Uzdatnianie wody: Potrzeba detekcji gazu w wykrywaniu chloru

Przedsiębiorstwa wodociągowe pomagają dostarczać czystą wodę do picia, kąpieli oraz zastosowań przemysłowych i komercyjnych. Oczyszczalnie ścieków i systemy kanalizacyjne pomagają utrzymać nasze drogi wodne w czystości i higienie. W całej branży wodociągowej ryzyko narażenia na działanie gazów i związanych z nimi zagrożeń jest znaczne. Szkodliwe gazy można znaleźć w zbiornikach wody, zbiornikach serwisowych, studniach pompowych, jednostkach uzdatniania, obszarach przechowywania i obsługi chemikaliów, studzienkach, kanałach ściekowych, przelewach, odwiertach i studzienkach.

Co to jest chlor i dlaczego jest niebezpieczny?

Chlor (Cl2) ma żółto-zielony kolor i jest używany do sterylizacji wody pitnej. Jednak większość chloru jest wykorzystywana w przemyśle chemicznym, a jego typowe zastosowania obejmują uzdatnianie wody, a także tworzywa sztuczne i środki czyszczące. Chlor gazowy można rozpoznać po ostrym, drażniącym zapachu, który przypomina zapach wybielacza. Silny zapach może stanowić odpowiednie ostrzeżenie dla osób narażonych na jego działanie. Cl2 sam w sobie nie jest łatwopalny, ale może reagować wybuchowo lub tworzyć łatwopalne związki z innymi chemikaliami, takimi jak terpentyna i amoniak.

Chlor gazowy można rozpoznać po ostrym, drażniącym zapachu, który przypomina zapach wybielacza. Silny zapach może stanowić odpowiednie ostrzeżenie dla osób narażonych na jego działanie. Chlor jest toksyczny i jeśli zostanie wdychany lub wypity w skoncentrowanych ilościach, może okazać się śmiertelny. Jeśli gazowy chlor zostanie uwolniony do powietrza, ludzie mogą być narażeni na jego działanie poprzez skórę, oczy lub wdychanie. Chlor nie jest łatwopalny, ale może reagować z większością materiałów łatwopalnych, co stwarza ryzyko pożaru i wybuchu. Reaguje również gwałtownie ze związkami organicznymi, takimi jak amoniak i wodór, powodując potencjalny pożar i wybuch.

Do czego służy chlor?

Chlorowanie wody rozpoczęło się w Szwecji wXVIII wieku w celu usuwania nieprzyjemnych zapachów z wody. Metoda ta była stosowana wyłącznie do usuwania nieprzyjemnych zapachów z wody do 1890 roku, kiedy to chlor został zidentyfikowany jako skuteczna substancja do celów dezynfekcji. Chlor został po raz pierwszy użyty do celów dezynfekcji w Wielkiej Brytanii na początku XX wieku, a w ciągu następnego stulecia chlorowanie stało się bardziej preferowaną metodą stosowaną do uzdatniania wody i jest obecnie stosowane do uzdatniania wody w większości krajów na całym świecie.

Chlorowanie to metoda dezynfekcji wody o wysokim poziomie mikroorganizmów, w której do utleniania i dezynfekcji wody wykorzystuje się chlor lub substancje zawierające chlor. Różne procesy mogą być stosowane w celu osiągnięcia bezpiecznych poziomów chloru w wodzie pitnej, aby zapobiec chorobom przenoszonym przez wodę.

Dlaczego muszę wykrywać chlor?

Chlor, jako gęstszy od powietrza, ma tendencję do rozpraszania się w nisko położonych strefach w słabo wentylowanych lub stojących obszarach. Chociaż sam w sobie jest niepalny, chlor może stać się wybuchowy w kontakcie z substancjami takimi jak amoniak, wodór, gaz ziemny i terpentyna.

Reakcja organizmu ludzkiego na chlor zależy od kilku czynników: stężenia chloru obecnego w powietrzu, czasu trwania i częstotliwości narażenia. Skutki zależą również od stanu zdrowia danej osoby i warunków środowiskowych podczas narażenia. Na przykład, wdychanie niewielkich ilości chloru przez krótki czas może mieć wpływ na układ oddechowy. Inne skutki mogą obejmować kaszel i bóle w klatce piersiowej, gromadzenie się płynu w płucach, podrażnienia skóry i oczu. Należy zauważyć, że efekty te nie występują w warunkach naturalnych.

