są substancje chemiczne, potrzeba dokładnego monitorowania gazów wykorzystywanych lub emitowanych w ramach tego procesu jest bardzo ważna dla zapewnienia im ciągłego bezpiecznego leczenia. W celu zabezpieczenia zarówno pacjentów, jak i oczywiście samych pracowników służby zdrowia, konieczne jest wdrożenie dokładnego i niezawodnego sprzętu monitorującego.

Zastosowania

W placówkach służby zdrowia i szpitalach, w związku z używanym sprzętem i aparaturą medyczną, może występować szereg potencjalnie niebezpiecznych gazów. Szkodliwe substancje chemiczne są również używane do dezynfekcji i czyszczenia powierzchni roboczych w szpitalach oraz sprzętu medycznego. Na przykład jako środek konserwujący próbki tkanek mogą być stosowane potencjalnie niebezpieczne substancje chemiczne, takie jak toluen, ksylen lub formaldehyd. Zastosowania obejmują:

  • Monitorowanie gazów oddechowych
  • Chłodnie
  • Generatory
  • Laboratoria
  • Pomieszczenia magazynowe
  • Sale operacyjne
  • Ratownictwo przedszpitalne
  • Terapia dodatnim ciśnieniem w drogach oddechowych
  • Terapia kaniulą nosową o wysokim przepływie
  • Oddziały intensywnej opieki medycznej
  • Oddział opieki po znieczuleniu

Gaz Zagrożenia

Wzbogacanie tlenu na oddziałach szpitalnych

W świetle światowej pandemii COVID-19, pracownicy służby zdrowia dostrzegli potrzebę zwiększenia ilości tlenu na oddziałach szpitalnych ze względu na rosnącą liczbę używanych respiratorów. Czujniki tlenu są niezbędne, szczególnie na oddziałach intensywnej terapii, ponieważ informują lekarza o ilości tlenu dostarczanego pacjentowi podczas wentylacji. Może to zapobiec ryzyku niedotlenienia, hipoksemii lub toksyczności tlenu. Jeśli czujniki tlenu nie działają tak jak powinny, mogą regularnie alarmować, wymagać wymiany i niestety prowadzić nawet do zgonów. Zwiększone wykorzystanie respiratorów również wzbogaca powietrze w tlen i może zwiększyć ryzyko spalania. Istnieje potrzeba pomiaru poziomu tlenu w powietrzu za pomocą stałego systemu wykrywania gazu, aby uniknąć niebezpiecznych poziomów w powietrzu.

Dwutlenek węgla

Monitorowanie poziomu dwutlenku węgla jest również wymagane w środowiskach opieki zdrowotnej, aby zapewnić bezpieczne środowisko pracy dla profesjonalistów, jak również chronić leczonych pacjentów. Dwutlenek węgla jest używany w wielu medycznych i zdrowotnych procedurach, od minimalnie inwazyjnych operacji, takich jak endoskopia, artroskopia i laparoskopia, krioterapia i znieczulenie.CO2 jest również używany w inkubatorach i laboratoriach, a ponieważ jest to gaz toksyczny, może powodować uduszenie. Podwyższony poziomCO2 w powietrzu, emitowany przez niektóre maszyny, może być szkodliwy dla osób przebywających w otoczeniu, a także powodować rozprzestrzenianie się patogenów i wirusów. DetektoryCO2 w placówkach służby zdrowia mogą zatem poprawić wentylację, przepływ powietrza i samopoczucie wszystkich osób.

Lotne związki organiczne (VOC)

Szereg lotnych związków organicznych (VOC) można znaleźć w środowisku szpitalnym i opieki zdrowotnej, co może być szkodliwe dla osób pracujących i leczonych w tym środowisku. LZO, takie jak węglowodory alifatyczne, aromatyczne i halogenowe, aldehydy, alkohole, ketony, etery i terpeny, aby wymienić tylko kilka, zostały zmierzone w środowiskach szpitalnych, pochodzących z wielu specyficznych obszarów, w tym z recepcji, sal pacjentów, opieki pielęgniarskiej, jednostek po znieczuleniu, laboratoriów parazytologicznych i mikologicznych oraz jednostek dezynfekcyjnych. Chociaż nadal są w fazie badań nad ich rozpowszechnieniem w placówkach służby zdrowia, jest jasne, że spożycie LZO ma negatywny wpływ na zdrowie człowieka, taki jak podrażnienie oczu, nosa i gardła, bóle głowy i utrata koordynacji, nudności i uszkodzenia wątroby, nerek lub centralnego układu nerwowego. Niektóre LZO, w szczególności benzen, są rakotwórcze. Wdrożenie detekcji gazu jest zatem koniecznością, aby zabezpieczyć wszystkich przed szkodami.

Dlatego czujniki gazów powinny być stosowane w oddziałach PACU, OIT, EMS, ratownictwie przedszpitalnym, terapii PAP i terapii HFNC do monitorowania poziomu gazów w różnych urządzeniach, w tym respiratorach, koncentratorach tlenu, generatorach tlenu i aparatach do znieczulania.

Normy i certyfikaty

Care Quality Commission (CQC) jest organizacją w Anglii, która reguluje jakość i bezpieczeństwo opieki świadczonej w ramach wszystkich placówek opieki zdrowotnej, medycznej, zdrowotnej i społecznej oraz wolontariatu w całym kraju. Komisja zapewnia szczegóły dotyczące najlepszych praktyk w zakresie podawania tlenu pacjentom oraz właściwego pomiaru i rejestrowania poziomów, przechowywania i szkolenia w zakresie stosowania tego i innych gazów medycznych.

Brytyjskim organem regulacyjnym w zakresie gazów medycznych jest Medicines and Healthcare products Regulatory Agency (MHRA). Jest to agencja wykonawcza Departamentu Zdrowia i Opieki Społecznej (DHSC), która zapewnia zdrowie i bezpieczeństwo publiczne i pacjentów poprzez regulację leków, produktów opieki zdrowotnej i sprzętu medycznego w tym sektorze. Ustanawiają one odpowiednie standardy bezpieczeństwa, jakości, wydajności i skuteczności oraz zapewniają bezpieczne użytkowanie całego sprzętu. Każda firma produkująca gazy medyczne wymaga zezwolenia producenta wydanego przez MHRA.

W USA Stowarzyszenie ds. Żywności i Leków (FDA) reguluje proces certyfikacji w zakresie produkcji, sprzedaży i marketingu wyznaczonych gazów medycznych. Zgodnie z sekcją 575 FDA stwierdza, że każdy, kto wprowadza na rynek gaz medyczny do stosowania u ludzi lub zwierząt bez zatwierdzonej aplikacji, łamie określone wytyczne. Gazy medyczne, które wymagają certyfikacji obejmują tlen, azot, podtlenek azotu, dwutlenek węgla, hel, 20 tlenek węgla i powietrze medyczne.

Aby dowiedzieć się więcej o zagrożeniach w sektorze medycznym i opieki zdrowotnej, odwiedź naszą stronę branżową, aby uzyskać więcej informacji.

Dlaczego detekcja gazu jest kluczowa dla systemów wydawania napojów?

Gaz dozujący znany jako gaz do piwa, gaz do beczek, gaz do piwnic lub gaz do pubów jest stosowany w barach i restauracjach, a także w przemyśle rekreacyjnym i hotelarskim. Stosowanie gazu w procesie wydawania piwa i napojów bezalkoholowych jest powszechną praktyką na całym świecie. Dwutlenek węgla (CO2) lub mieszankaCO2 i azotu (N2) jest stosowana jako sposób dostarczania napoju do "kranu".CO2 jako gaz w beczce pomaga utrzymać sterylność zawartości i właściwy skład wspomagający dozowanie.

Zagrożenia gazowe

Nawet gdy napój jest gotowy do wydania, pozostają zagrożenia związane z gazem. Powstają one przy każdej działalności w pomieszczeniach, w których znajdują się butle ze sprężonym gazem, ze względu na ryzyko uszkodzenia podczas ich przemieszczania lub wymiany. Ponadto po uwolnieniu gazu istnieje ryzyko zwiększenia poziomu dwutlenku węgla lub zmniejszenia poziomu tlenu (ze względu na wyższy poziom azotu lub dwutlenku węgla).

CO2 występuje naturalnie w atmosferze (0,04%) i jest bezbarwny i bezwonny. Jest cięższy od powietrza i jeśli się wydostanie, będzie miał tendencję do opadania na podłogę.CO2 gromadzi się w piwnicach oraz na dnie pojemników i przestrzeni zamkniętych, takich jak zbiorniki i silosy.CO2 jest wytwarzany w dużych ilościach podczas fermentacji. Jest on również wstrzykiwany do napojów podczas saturacji - aby dodać bąbelki. Wczesne objawy narażenia na wysoki poziom dwutlenku węgla to zawroty głowy, bóle głowy i dezorientacja, a następnie utrata przytomności. Wypadki i ofiary śmiertelne mogą wystąpić w skrajnych przypadkach, gdy znaczna ilość dwutlenku węgla wycieka do zamkniętej lub słabo wentylowanej przestrzeni. Bez odpowiednich metod i procesów wykrywania, każda osoba wchodząca do tej objętości może być zagrożona. Dodatkowo, personel znajdujący się w otaczającej objętości może odczuwać wczesne objawy wymienione powyżej.

Azot (N2) jest często używany do dozowania piwa, szczególnie stoutów, pale ales i porterów, a także do zapobiegania utlenianiu lub zanieczyszczaniu piwa ostrymi smakami. Azot pomaga przepychać ciecz z jednego zbiornika do drugiego, jak również może być wstrzykiwany do kegów lub beczek, zwiększając ich ciśnienie w celu przechowywania i wysyłki. Gaz ten nie jest toksyczny, ale wypiera tlen z atmosfery, co może stanowić zagrożenie w przypadku wycieku gazu, dlatego dokładne wykrywanie gazu ma kluczowe znaczenie.

Ponieważ azot może obniżyć poziom tlenu, czujniki tlenu powinny być stosowane w środowiskach, w których występuje którekolwiek z tych potencjalnych zagrożeń. Podczas lokalizacji czujników tlenu należy wziąć pod uwagę gęstość gazu rozcieńczającego i strefę "oddychania" (poziom nosa). Przy lokalizacji czujników należy również uwzględnić schematy wentylacji. Na przykład, jeżeli gazem rozcieńczającym jest azot, to umieszczenie detektorów na wysokości ramion jest rozsądne, jednak jeżeli gazem rozcieńczającym jest dwutlenek węgla, to detektory powinny być umieszczone na wysokości kolan.

Znaczenie detekcji gazu w systemach dozowania napojów

Niestety, w przemyśle napojów zdarzają się wypadki i ofiary śmiertelne spowodowane zagrożeniami gazowymi. W związku z tym w Wielkiej Brytanii limity bezpiecznego narażenia w miejscu pracy zostały skodyfikowane przez Health and Safety Executive (HSE) w dokumentacji Control of Substances Hazardous to Health (COSHH). Dwutlenek węgla ma 8-godzinny limit narażenia na poziomie 0,5% i 15-minutowy limit narażenia na poziomie 1,5% objętości. Systemy wykrywania gazu pomagają zmniejszyć ryzyko związane z gazem i umożliwiają producentom napojów, rozlewniom oraz właścicielom barów/pubów zapewnienie bezpieczeństwa personelu oraz wykazanie zgodności z limitami prawnymi lub zatwierdzonymi kodeksami postępowania.

Zubożenie w tlen

Normalne stężenie tlenu w atmosferze wynosi około 20,9% objętości. Poziom tlenu może być niebezpieczny, jeśli jest zbyt niski (wyczerpanie tlenu). W przypadku braku odpowiedniej wentylacji poziom tlenu może być zaskakująco szybko obniżony przez procesy oddychania i spalania.

Poziomy tlenu mogą być również uszczuplone z powodu rozcieńczenia przez inne gazy, takie jak dwutlenek węgla (również gaz toksyczny), azot lub hel, oraz absorpcji chemicznej w wyniku procesów korozji i podobnych reakcji. Czujniki tlenu powinny być stosowane w środowiskach, w których istnieje którekolwiek z tych potencjalnych zagrożeń. Podczas lokalizacji czujników tlenu należy wziąć pod uwagę gęstość gazu rozcieńczającego i strefę "oddychania" (poziom nosa). Monitory tlenu zazwyczaj sygnalizują alarm pierwszego stopnia, gdy stężenie tlenu spadnie do 19% objętości. Większość ludzi zacznie zachowywać się nienormalnie, gdy poziom osiągnie 17%, dlatego też drugi alarm jest zwykle ustawiony na tym progu. Narażenie na atmosferę zawierającą od 10% do 13% tlenu może bardzo szybko doprowadzić do utraty przytomności; śmierć następuje bardzo szybko, jeśli poziom tlenu spadnie poniżej 6% objętości.