Nasze rozwiązanie

Zastosowanie detektora chloru gazowego umożliwia wykrywanie i pomiar stężenia tej substancji w powietrzu w celu zapobiegania wypadkom. Wyposażony w elektrochemiczny czujnik chloru, stacjonarny lub przenośny, jedno- lub wielogazowy detektor Cl2 monitoruje stężenie chloru w otaczającym powietrzu. Oferujemy szeroką gamę produktów do wykrywania gazów, które pomogą spełnić wymagania branży uzdatniania wody.

Stałe detektory gazu są idealne do monitorowania i ostrzegania kierowników i pracowników stacji uzdatniania wody o obecności wszystkich głównych zagrożeń gazowych. Stałe detektory gazu mogą być umieszczane na stałe wewnątrz zbiorników wody, systemów kanalizacyjnych i wszelkich innych obszarów, w których występuje wysokie ryzyko narażenia na działanie gazu.

Przenośne detektory gazu to lekkie i wytrzymałe urządzenia do wykrywania gazu. Przenośne detektory gazu emitują sygnał dźwiękowy i ostrzegają pracowników, gdy poziom gazu osiągnie niebezpieczne stężenie, umożliwiając podjęcie odpowiednich działań. Nasz Gasmani Gas-Pro są wyposażone w niezawodne czujniki chloru do monitorowania pojedynczego gazu i monitorowania wielu gazów.

Panele sterowania mogą być stosowane do koordynowania wielu stałych urządzeń wykrywających gaz i zapewniają wyzwalanie systemów alarmowych.

Aby uzyskać więcej informacji na temat wykrywania gazów w wodzie i uzdatniania wody lub zapoznać się z ofertą Crowcon w zakresie wykrywania gazów, prosimy o kontakt.

Przegląd branży: Zasilanie akumulatorowe

Baterie są skuteczne w ograniczaniu przerw w dostawach energii elektrycznej, ponieważ mogą również przechowywać nadmiar energii z tradycyjnej sieci energetycznej. Energia zmagazynowana w akumulatorach może być uwalniana zawsze wtedy, gdy potrzebna jest duża ilość energii, np. podczas awarii zasilania w centrum danych, aby zapobiec utracie danych, lub jako zapasowe źródło zasilania dla szpitala lub aplikacji wojskowej, aby zapewnić ciągłość usług o kluczowym znaczeniu. Baterie o dużej skali mogą być również wykorzystywane do wypełniania krótkoterminowych luk w zapotrzebowaniu z sieci. Takie kompozycje baterii mogą być również stosowane w mniejszych rozmiarach do zasilania samochodów elektrycznych i mogą być dalej skalowane w celu zasilania produktów komercyjnych, takich jak telefony, tablety, laptopy, głośniki i - oczywiście - osobiste detektory gazu.

Zastosowania obejmują przechowywanie akumulatorów, transport oraz spawanie i można je podzielić na cztery główne kategorie: Chemiczne - np. amoniak, wodór, metanol i paliwo syntetyczne, elektrochemiczne - kwas ołowiowy, jon litowy, Na-Cd, Na-ion, elektryczne - superkondensatory, nadprzewodzące magazyny magnetyczne oraz mechaniczne - sprężone powietrze, pompowane hydro, grawitacja.

Zagrożenia gazowe

Pożary akumulatorów litowo-jonowych

Poważny problem pojawia się, gdy elektryczność statyczna lub wadliwa ładowarka uszkodzą obwód zabezpieczający baterię. Uszkodzenie to może spowodować włączenie przełączników półprzewodnikowych w pozycję ON, bez wiedzy użytkownika. Akumulator z uszkodzonym obwodem ochronnym może działać normalnie, jednak nie może zapewnić ochrony przed zwarciem. System wykrywania gazu może ustalić, czy wystąpiła usterka i może być wykorzystany w pętli sprzężenia zwrotnego do wyłączenia zasilania, uszczelnienia przestrzeni i uwolnienia gazu obojętnego (np. azotu) do obszaru, aby zapobiec pożarowi lub eksplozji.