Nasze rozwiązanie

Detekcja gazu może być realizowana w formie detektorów stałych i przenośnych. Instalacja stacjonarnego detektora gazu może być korzystna w przypadku większych przestrzeni, takich jak piwnice lub pomieszczenia fabryczne, zapewniając ciągłą ochronę obszaru i personelu przez 24 godziny na dobę. Jednak w przypadku bezpieczeństwa pracowników w magazynach butli i wokół nich oraz w pomieszczeniach oznaczonych jako przestrzeń zamknięta, bardziej odpowiedni może być detektor przenośny. Jest to szczególnie istotne w przypadku pubów i punktów wydawania napojów ze względu na bezpieczeństwo pracowników i osób nieobeznanych z otoczeniem, takich jak kierowcy dostaw, zespoły sprzedaży lub technicy zajmujący się sprzętem. Przenośne urządzenie można łatwo przypiąć do ubrania i będzie ono wykrywać kieszenieCO2 za pomocą alarmów i sygnałów wizualnych, wskazując, że użytkownik powinien natychmiast opuścić obszar.

Aby uzyskać więcej informacji na temat wykrywania gazu w systemach wydawania napojów, skontaktuj się z naszym zespołem.

Przegląd branży: Żywność i Napoje 

Przemysł spożywczy i napojów (F&B) obejmuje wszystkie firmy zajmujące się przetwarzaniem surowców spożywczych, a także ich pakowaniem i dystrybucją. Dotyczy to zarówno świeżej, przygotowanej, jak i pakowanej żywności oraz napojów alkoholowych i bezalkoholowych.

Przemysł spożywczy i napojów dzieli się na dwa główne segmenty, którymi są produkcja i dystrybucja dóbr jadalnych. Pierwsza grupa, produkcja, obejmuje przetwarzanie mięs i serów oraz tworzenie napojów bezalkoholowych, napojów alkoholowych, pakowanej żywności i innych modyfikowanych produktów spożywczych. Przez ten sektor przechodzi każdy produkt przeznaczony do spożycia przez ludzi, poza farmaceutykami. Produkcja obejmuje również przetwarzanie mięsa, serów i pakowanej żywności, nabiału i napojów alkoholowych. Sektor produkcji nie obejmuje żywności i świeżych produktów, które są bezpośrednio wytwarzane przez rolnictwo, ponieważ są one objęte rolnictwem.

Produkcja i przetwarzanie żywności i napojów stwarza znaczne ryzyko pożaru i narażenia na działanie toksycznych gazów. Do pieczenia, przetwarzania i chłodzenia żywności używa się wielu gazów. Gazy te mogą być bardzo niebezpieczne - toksyczne, palne lub oba.

Zagrożenia gazowe

Przetwórstwo żywności

Wtórne metody przetwarzania żywności obejmują fermentację, ogrzewanie, chłodzenie, odwadnianie lub gotowanie jakiegoś rodzaju. Wiele rodzajów komercyjnego przetwarzania żywności polega na gotowaniu, zwłaszcza przemysłowych kotłów parowych. Kotły parowe są zwykle opalane gazem (gazem ziemnym lub LPG) lub wykorzystują połączenie gazu i oleju opałowego. W przypadku kotłów parowych opalanych gazem, gaz ziemny składa się głównie z metanu (CH4), wysoce łatwopalnego gazu, lżejszego od powietrza, który jest przesyłany rurociągami bezpośrednio do kotłów. Natomiast LPG składa się głównie z propanu (C3H8) i zwykle wymaga zbiornika do przechowywania paliwa na miejscu. W przypadku stosowania gazów palnych na terenie zakładu, w miejscach ich składowania należy przewidzieć wymuszoną wentylację mechaniczną na wypadek wycieku. Taka wentylacja jest zwykle uruchamiana przez detektory gazu, które są zainstalowane w pobliżu kotłów i w pomieszczeniach magazynowych.

Dezynfekcja chemiczna

Branża F&B traktuje higienę bardzo poważnie, ponieważ najmniejsze zanieczyszczenie powierzchni i sprzętu może stanowić idealną pożywkę dla wszelkiego rodzaju zarazków. Dlatego sektor F&B wymaga rygorystycznego czyszczenia i dezynfekcji, które muszą spełniać standardy branżowe.

Istnieją trzy metody dezynfekcji powszechnie stosowane w F&B: termiczna, radiacyjna i chemiczna. Dezynfekcja chemiczna z użyciem związków chloru jest zdecydowanie najbardziej powszechnym i skutecznym sposobem dezynfekcji sprzętu lub innych powierzchni. Dzieje się tak dlatego, że związki na bazie chloru są tanie, szybko działające i skuteczne wobec różnych mikroorganizmów. Powszechnie stosuje się kilka różnych związków chloru, w tym podchloryn, chloraminy organiczne i nieorganiczne oraz dwutlenek chloru. Roztwór podchlorynu sodu (NaOCl) jest przechowywany w zbiornikach, natomiast dwutlenek chloru (ClO2) jest zwykle wytwarzany na miejscu.

W każdej kombinacji związki chloru są niebezpieczne, a narażenie na wysokie stężenie chloru może powodować poważne problemy zdrowotne. Gazy chlorowe są zwykle przechowywane na miejscu i należy zainstalować system wykrywania gazu, z wyjściem przekaźnikowym uruchamiającym wentylatory po wykryciu wysokiego poziomu chloru.

Opakowania na żywność

Opakowanie żywności służy wielu celom; umożliwia bezpieczny transport i przechowywanie żywności, chroni ją, wskazuje wielkość porcji i dostarcza informacji o produkcie. Aby zachować bezpieczeństwo artykułów spożywczych przez długi czas, konieczne jest usunięcie tlenu z pojemnika, ponieważ w przeciwnym razie dojdzie do utleniania, gdy żywność wejdzie w kontakt z tlenem. Obecność tlenu sprzyja również rozwojowi bakterii, które są szkodliwe podczas spożywania. Jeśli jednak opakowanie zostanie przepłukane azotem, można przedłużyć okres trwałości zapakowanej żywności.

Firmy pakujące często stosują metody płukania azotem (N2) do konserwowania i przechowywania swoich produktów. Azot jest gazem niereaktywnym, bezwonnym i nietoksycznym. Zapobiega utlenianiu się świeżej żywności z cukrami lub tłuszczami, zatrzymuje rozwój niebezpiecznych bakterii i hamuje psucie się produktów. Wreszcie, zapobiega zapadaniu się opakowań poprzez tworzenie atmosfery pod ciśnieniem. Azot może być wytwarzany na miejscu za pomocą generatorów lub dostarczany w butlach. Generatory gazu są efektywne kosztowo i zapewniają nieprzerwane dostawy gazu. Azot jest substancją duszącą, zdolną do wyparcia tlenu z powietrza. Ponieważ nie ma zapachu i jest nietoksyczny, pracownicy mogą nie zdawać sobie sprawy z niskiego poziomu tlenu zanim będzie za późno.

Poziom tlenu poniżej 19% spowoduje zawroty głowy i utratę przytomności. Aby temu zapobiec, zawartość tlenu powinna być monitorowana za pomocą czujnika elektrochemicznego. Zainstalowanie detektorów tlenu w obszarach pakowania zapewnia bezpieczeństwo pracowników i wczesne wykrywanie wycieków.