Wyciek toksycznych gazów przed ucieczką cieplną

Termiczny zanik napięcia w ogniwach litowo-metalowych i litowo-jonowych był przyczyną wielu pożarów. Badania wykazały, że podczas termicznego rozruchu z baterii wydobywają się łatwopalne gazy. Elektrolit w baterii litowo-jonowej jest palny i zazwyczaj zawiera heksafluorofosforan litu (LiPF6) lub inne sole Li zawierające fluor. W przypadku przegrzania, elektrolit będzie parował i ostatecznie zostanie uwolniony z ogniw baterii. Naukowcy odkryli, że komercyjne baterie litowo-jonowe mogą emitować znaczne ilości fluorowodoru (HF) podczas pożaru, a wskaźniki emisji różnią się dla różnych typów baterii i poziomów naładowania (SOC). Fluorowodór może przenikać przez skórę i oddziaływać na głębokie tkanki skórne, a nawet kości i krew. Nawet przy minimalnym narażeniu, ból i objawy mogą nie wystąpić przez kilka godzin, do tego czasu szkody są ogromne.

Wodór i ryzyko wybuchu

Wraz z rosnącą popularnością wodorowych ogniw paliwowych jako alternatywy dla paliw kopalnych, ważne jest, aby być świadomym zagrożeń związanych z wodorem. Podobnie jak wszystkie paliwa, wodór jest wysoce łatwopalny i w przypadku jego wycieku istnieje realne ryzyko pożaru. Tradycyjne akumulatory kwasowo-ołowiowe wytwarzają wodór podczas ładowania. Akumulatory te są zwykle ładowane razem, czasami w tym samym pomieszczeniu lub obszarze, co może generować ryzyko wybuchu, zwłaszcza jeśli pomieszczenie nie jest odpowiednio wentylowane. W większości zastosowań wodoru nie można używać środków zapachowych ze względów bezpieczeństwa, ponieważ wodór rozprasza się szybciej niż środki zapachowe. Istnieją obowiązujące normy bezpieczeństwa dla stacji tankowania wodoru, zgodnie z którymi wszyscy pracownicy muszą posiadać odpowiednie wyposażenie ochronne. Obejmuje to detektory osobiste, zdolne do wykrywania wodoru na poziomie ppm, jak również na poziomie %LEL. Domyślne poziomy alarmowe są ustawione na 20% i 40% LEL, co stanowi 4% objętości, ale w niektórych zastosowaniach można sobie życzyć niestandardowego zakresu PPM i poziomów alarmowych, aby szybko wychwycić nagromadzenie wodoru.

Aby dowiedzieć się więcej o zagrożeniach gazowych w akumulatorach odwiedź naszą stronęstrona branżowaaby uzyskać więcej informacji.

Krótka historia detekcji gazów 

Ewolucja wykrywania gazów zmieniła się znacząco na przestrzeni lat. Nowe, innowacyjne pomysły, od kanarków po przenośne urządzenia monitorujące, zapewniają pracownikom ciągłe, precyzyjne monitorowanie gazu.

Rewolucja przemysłowa była katalizatorem rozwoju detekcji gazu ze względu na wykorzystanie paliwa, które było bardzo obiecujące, takiego jak węgiel. Ponieważ węgiel może być wydobywany z ziemi w kopalniach lub pod ziemią, narzędzia takie jak hełmy i lampy płomieniowe były jedyną ochroną przed niebezpieczeństwem narażenia na metan pod ziemią, które nie zostało jeszcze odkryte. Metan jest bezbarwny i bezwonny, co sprawia, że trudno jest rozpoznać jego obecność, aż do momentu odkrycia zauważalnego wzorca problemów zdrowotnych. Ryzyko związane z narażeniem na gaz spowodowało, że zaczęto eksperymentować z metodami wykrywania, aby zachować bezpieczeństwo pracowników na długie lata.

Potrzeba wykrywania gazu

Kiedy narażenie na gaz stało się oczywiste, górnicy zrozumieli, że muszą wiedzieć, czy w kopalni znajduje się jakakolwiek kieszeń z gazem metanowym, w której pracują. Na początku XIX wieku powstał pierwszy detektor gazu, a wielu górników nosiło na hełmach lampy płomieniowe, aby móc widzieć podczas pracy, więc zdolność do wykrywania niezwykle łatwopalnego metanu była najważniejsza. Pracownik zakładał na siebie gruby, mokry koc i nosił długi knot z podpalonym końcem. Wchodząc do kopalni, osoba ta przesuwała płomień wokół i wzdłuż ścian w poszukiwaniu kieszeni gazowych. W przypadku ich znalezienia następował zapłon i reakcja, o której informowano załogę, podczas gdy osoba dokonująca detekcji była chroniona przed kocem. Z czasem opracowano bardziej zaawansowane metody wykrywania gazu.

Wprowadzenie kanarków

Wykrywanie gazu zostało przeniesione z ludzi na kanarki ze względu na ich głośne ćwierkanie i podobne systemy nerwowe do kontrolowania wzorców oddechowych. Kanarki umieszczano w określonych miejscach kopalni, skąd pracownicy sprawdzali, czy kanarki nie ucierpiały na zdrowiu. Podczas pracy górnicy słuchali ćwierkania kanarków. Jeśli kanarek zaczął potrząsać klatką, był to silny wskaźnik ekspozycji kieszeni gazowej, w której zaczął wpływać na jego zdrowie. Górnicy ewakuowali się wtedy z kopalni i stwierdzili, że wejście do niej jest niebezpieczne. W niektórych przypadkach, jeśli kanarek przestał ćwierkać, górnicy wiedzieli, że należy szybciej opuścić kopalnię, zanim narażenie na gaz będzie miało szansę wpłynąć na ich zdrowie.

Światło płomienia

W wyniku obaw o bezpieczeństwo zwierząt, płomień był kolejnym etapem ewolucji w zakresie wykrywania gazu w kopalni. Podczas gdy zapewniała światło dla górników, płomień był umieszczony w osłonie, która pochłaniała wszelkie ciepło i zatrzymywała płomień, aby zapobiec zapaleniu się metanu, który mógł być obecny. Zewnętrzna powłoka zawierała szklany element z trzema nacięciami biegnącymi poziomo. Środkowa linia była ustawiona jako idealne środowisko gazowe, podczas gdy dolna linia wskazywała środowisko ubogie w tlen, a górna linia wskazywała narażenie na metan lub środowisko wzbogacone w tlen. Górnicy zapalali płomień w środowisku ze świeżym powietrzem. Jeśli płomień obniżył się lub zaczął ginąć, wskazywałoby to, że atmosfera miała niskie stężenie tlenu. Jeśli płomień się powiększył, górnicy wiedzieli, że metan był obecny z tlenem, w obu przypadkach wskazując, że muszą opuścić kopalnię.

Czujnik katalityczny

Chociaż płomień świetlny stanowił postęp w technologii wykrywania gazu, nie był jednak podejściem "uniwersalnym" dla wszystkich branż. Dlatego też czujnik katalityczny był pierwszym detektorem gazu, który ma podobieństwo do nowoczesnej technologii. Czujniki te działają na zasadzie, że kiedy gaz się utlenia, wytwarza ciepło. Czujnik katalityczny działa poprzez zmianę temperatury, która jest proporcjonalna do stężenia gazu. Chociaż był to krok naprzód w rozwoju technologii wymaganej do wykrywania gazu, początkowo wymagał on ręcznej obsługi w celu uzyskania odczytu.

Nowoczesna technologia

Technologia wykrywania gazów została bardzo rozwinięta od początku XIX wieku, kiedy to zarejestrowano pierwszy detektor gazu. Obecnie we wszystkich branżach stosuje się ponad pięć różnych typów czujników, w tym Elektrochemiczne, Kulki katalityczne (Pellistor), Detektor fotojonizacji (PID) i Technologia podczerwieni (IR), wraz z najnowocześniejszymi czujnikami Spektrometr właściwości molekularnych™ (MPS) i Long-Life Oxygen (LLO2), współczesne detektory gazu charakteryzują się wysoką czułością, dokładnością, a przede wszystkim niezawodnością, co pozwala zapewnić bezpieczeństwo wszystkim pracownikom, zmniejszając liczbę wypadków śmiertelnych w miejscu pracy.

Jak działają czujniki elektrochemiczne? 