Instalacje chłodnicze

Instalacje chłodnicze w branży F&B są wykorzystywane do utrzymywania żywności w chłodzie przez długi okres czasu. Duże magazyny żywności często wykorzystują systemy chłodnicze oparte na amoniaku (> 50% NH3), ponieważ jest on wydajny i ekonomiczny. Jednakże amoniak jest zarówno toksyczny jak i łatwopalny; jest również lżejszy od powietrza i szybko wypełnia zamknięte przestrzenie. Amoniak może stać się łatwopalny, jeśli zostanie uwolniony w zamkniętej przestrzeni, w której znajduje się źródło zapłonu, lub jeśli zbiornik bezwodnego amoniaku zostanie wystawiony na działanie ognia.

Amoniak jest wykrywany za pomocą technologii czujników elektrochemicznych (toksycznych) i katalitycznych (palnych). Przenośne detektory, w tym jedno- lub wielogazowe, mogą monitorować chwilowe i TWA narażenie na toksyczne poziomy NH3. Wykazano, że wielogazowe monitory osobiste zwiększają bezpieczeństwo pracowników, gdy podczas rutynowych przeglądów systemu stosowany jest niski zakres ppm, a podczas konserwacji systemu - zakres palny. Stałe systemy detekcji obejmują kombinację detektorów poziomu toksycznego i łatwopalnego podłączonych do lokalnych central sterujących - są one zwykle dostarczane jako część systemu chłodzenia. Systemy stacjonarne mogą być również wykorzystywane do sterowania procesami i wentylacją.

Przemysł browarniczy i napojów

Ryzyko związane z produkcją alkoholu wiąże się ze znacznych rozmiarów sprzętem produkcyjnym, który może być potencjalnie szkodliwy, zarówno podczas obsługi, jak i z powodu oparów i dymów, które mogą być emitowane do atmosfery, a następnie wpływać na środowisko. Głównym zagrożeniem palnym występującym w destylarniach i browarach jest etanol, którego dymy i opary są wytwarzane przez etanol. Opary etanolu mogą być emitowane z nieszczelnych zbiorników, beczek, pomp transferowych, rur i węży elastycznych, co sprawia, że stanowią one bardzo realne zagrożenie pożarowe i wybuchowe, z którym muszą się zmierzyć osoby pracujące w przemyśle gorzelniczym. Gdy gaz i opary zostaną uwolnione do atmosfery, mogą się szybko gromadzić i stanowić zagrożenie dla zdrowia pracowników. Warto jednak zauważyć, że stężenie wymagane do spowodowania szkody dla zdrowia pracowników musi być bardzo wysokie. Mając to na uwadze, bardziej znaczącym ryzykiem związanym z etanolem w powietrzu jest ryzyko wybuchu. Fakt ten wzmacnia znaczenie sprzętu do wykrywania gazu, który pozwala na natychmiastowe rozpoznanie i usunięcie wszelkich wycieków, aby uniknąć katastrofalnych skutków.

Pakowanie, transport i wydawanie

Po zabutelkowaniu wina i zapakowaniu piwa, muszą one zostać dostarczone do odpowiednich punktów sprzedaży. Obejmuje to zwykle firmy dystrybucyjne, magazynowanie, a w przypadku browarów - tragarzy. Piwo i napoje bezalkoholowe wykorzystują dwutlenek węgla lub mieszankę dwutlenku węgla i azotu jako sposób dostarczenia napoju do "kranu". Gazy te nadają również piwu dłuższą pianę oraz poprawiają jego jakość i smak.

Nawet gdy napój jest gotowy do wydania, pozostają zagrożenia związane z gazem. Pojawiają się one przy każdej działalności w pomieszczeniach, w których znajdują się butle ze sprężonym gazem, ze względu na ryzyko podwyższonego poziomu dwutlenku węgla lub obniżonego poziomu tlenu (ze względu na wysoki poziom azotu). Dwutlenek węgla (CO2) występuje naturalnie w atmosferze (0,04%).CO2 jest bezbarwny i bezwonny, cięższy od powietrza i jeśli się wydostanie, będzie miał tendencję do opadania na podłogę.CO2 gromadzi się w piwnicach i na dnie pojemników oraz w przestrzeniach zamkniętych, takich jak zbiorniki i silosy.CO2 powstaje w dużych ilościach podczas fermentacji. Jest on również wtłaczany do napojów podczas saturacji.

Aby dowiedzieć się więcej o zagrożeniach gazowych w produkcji żywności i napojów, odwiedź naszą stronęstrona branżowaaby uzyskać więcej informacji.

Zagrożenia związane z gazem w rolnictwie i hodowli 

Rolnictwo i hodowla to na całym świecie kolosalna branża, zapewniająca ponad 44 mln miejsc pracy w UE i stanowi ponad 10% całkowitego zatrudnienia w USA.

Ze względu na szeroki zakres procesów zachodzących w tym sektorze, z pewnością istnieją zagrożenia, które należy wziąć pod uwagę. Należą do nich zagrożenia gazowe związane z metanem, siarkowodorem, amoniakiem, dwutlenkiem węgla i podtlenkiem azotu.

Metan jest bezbarwnym, bezwonnym gazem, który może mieć szkodliwy wpływ na ludzi, powodując niewyraźną mowę, problemy z widzeniem, utratę pamięci, mdłości, a w skrajnych przypadkach może wpływać na oddychanie i tętno, potencjalnie prowadząc do utraty przytomności, a nawet śmierci. W środowisku rolniczym powstaje on w wyniku beztlenowej fermentacji materiałów organicznych, takich jak obornik. Ilość wytwarzanego metanu jest zwiększona w obszarach o słabej wentylacji lub wysokiej temperaturze, a w obszarach o szczególnym braku przepływu powietrza gaz może się gromadzić, zostać uwięziony i powodować eksplozje.

Dwutlenek węgla (CO2) jest gazem, który jest naturalnie produkowany w atmosferze, a którego poziom może być zwiększony przez procesy rolnicze.CO2 może być emitowany przez szereg procesów rolniczych, w tym produkcję roślinną i zwierzęcą, a także jest emitowany przez niektóre urządzenia używane w zastosowaniach rolniczych. Przestrzenie magazynowe używane do przechowywania odpadów i ziarna oraz uszczelnione silosy są przedmiotem szczególnej troski ze względu na zdolnośćCO2 do gromadzenia się i wypierania tlenu, co zwiększa ryzyko uduszenia zarówno dla zwierząt, jak i ludzi.

Podobnie jak metan, siarkowodór pochodzi z beztlenowego rozkładu materiału organicznego i można go również znaleźć w szeregu procesów rolniczych związanych z produkcją i zużyciem biogazu.H2S uniemożliwia transport tlenu do naszych ważnych organów, a obszary, w których się gromadzi, często mają obniżone stężenie tlenu, co zwiększa ryzyko uduszenia się, gdy poziomH2Sjest wysoki. Chociaż H2S można uznać za łatwiejszy do wykrycia ze względu na jego wyraźny zapach "zgniłego jaja", intensywność zapachu faktycznie zmniejsza się przy wyższych stężeniach i dłuższym narażeniu. Przy wysokich poziomach,H2Smoże powodować poważne podrażnienie i gromadzenie się płynów w płucach oraz wpływać na układ nerwowy.

Amoniak (NH3) jest gazem znajdującym się w odpadach zwierzęcych, które są często rozrzucane i emitowane dalej poprzez rozrzucanie gnojowicy na gruntach rolnych. Podobnie jak w przypadku wielu innych gazów, wpływ amoniaku jest zwiększony w przypadku braku wentylacji. Jest on szkodliwy dla dobrostanu zarówno zwierząt gospodarskich jak i ludzi, powodując choroby układu oddechowego u zwierząt, podczas gdy wysokie poziomy mogą prowadzić do oparzeń i obrzęku dróg oddechowych oraz uszkodzenia płuc u ludzi i mogą być śmiertelne.

Tlenek azotu (NO2) to kolejny gaz, na który należy zwracać uwagę w rolnictwie i przemyśle rolniczym. Jest on obecny w nawozach syntetycznych, które są często stosowane w bardziej intensywnych praktykach rolniczych, aby zapewnić większe plony. Potencjalny negatywny wpływ NO2 u ludzi obejmują obniżoną funkcję płuc, krwawienie wewnętrzne i ciągłe problemy z oddychaniem.

Pracownicy w tej branży są często w ruchu i w tym konkretnym celu Crowcon oferuje szeroką gamę stacjonarnych i przenośnych detektorów gazu, aby zapewnić pracownikom bezpieczeństwo. Oferta przenośnych detektorów Crowcon obejmuje T4, Gas-Pro, Clip SGD i Gasman z których wszystkie oferują niezawodne, przenośne możliwości wykrywania różnych gazów. Nasze stacjonarne detektory gazu są stosowane tam, gdzie niezawodność, niezawodność i brak fałszywych alarmów mają zasadnicze znaczenie dla wydajnej i skutecznej ochrony aktywów i obszarów, i obejmują Xgard i Xgard Bright. W połączeniu z różnymi naszymi detektorami stacjonarnymi, nasze panele sterowania do wykrywania gazów oferują elastyczną gamę rozwiązań, które mierzą gazy łatwopalne, toksyczne i tlen, zgłaszają ich obecność i aktywują alarmy lub powiązane urządzenia. Gasmaster, Vortex i panele sterowników adresowalnych.

Aby dowiedzieć się więcej o zagrożeniach gazowych w rolnictwie i hodowli, odwiedź naszą stronę branżową, aby uzyskać więcej informacji.

Niebezpieczeństwa związane z ekspozycją na gaz w winiarniach

Winiarnie stoją przed wyjątkowym zestawem wyzwań, jeśli chodzi o ochronę pracowników przed potencjalnymi szkodami powodowanymi przez niebezpieczne gazy. Narażenie na działanie gazów może wystąpić na każdym etapie procesu produkcji wina, od momentu przybycia winogron do winnicy, poprzez fermentację, aż po butelkowanie. Na każdym etapie należy zachować ostrożność, aby zapewnić, że pracownicy nie są narażeni na niepotrzebne ryzyko. W winiarni istnieje kilka specyficznych środowisk, które stwarzają ryzyko wycieku gazu i narażenia na jego działanie, w tym pomieszczenia fermentacyjne, doły, piwnice z beczkami, studzienki, zbiorniki magazynowe i rozlewnie. Główne zagrożenia gazowe występujące podczas procesu produkcji wina to dwutlenek węgla i wypieranie tlenu, ale także siarkowodór, dwutlenek siarki, alkohol etylowy i tlenek węgla.

Jakie są zagrożenia gazowe?

Siarkowodór (H2S)

Siarkowodór jest gazem, który może być obecny podczas procesu fermentacji. Jest on częściej obecny w wilgotnych warunkach, gdzie działanie bakterii zadziałało na naturalne oleje. Ukrywa się rozpuszczony w stojącej wodzie, dopóki nie zostanie naruszony. Najbardziej niebezpieczne jest czyszczenie zamkniętej przestrzeni, np. zbiornika, z którego uwolnione gazy nie mogą się łatwo wydostać. Kontrola przed wejściem jest czysta, a stojąca woda zostaje naruszona przy wejściu. Ryzyko związane zH2Spolega na tym, że jest on potencjalnie niebezpieczny dla zdrowia, zaburzając schematy oddychania. Siarkowodór stanowi poważne zagrożenie dla dróg oddechowych, nawet przy stosunkowo niskim stężeniu w powietrzu. Gaz ten jest bardzo łatwo i szybko wchłaniany do krwiobiegu przez tkankę płucną, co oznacza, że bardzo szybko rozprowadzany jest po całym organizmie.

Dwutlenek siarki (SO2)

Dwutlenek siarki jest naturalnym produktem ubocznym fermentacji, ale jest również powszechnie stosowany jako dodatek w procesie organicznego wytwarzania wina. Dodatkowy SO2 jest dodawany podczas procesu produkcji wina, aby zapobiec rozwojowi niepożądanych drożdży i mikrobów w winie. Dwutlenek siarki może być bardzo niebezpieczny dla zdrowia i jest wysoce toksycznym gazem, powodującym liczne podrażnienia w organizmie w momencie kontaktu. Dwutlenek siarki jest gazem, który może powodować podrażnienie dróg oddechowych, nosa i gardła. U pracowników narażonych na wysokie stężenie dwutlenku siarki mogą wystąpić wymioty, nudności, skurcze żołądka oraz podrażnienie lub korozyjne uszkodzenie płuc i dróg oddechowych.

Etanol (alkohol etylowy)

Etanol jest głównym produktem alkoholowym fermentacji wina organicznego. Pomaga utrzymać smak wina i stabilizuje proces starzenia. Etanol powstaje podczas fermentacji, gdy drożdże przetwarzają cukier z winogron. Wino zawiera zazwyczaj od 7% do 15% etanolu, co nadaje napojowi procentową zawartość alkoholu w objętości (ABV). Ilość faktycznie wyprodukowanego etanolu zależy od zawartości cukru w winogronach, temperatury fermentacji i rodzaju użytych drożdży. Etanol jest bezbarwną i bezwonną cieczą, która wydziela łatwopalne i potencjalnie niebezpieczne opary. Opary wydzielane przez etanol lub alkohol etylowy mogą podrażniać drogi oddechowe i płuca w przypadku wdychania, z możliwością intensywnego kaszlu i dławienia się.