Czujniki elektrochemiczne są najczęściej stosowane w trybie dyfuzyjnym, w którym gaz z otoczenia przedostaje się przez otwór w ściance komórki. Niektóre przyrządy wykorzystują pompę do dostarczania próbek powietrza lub gazu do czujnika. Aby zapobiec przedostawaniu się wody lub olejów do wnętrza komory, na otworze umieszcza się membranę z PTFE. Zakresy i czułości czujników mogą być zróżnicowane dzięki zastosowaniu otworów o różnych rozmiarach. Większe otwory zapewniają wyższą czułość i rozdzielczość, natomiast mniejsze otwory zmniejszają czułość i rozdzielczość, ale zwiększają zasięg.

Korzyści

Czujniki elektrochemiczne mają wiele zalet.

  • Może być specyficzny dla konkretnego gazu lub pary w zakresie części na milion. Stopień selektywności zależy jednak od typu czujnika, gazu docelowego i stężenia gazu, do którego wykrywania czujnik jest przeznaczony.
  • Wysoka powtarzalność i dokładność. Po skalibrowaniu do znanego stężenia, czujnik zapewnia dokładny i powtarzalny odczyt dla gazu docelowego.
  • Nie jest podatny na zatrucie innymi gazami, a obecność innych oparów z otoczenia nie skraca ani nie ogranicza żywotności czujnika.
  • Mniej kosztowne niż większość innych technologii wykrywania gazów, takich jak IR lub PID czy PID. Bardziej ekonomiczne są również czujniki elektrochemiczne.

Problemy z nadwrażliwością krzyżową

Czułość krzyżowa występuje wtedy, gdy gaz inny niż monitorowany / wykrywany może wpływać na odczyt z czujnika elektrochemicznego. Powoduje to, że elektroda w czujniku reaguje nawet wtedy, gdy gaz docelowy nie jest w rzeczywistości obecny, lub powoduje niedokładny odczyt i/lub alarm dla tego gazu. Wrażliwość krzyżowa może powodować kilka rodzajów niedokładnych odczytów w elektrochemicznych detektorach gazu. Mogą to być odczyty pozytywne (wskazujące na obecność gazu, mimo że w rzeczywistości go nie ma, lub wskazujące poziom tego gazu powyżej jego rzeczywistej wartości), negatywne (zmniejszona reakcja na gaz docelowy, sugerująca, że jest on nieobecny, podczas gdy jest obecny, lub odczyt sugerujący, że stężenie gazu docelowego jest niższe niż jest), lub też gaz zakłócający może powodować inhibicję.

Czynniki wpływające na żywotność czujnika elektrochemicznego

Istnieją trzy główne czynniki wpływające na żywotność czujnika, w tym temperatura, narażenie na bardzo wysokie stężenia gazów i wilgotność. Inne czynniki obejmują elektrody czujnika oraz ekstremalne wibracje i wstrząsy mechaniczne.

Skrajne temperatury mogą wpływać na trwałość czujnika. Producent podaje zakres temperatur roboczych dla urządzenia: zazwyczaj od -30˚C do +50˚C. Czujniki wysokiej jakości będą jednak w stanie wytrzymać chwilowe przekroczenia tych limitów. Krótkotrwałe (1-2 godziny) wystawienie czujników H2S lub CO na działanie temperatury 60-65˚C jest dopuszczalne, ale powtarzające się przypadki spowodują odparowanie elektrolitu, przesunięcie odczytu linii podstawowej (zera) i spowolnienie reakcji.

Narażenie na działanie bardzo wysokich stężeń gazów może również pogorszyć działanie czujnika. Elektrochemiczne czujniki są zazwyczaj testowane poprzez wystawienie ich na działanie nawet dziesięciokrotnie wyższych stężeń niż te, na które są zaprojektowane. Czujniki skonstruowane przy użyciu wysokiej jakości materiału katalizatora powinny być w stanie wytrzymać takie narażenia bez zmian w składzie chemicznym lub długotrwałej utraty wydajności. Czujniki z mniejszym obciążeniem katalizatora mogą ulec uszkodzeniu.

Najbardziej znaczący wpływ na żywotność czujnika ma wilgotność. Idealne warunki środowiskowe dla czujników elektrochemicznych to 20˚C i 60% RH (wilgotności względnej). Gdy wilgotność otoczenia wzrośnie powyżej 60% RH, woda zostanie wchłonięta do elektrolitu, powodując jego rozcieńczenie. W skrajnych przypadkach zawartość cieczy może wzrosnąć 2-3 krotnie, co może spowodować wyciek z korpusu czujnika, a następnie przez styki. Poniżej 60%RH woda w elektrolicie zacznie się odwadniać. Czas reakcji może ulec znacznemu wydłużeniu, ponieważ elektrolit ulega odwodnieniu. Elektrody czujników mogą w nietypowych warunkach zostać zatrute przez gazy zakłócające, które adsorbują się na katalizatorze lub wchodzą z nim w reakcję, tworząc produkty uboczne, które hamują działanie katalizatora.