Gdzie są zagrożenia?

Otwarte zbiorniki fermentacyjne

Każdy pracownik, którego praca wymaga wykonywania czynności nad otwartym naczyniem fermentacyjnym lub zbiornikiem może być narażony na wysokie ryzyko ekspozycji na gaz, zwłaszcza naCO2 lub wyczerpanie tlenu. Wykazano, że pracownik, który pochyla się nad górną częścią otwartego fermentatora podczas pełnej produkcji, mimo że może znajdować się nawet 10 stóp od ziemi, może być potencjalnie narażony na 100%CO2. Dlatego w tych miejscach należy zachować szczególną ostrożność i uwagę na wykrywanie gazu.

Narażenie na skutek nieodpowiedniej wentylacji

Proces fermentacji musi odbywać się w dobrze wentylowanych pomieszczeniach, aby uniknąć gromadzenia się toksycznych i duszących gazów. Pomieszczenia fermentacyjne, zbiorniki i piwnice to miejsca, które mogą stanowić zagrożenie. Podczas zimnej pogody lub w nocy może dojść do nagromadzenia zwiększonej ilości gazu, ponieważ otwory wentylacyjne w drzwiach i oknach mogą być zamknięte.

Przestrzenie zamknięte

Przestrzenie zamknięte, takie jak doły i studzienki, są często problematyczne i dobrze znane z potencjalnego gromadzenia się niebezpiecznych gazów. Definicja przestrzeni zamkniętej w winiarni to taka, która zawiera lub może zawierać niebezpieczną atmosferę, ma możliwość pochłonięcia przez materiał lub osoba wchodząca do środowiska może zostać uwięziona lub uduszona.

Wiele jednostek

W miarę rozwoju i rozszerzania działalności winiarnia może chcieć dodać nowe jednostki produkcyjne, aby sprostać zapotrzebowaniu. Należy jednak pamiętać, że potencjalne zagrożenia związane z ekspozycją na gaz różnią się w zależności od środowiska, np. zagrożenie gazowe w piwnicy fermentacyjnej nie jest takie samo jak w pomieszczeniu z beczkami. Dlatego w różnych miejscach mogą być potrzebne różne typy detektorów gazu.

Aby uzyskać więcej informacji na temat rozwiązań w zakresie wykrywania gazu dla winiarni lub zadać dalsze pytania, skontaktuj się z nami już dziś.

Czy wiesz o monitorze powietrza atmosferycznego na stronie Sprint Pro?

Prawdopodobnie wiesz, że ikona Sprint Pro ma wiele przydatnych funkcji, ale czy kiedykolwiek przewijałeś menu swojego Sprint Pro, i zastanawiałeś się, jak możesz go użyć?

Cóż, nie musisz się już dłużej zastanawiać - w tym poście przyjrzymy się monitorowi powietrza Sprint Pro i jego zastosowaniom.

Kto musi prowadzić monitoring powietrza atmosferycznego?

Jako inżynier gazownictwa, Twoje zapotrzebowanie na monitorowanie powietrza może się różnić w zależności od rodzaju wykonywanej pracy, ale jeśli specjalizujesz się w tlenku węgla (CO)/dwutlenku węgla (CO2) - na przykład, jeśli masz certyfikat CMDDA1 dla mieszkań lub podjąć COMCAT (catering komercyjny) raporty w Wielkiej Brytanii, lub mają równoważne domowe lub catering CO / CO2) gdzie indziej na świecie - prawdopodobnie uznasz tę funkcję za bardzo przydatną.

Jak działa monitoring powietrza atmosferycznego?

Ogólnie rzecz biorąc, monitoring powietrza atmosferycznego to po prostu pomiar zanieczyszczeń w atmosferze, ale w kontekście wykrywania gazu odnosi się do analizy ilości tlenku węgla w powietrzu.

W niektórych przypadkach mierzony jest również poziomCO2 jest również mierzony. Modele Sprint Pro 4 i Sprint Pro 6 są wyposażone w bezpośredni czujnikCO2 dlatego mogą mierzyć zarówno CO, jak iCO2..

Monitorowanie otaczającego powietrza może być prowadzone wszędzie tam, gdzie CO i/lubCO2 stanowią zagrożenie. Na przykład w celu wykrycia wycieków CO w domu (np. z kotła) lub w celu monitorowania poziomuCO2 w komercyjnych lokalach gastronomicznych. w komercyjnych lokalach gastronomicznych.

Za pomocą Sprint Pro monitorowanie powietrza w otoczeniu odbywa się przez określony czas, który może wynosić od kilku minut do kilku dni, w którym to czasie analizator pobiera próbki powietrza z otoczenia w odstępach od jednej do trzydziestu minut. Pod koniec testu urządzenie podaje odczyty bieżących, szczytowych i średnich wartości dla CO iCO2 w całym teście.. Można je zapisać bezpośrednio w dzienniku i/lub wydrukować jako raporty papierowe.

Nawet jeśli chodzi o drukowanie raportów, Sprint Pro oferuje opcje, dzięki czemu można wydrukować tyle lub mniej istotnych informacji, ile potrzeba. Może to być bardzo przydatne, gdy właśnie pobrano dosłownie setki próbek w ciągu 7 dni!

Monitorowanie powietrza atmosferycznego pod kątem CO jest dostępne owe wszystkich modelachSprint Pro

Dlaczego potrzebuję funkcji monitorowania powietrza atmosferycznego?

Niezależnie od specjalistycznych certyfikatów, posiadanie zdolności do analizy otaczającego powietrza jest coraz bardziej przydatne dla specjalistów HVAC i inżynierów gazownictwa. Jest to szczególnie prawdziwe w świetle pandemii COVID-19, kiedy to podkreślono korzyści płynące ze świeżego powietrza i dobrej wentylacji w pomieszczeniach. Nadmierna ilość CO iCO2 stanowią zagrożenie zarówno dla zdrowia ludzi, jak i środowiska, a wraz z rosnącą świadomością w tym zakresie oraz faktem, że zrównoważony rozwój staje się coraz ważniejszym tematem społecznym/politycznym/politycznym, potrzeba kwantyfikacji i pomiaru tych czynników prawdopodobnie będzie rosła.

Bezpieczeństwo gazu w balonie: Zagrożenia związane z helem i azotem 

Gaz balonowy to mieszanina helu i powietrza. Gaz balonowy jest bezpieczny, jeżeli jest używany prawidłowo, ale nigdy nie należy świadomie wdychać gazu, ponieważ jest on środkiem duszącym i może powodować komplikacje zdrowotne. Podobnie jak inne środki duszące, hel zawarty w gazie balonowym zajmuje część objętości zajmowanej normalnie przez powietrze, uniemożliwiając jego wykorzystanie do podtrzymania pożaru lub funkcjonowania organizmu.

Istnieją inne środki duszące wykorzystywane w zastosowaniach przemysłowych. Na przykład, użycie azotu stało się niemal niezbędne w wielu przemysłowych procesach produkcyjnych i transportowych. Chociaż zastosowania azotu są liczne, należy postępować z nim zgodnie z przepisami bezpieczeństwa przemysłowego. Azot powinien być traktowany jako potencjalne zagrożenie bezpieczeństwa niezależnie od skali procesu przemysłowego, w którym jest stosowany. Dwutlenek węgla jest powszechnie stosowany jako środek duszący, zwłaszcza w systemach przeciwpożarowych i niektórych gaśnicach. Podobnie, hel jest niepalny, nietoksyczny i nie reaguje z innymi pierwiastkami w normalnych warunkach. Jednak wiedza o tym, jak właściwie obchodzić się z helem jest niezbędna, ponieważ niezrozumienie może prowadzić do błędów w ocenie, które mogą doprowadzić do sytuacji śmiertelnej, ponieważ hel jest używany w wielu codziennych sytuacjach. Podobnie jak w przypadku wszystkich gazów, właściwa opieka i obsługa pojemników z helem ma kluczowe znaczenie.

Jakie są zagrożenia?

Kiedy wdychamy hel świadomie lub nieświadomie wypiera on powietrze, które jest częściowo tlenem. Oznacza to, że podczas wdychania, tlen, który normalnie byłby obecny w płucach został zastąpiony helem. Ponieważ tlen odgrywa rolę w wielu funkcjach twojego ciała, w tym myślenia i poruszania się, zbyt duże wypieranie stanowi zagrożenie dla zdrowia. Zazwyczaj wdychanie niewielkiej ilości helu ma wpływ na głos, jednak może również powodować zawroty głowy i zawsze istnieje możliwość wystąpienia innych skutków, w tym nudności, światłowstrętu i/lub chwilowej utraty przytomności - wszystkie skutki niedoboru tlenu.

  • Jak większość substancji duszących, gaz azotowy, podobnie jak gaz helowy, jest bezbarwny i bezwonny. W przypadku braku urządzeń wykrywających azot, ryzyko narażenia pracowników przemysłowych na niebezpieczne stężenie azotu jest znacznie wyższe. Ponadto, podczas gdy hel ze względu na swoją małą gęstość często unosi się poza obszar pracy, azot pozostaje, rozprzestrzeniając się od miejsca wycieku i nie rozpraszając się szybko. Z tego względu systemy działające na azocie, w których dochodzi do niewykrytych wycieków, stanowią poważne zagrożenie dla przepisów bezpieczeństwa. Wytyczne dotyczące profilaktyki w zakresie medycyny pracy próbują zaradzić temu zwiększonemu ryzyku, stosując dodatkowe kontrole bezpieczeństwa sprzętu. Problemem jest niskie stężenie tlenu, które dotyka personel. Początkowo objawy obejmują łagodną duszność i kaszel, zawroty głowy i być może niepokój, a następnie szybki oddech, ból w klatce piersiowej i dezorientację, przy czym długotrwałe wdychanie powoduje wysokie ciśnienie krwi, skurcz oskrzeli i obrzęk płuc.
  • Hel może wywołać dokładnie te same objawy, jeśli jest zamknięty w objętości i nie może się wydostać. I w każdym przypadku całkowite zastąpienie powietrza gazem duszącym powoduje gwałtowny knockdown, w którym osoba po prostu upada tam, gdzie stoi, powodując różne obrażenia.

Najlepsze praktyki w zakresie bezpieczeństwa gazu balonowego

Zgodnie z OSHA Zgodnie z wytycznymi OSHA, obowiązkowe badania są wymagane dla zamkniętych przestrzeni przemysłowych, a odpowiedzialność za nie spoczywa na wszystkich pracodawcach. Pobieranie próbek powietrza atmosferycznego w tych przestrzeniach pomoże określić jego przydatność do oddychania. Testy, które należy przeprowadzić na pobranym powietrzu, obejmują przede wszystkim stężenie tlenu, ale także obecność gazów palnych i testy na obecność toksycznych oparów w celu zidentyfikowania nagromadzenia tych gazów.

Bez względu na czas pobytu, OSHA wymaga od wszystkich pracodawców zapewnienia osoby towarzyszącej na zewnątrz przestrzeni wymagającej zezwolenia w czasie, gdy personel pracuje wewnątrz. Osoba ta jest zobowiązana do ciągłego monitorowania warunków gazowych panujących w przestrzeni i wezwania ratowników, jeśli pracownik znajdujący się w zamkniętej przestrzeni przestanie reagować. Należy pamiętać, że osoba ta nie może w żadnym momencie próbować wejść do niebezpiecznej przestrzeni, aby przeprowadzić akcję ratunkową bez pomocy.

W obszarach o ograniczonym dostępie wymuszony ciąg powietrza znacznie zmniejszy nagromadzenie helu, azotu lub innego gazu duszącego i ograniczy szanse na śmiertelne narażenie. Chociaż strategia ta może być stosowana w obszarach o niskim ryzyku wycieku azotu, pracownikom nie wolno wchodzić do środowiska czystego azotu bez użycia odpowiedniego sprzętu oddechowego. W takich przypadkach personel musi używać odpowiedniego sprzętu ze sztucznym doprowadzeniem powietrza.

Wykrywanie zagrożeń w mleczarstwie: Na jakie gazy powinieneś zwracać uwagę? 

Globalny popyt na mleko wciąż rośnie w dużej mierze z powodu wzrostu populacji, rosnących dochodów i urbanizacji. Miliony rolników na całym świecie hodują około 270 milionów krów mlecznych, które produkują mleko. W całym przemyśle mleczarskim istnieje wiele zagrożeń gazowych, które stanowią ryzyko dla osób pracujących w przemyśle mleczarskim.

Na jakie niebezpieczeństwa narażeni są pracownicy w przemyśle mleczarskim?

Środki chemiczne

W przemyśle mleczarskim środki chemiczne są używane do różnych zadań, w tym do czyszczenia, stosowania różnych zabiegów, takich jak szczepienia lub leki, antybiotyki, sterylizacja i opryski. Jeśli te chemikalia i substancje niebezpieczne nie są prawidłowo stosowane lub przechowywane, może to spowodować poważne szkody dla pracowników lub otaczającego środowiska. Te chemikalia mogą nie tylko powodować choroby, ale istnieje również ryzyko śmierci, jeśli osoba jest narażona. Niektóre substancje chemiczne mogą być łatwopalne i wybuchowe, podczas gdy inne są żrące i trujące.