Ekstremalne wibracje i wstrząsy mechaniczne mogą również uszkodzić czujniki poprzez pęknięcie spoin łączących platynowe elektrody, listwy łączące (lub druty w niektórych czujnikach) i styki.

Normalna" żywotność czujnika elektrochemicznego

Elektrochemiczne czujniki powszechnie występujących gazów, takich jak tlenek węgla czy siarkowodór, mają okres eksploatacji zwykle określany na 2-3 lata. W przypadku bardziej egzotycznych gazów, takich jak fluorowodór, trwałość czujnika może wynosić tylko 12-18 miesięcy. W idealnych warunkach (stabilna temperatura i wilgotność w zakresie 20˚C i 60% wilgotności względnej), bez obecności zanieczyszczeń, czujniki elektrochemiczne mogą pracować przez ponad 4000 dni (11 lat). Okresowe wystawienie na działanie gazu docelowego nie ogranicza trwałości tych maleńkich ogniw paliwowych: czujniki wysokiej jakości mają dużą ilość materiału katalitycznego i wytrzymałe przewodniki, które nie ulegają wyczerpaniu w wyniku reakcji.

Produkty

Ponieważ czujniki elektrochemiczne są bardziej ekonomiczne, Mamy w ofercie produkty przenośne oraz produkty stacjonarne które wykorzystują ten typ czujnika do wykrywania gazów.

Aby dowiedzieć się więcej, odwiedź stronę naszą stronę techniczną, aby uzyskać więcej informacji.

Jak długo wytrzyma mój czujnik gazu?

Detektory gazów są szeroko stosowane w wielu gałęziach przemysłu (m.in. w uzdatnianiu wody, przemyśle rafineryjnym, petrochemicznym, hutniczym i budowlanym ) do ochrony personelu i sprzętu przed niebezpiecznymi gazami i ich skutkami. Użytkownicy urządzeń przenośnych i stacjonarnych znają potencjalnie znaczące koszty związane z utrzymaniem bezpiecznej pracy przyrządów przez cały okres ich eksploatacji. Czujniki gazu służą do pomiaru stężenia interesujących nas analitów, takich jak CO (tlenek węgla), CO2 (dwutlenek węgla) lub NOx (tlenek azotu). W zastosowaniach przemysłowych najczęściej stosowane są dwa rodzaje czujników gazu: elektrochemiczne do gazów toksycznych i pomiaru tlenu oraz pelistorowe (lub katalityczne) do gazów palnych. W ostatnich latach wprowadzono na rynek zarówno Tlen i MPS (Molecular Property Spectrometer) pozwoliło na poprawę bezpieczeństwa.

Skąd mam wiedzieć, że mój czujnik uległ awarii?

W ciągu ostatnich kilku dekad powstało kilka patentów i technik stosowanych w detektorach gazu, które twierdzą, że są w stanie określić, kiedy czujnik elektrochemiczny uległ awarii. Większość z nich jednak tylko wnioskuje, że czujnik działa poprzez jakąś formę stymulacji elektrody i może dawać fałszywe poczucie bezpieczeństwa. Jedyną pewną metodą wykazania, że czujnik działa, jest zastosowanie gazu testowego i zmierzenie reakcji: test uderzeniowy lub pełna kalibracja.

Czujnik elektrochemiczny

Czujnikielektrochemiczne są najczęściej stosowane w trybie dyfuzyjnym, w którym gaz z otoczenia przedostaje się przez otwór w ściance komórki. Niektóre przyrządy wykorzystują pompę do dostarczania próbek powietrza lub gazu do czujnika. Aby zapobiec przedostawaniu się wody lub olejów do wnętrza komory, na otworze umieszcza się membranę z PTFE. Zakresy i czułości czujników mogą być zróżnicowane dzięki zastosowaniu otworów o różnych rozmiarach. Większe otwory zapewniają wyższą czułość i rozdzielczość, natomiast mniejsze otwory zmniejszają czułość i rozdzielczość, ale zwiększają zasięg.

Czynniki wpływające na żywotność czujnika elektrochemicznego

Istnieją trzy główne czynniki, które wpływają na żywotność czujnika, w tym temperatura, ekspozycja na ekstremalnie wysokie stężenia gazów i wilgotność. Inne czynniki obejmują elektrody czujnika oraz ekstremalne wibracje i wstrząsy mechaniczne.

Skrajne temperatury mogą wpływać na żywotność czujnika. Producent podaje zakres temperatur roboczych dla urządzenia: zazwyczaj od -30˚C do +50˚C. Czujniki wysokiej jakości będą jednak w stanie wytrzymać chwilowe przekroczenia tych limitów. Krótka (1-2 godziny) ekspozycja na temperaturę 60-65˚C w przypadku czujników H2S lub CO (na przykład) jest akceptowalna, ale powtarzające się incydenty spowodują odparowanie elektrolitu i przesunięcia w odczycie bazowym (zerowym) oraz spowolnienie reakcji.

Narażenie na działanie ekstremalnie wysokich stężeń gazu może również pogorszyć wydajność czujnika. Czujniki elektrochemiczne są zazwyczaj testowane poprzez wystawienie ich na działanie nawet dziesięciokrotnie wyższych stężeń niż te, na które zostały zaprojektowane. Czujniki skonstruowane przy użyciu wysokiej jakości materiału katalizatora powinny być w stanie wytrzymać takie narażenia bez zmian w składzie chemicznym lub długotrwałej utraty wydajności. Czujniki z mniejszym obciążeniem katalizatora mogą ulec uszkodzeniu.

Najbardziej znaczący wpływ na żywotność czujnika ma wilgotność. Idealne warunki środowiskowe dla czujników elektrochemicznych to 20˚C i 60% RH (wilgotności względnej). Gdy wilgotność otoczenia wzrasta powyżej 60% RH woda będzie absorbowana do elektrolitu powodując jego rozcieńczenie. W skrajnych przypadkach zawartość cieczy może wzrosnąć 2-3 krotnie, potencjalnie powodując wyciek z korpusu czujnika, a następnie przez styki. Poniżej 60%RH woda w elektrolicie zacznie się odwadniać. Czas odpowiedzi może ulec znacznemu wydłużeniu wraz z odwodnieniem elektrolitu. Elektrody czujników mogą w nietypowych warunkach zostać zatrute przez przeszkadzające gazy, które adsorbują się na katalizatorze lub reagują z nim tworząc produkty uboczne, które hamują działanie katalizatora.

Ekstremalne wibracje i wstrząsy mechaniczne mogą również uszkodzić czujniki poprzez pęknięcie spoin, które łączą ze sobą platynowe elektrody, paski łączące (lub druty w niektórych czujnikach) i styki.

Normalna" żywotność czujnika elektrochemicznego

Elektrochemiczne czujniki powszechnie występujących gazów, takich jak tlenek węgla czy siarkowodór, mają trwałość eksploatacyjną określaną zazwyczaj na 2-3 lata. W przypadku bardziej egzotycznych gazów, takich jak fluorowodór, żywotność czujnika może wynosić jedynie 12-18 miesięcy. W idealnych warunkach (stabilna temperatura i wilgotność w okolicach 20˚C i 60%RH), bez obecności zanieczyszczeń, czujniki elektrochemiczne mogą pracować ponad 4000 dni (11 lat). Okresowe wystawienie na działanie gazu docelowego nie ogranicza żywotności tych maleńkich ogniw paliwowych: wysokiej jakości czujniki posiadają dużą ilość materiału katalitycznego i wytrzymałe przewodniki, które nie ulegają wyczerpaniu w wyniku reakcji.

Czujnik pelistorowy

Czujnikipelistorowe składają się z dwóch dopasowanych cewek drucianych, z których każda jest osadzona w ceramicznej kulce. Przez cewki przepływa prąd, podgrzewając kulki do temperatury około 500˚C. Palny gaz spala się na kulce, a wytworzone dodatkowe ciepło powoduje wzrost rezystancji cewki, która jest mierzona przez urządzenie w celu wskazania stężenia gazu.