Istnieje kilka sposobów zarządzania tymi zagrożeniami chemicznymi, chociaż głównym problemem powinno być wdrożenie procesu i procedury. Procedura ta powinna zapewnić przeszkolenie całego personelu w zakresie bezpiecznego stosowania chemikaliów oraz prowadzenie dokumentacji. Jako część procedury chemicznej, powinno to obejmować manifest chemiczny do celów śledzenia. Ten rodzaj zarządzania inwentarzem pozwala wszystkim pracownikom na dostęp do kart charakterystyki (SDS), jak również rejestrów użycia i lokalizacji. Wraz z tym manifestem należy rozważyć przegląd bieżącej działalności.

  • Jaka jest obecna procedura?
  • Jakie środki ochrony indywidualnej są wymagane?
  • Jaki jest proces pozbywania się przestarzałych chemikaliów i czy istnieje substytut, który mógłby stanowić mniejsze zagrożenie dla pracowników?

Przestrzenie zamknięte

Istnieje wiele okoliczności, które mogą wymagać od pracownika wejścia do zamkniętej przestrzeni, w tym silosy na paszę, kadzie na mleko, zbiorniki na wodę i doły w przemyśle mleczarskim. Najbezpieczniejszym sposobem wyeliminowania zagrożenia związanego z ograniczoną przestrzenią, o czym wspomina wiele organizacji branżowych, jest zastosowanie bezpiecznego projektu. Obejmuje to usunięcie wszelkich potrzeb związanych z wejściem do zamkniętej przestrzeni. Chociaż może to nie być realne i od czasu do czasu trzeba przeprowadzić procedury czyszczenia lub może dojść do zablokowania, istnieje jednak wymóg zapewnienia właściwych procedur w celu rozwiązania problemu zagrożenia.

Środki chemiczne stosowane w zamkniętej przestrzeni mogą zwiększać ryzyko uduszenia, ponieważ gazy wypierają tlen. Jednym ze sposobów wyeliminowania tego ryzyka jest czyszczenie kadzi od zewnątrz za pomocą węża wysokociśnieniowego. Jeżeli pracownik musi wejść do zamkniętej przestrzeni, należy sprawdzić, czy umieszczono odpowiednie oznakowanie, ponieważ punkty wejścia i wyjścia będą ograniczone. Należy rozważyć zastosowanie wyłączników izolacyjnych i sprawdzić, czy pracownicy rozumieją prawidłową procedurę ratunkową w razie wystąpienia awarii.

Zagrożenia gazowe

Amoniak (NH3) znajduje się w odpadach zwierzęcych i gnojowicy rozrzucanych na terenach rolniczych i uprawnych. Jest to charakterystyczny bezbarwny gaz o ostrym zapachu, który powstaje w wyniku rozkładu związków azotu w odpadach zwierzęcych. Jest on nie tylko szkodliwy dla zdrowia ludzi, ale również dla dobrostanu zwierząt gospodarskich, ponieważ może powodować choroby układu oddechowego u zwierząt gospodarskich, a także podrażnienie oczu, ślepotę, uszkodzenie płuc, obok uszkodzenia nosa i gardła, a nawet śmierć u ludzi. Wentylacja jest kluczowym wymogiem w zapobieganiu problemom zdrowotnym, ponieważ słaba wentylacja zwiększa szkody spowodowane przez ten gaz.

Dwutlenek węgla (CO2) jest naturalnie produkowany w atmosferze; chociaż jego poziom jest zwiększany przez rolnictwo i procesy rolnicze.CO2 jest bezbarwny, bezwonny i jest emitowany ze sprzętu rolniczego, produkcji roślinnej i zwierzęcej oraz innych procesów rolniczych.CO2 może gromadzić się obszarach, takich jak zbiorniki odpadów i silosów. Powoduje to wypieranie tlenu z powietrza i zwiększenie ryzyka uduszenia się zwierząt i ludzi. Szczególnie niebezpieczne są szczelnie zamknięte silosy, zbiorniki na odpady i magazyny zbożowe, ponieważ może się w nich gromadzićCO2 , co prowadzi do tego, że bez zewnętrznego dopływu powietrza nie nadają się one dla ludzi.

Dwutlenek azotu (NO2) jest jednym z grupy wysoce reaktywnych gazów znanych jako tlenki azotu lub tlenki azotu (NOx). Aajgorsze jest to, że może powodować nagłą śmierć po spożyciu, nawet przy krótkotrwałym narażeniu. Gaz ten może powodować uduszenie i jest emitowany z silosów w wyniku określonych reakcji chemicznych materiału roślinnego. Rozpoznawalny jest po zapachu przypominającym bielmo, a jego właściwości powodują powstawanie czerwono-brązowej mgły. Ponieważ gromadzi się nad niektórymi powierzchniami, może przedostawać się do obszarów, na których znajdują się zwierzęta gospodarskie, poprzez zsypy silosów, i dlatego stanowi realne zagrożenie dla ludzi i zwierząt w okolicy. Może również wpływać na funkcje płuc, powodować krwawienie wewnętrzne i ciągłe problemy z oddychaniem.

Kiedy należy stosować detektory gazu?

Detektory gazu stanowią wartość dodaną wszędzie w gospodarstwach mlecznych i wokół silosów gnojowicy, ale przede wszystkim:

  • Kiedy i gdzie miesza się gnojowicę
  • Podczas pompowania i wywożenia gnojowicy
  • Na ciągniku i wokół niego podczas mieszania gnojowicy lub jej rozrzucania
  • W stajni podczas prac konserwacyjnych na pompach szlamowych, zgarniaczach gnojowicy itp.
  • W pobliżu i wokół małych otworów i pęknięć w podłodze, np. wokół robotów udojowych
  • Nisko przy ziemi w słabo wentylowanych narożnikach i pomieszczeniach (H2S jest cięższy od powietrza i opada na podłogę)
  • W silosach na gnojówkę
  • W zbiornikach na gnojówkę

Produkty, które mogą pomóc w ochronie

Detekcja gazu może być zapewniona zarówno w przypadku stałe i przenośnych w formie stałej lub przenośnej. Instalacja stacjonarnego detektora gazu może być korzystna dla większej przestrzeni, zapewniając ciągłą ochronę obszaru i personelu przez 24 godziny na dobę. Jednak przenośny detektor może być bardziej odpowiedni dla bezpieczeństwa pracowników.

Aby dowiedzieć się więcej o zagrożeniach w rolnictwie i hodowli, odwiedź naszą strona przemysłu aby uzyskać więcej informacji.