Czynniki wpływające na żywotność czujnika pellistorowego

Dwa główne czynniki, które wpływają na żywotność czujnika to ekspozycja na wysokie stężenie gazu oraz poising lub inhibicja czujnika. Ekstremalne wstrząsy mechaniczne lub wibracje mogą również wpłynąć na żywotność czujnika. Zdolność powierzchni katalizatora do utleniania gazu zmniejsza się, gdy został on zatruty lub zahamowany. Żywotność czujnika przekraczająca dziesięć lat jest powszechna w zastosowaniach, w których nie występują związki hamujące lub zatruwające. Pellistory o większej mocy mają większą aktywność katalityczną i są mniej podatne na zatrucie. Bardziej porowate kulki również mają większą aktywność katalityczną, ponieważ ich powierzchnia jest większa. Umiejętne wstępne projektowanie i wyrafinowane procesy produkcyjne zapewniają maksymalną porowatość perełek. Narażenie na wysokie stężenie gazu (>100%LEL) może również pogorszyć działanie czujnika i spowodować przesunięcie sygnału zerowego/linii bazowej. Niekompletne spalanie powoduje osadzanie się węgla na kulce: węgiel "rośnie" w porach i powoduje uszkodzenia mechaniczne. Węgiel może jednak z czasem ulec wypaleniu, odsłaniając miejsca katalityczne. Ekstremalne wstrząsy mechaniczne lub wibracje mogą w rzadkich przypadkach spowodować pęknięcie cewek pelistora. Problem ten jest bardziej powszechny w przenośnych niż stacjonarnych detektorach gazu, ponieważ są one bardziej narażone na upuszczenie, a stosowane pelistory są mniejszej mocy (aby zmaksymalizować żywotność baterii) i dlatego używają bardziej delikatnych cewek z cieńszego drutu.

Skąd mam wiedzieć, że mój czujnik uległ awarii?

Zatruty pelistor pozostaje sprawny elektrycznie, ale może nie reagować na gaz. W związku z tym detektor gazu i system sterowania mogą wydawać się być w dobrym stanie, ale wyciek gazu palnego może nie zostać wykryty.

Czujnik tlenu

Ikona Long Life 02

Nasz nowy bezołowiowy, trwały czujnik tlenu nie posiada ściśniętych pasm ołowiu, przez które musi przenikać elektrolit, co pozwala na stosowanie gęstego elektrolitu, który oznacza brak wycieków, korozji spowodowanej wyciekiem i większe bezpieczeństwo. Dodatkowa wytrzymałość tego czujnika pozwala nam zaoferować 5-letnią gwarancję.

Czujniki tlenu odługiej żywotności mają 5-letni okres eksploatacji, charakteryzują się krótszym czasem przestojów, niższymi kosztami eksploatacji i mniejszym oddziaływaniem na środowisko. Precyzyjnie mierzą tlen w szerokim zakresie stężeń od 0 do 30% objętości i stanowią nową generację czujników do wykrywania gazu O2.

Czujnik MPS

MPS Czujnik oferuje zaawansowaną technologię, która eliminuje konieczność kalibracji i zapewnia "prawdziwy poziom LEL (dolnej granicy wybuchowości)" przy odczycie dla piętnastu gazów palnych, ale może wykrywać wszystkie gazy palne w środowisku wielogatunkowym, co skutkuje niższymi kosztami bieżącej konserwacji i mniejszą interakcją z urządzeniem. Zmniejsza to ryzyko dla personelu i pozwala uniknąć kosztownych przestojów. Czujnik MPS jest również odporny na zatrucie czujnika.  

Awaria czujnika spowodowana zatruciem może być frustrującym i kosztownym doświadczeniem. Technologia zastosowana w czujniku MPS™nie ulega wpływowi zanieczyszczeń znajdujących się w środowisku. Procesy, w których występują zanieczyszczenia, mają teraz dostęp do rozwiązania, które działa niezawodnie i jest wyposażone w konstrukcję zabezpieczającą przed awarią, która ostrzega operatora, zapewniając spokój personelowi i zasobom znajdującym się w niebezpiecznym środowisku. Obecnie możliwe jest wykrywanie wielu gazów palnych, nawet w trudnych warunkach środowiskowych, przy użyciu tylko jednego czujnika, który nie wymaga kalibracji i ma przewidywany okres eksploatacji wynoszący co najmniej 5 lat.