Przegląd branży: Waste to Energy

Przemysł przetwarzania odpadów na energię wykorzystuje kilka metod przetwarzania odpadów. Stałe odpady komunalne i przemysłowe są przetwarzane na energię elektryczną, a czasami na ciepło dla przetwórstwa przemysłowego i systemów ciepłowniczych. Głównym procesem jest oczywiście spalanie, ale pośrednie etapy pirolizy, gazyfikacji i fermentacji beztlenowej są czasami wykorzystywane do przekształcenia odpadów w użyteczne produkty uboczne, które są następnie wykorzystywane do generowania energii przez turbiny lub inne urządzenia. Technologia ta zyskuje szerokie uznanie na całym świecie jako bardziej ekologiczna i czystsza forma energii niż tradycyjne spalanie paliw kopalnych oraz jako sposób na zmniejszenie produkcji odpadów.

Rodzaje przetwarzania odpadów na energię

Spalanie

Spalanie jest procesem przetwarzania odpadów, który polega na spalaniu bogatych w energię substancji zawartych w materiałach odpadowych, zazwyczaj w wysokiej temperaturze około 1000 stopni C. Przemysłowe instalacje do spalania odpadów są powszechnie określane jako instalacje do pozyskiwania energii z odpadów i często są to duże elektrownie. Spalanie i inne wysokotemperaturowe systemy przetwarzania odpadów są często określane jako "obróbka termiczna". Podczas tego procesu odpady są przekształcane w ciepło i parę, które mogą być wykorzystane do napędzania turbiny w celu wytworzenia energii elektrycznej. Wydajność tej metody wynosi obecnie ok. 15-29%, choć ma ona potencjał poprawy.

Piroliza

Piroliza to inny proces przetwarzania odpadów, w którym rozkład stałych odpadów węglowodorowych, zwykle tworzyw sztucznych, odbywa się w wysokiej temperaturze bez obecności tlenu, w atmosferze gazów obojętnych. Obróbka ta jest zwykle prowadzona w temperaturze 500 °C lub wyższej, co zapewnia wystarczającą ilość ciepła do rozłożenia długołańcuchowych cząsteczek, w tym biopolimerów, na prostsze węglowodory o niższej masie.

Gazyfikacja

Proces ten jest stosowany do wytwarzania paliw gazowych z cięższych paliw oraz z odpadów zawierających materiał palny. W tym procesie substancje węglowe są w wysokiej temperaturze przekształcane w dwutlenek węgla (CO2), tlenek węgla (CO) i niewielką ilość wodoru. W tym procesie powstaje gaz, który jest dobrym źródłem energii użytkowej. Gaz ten może być następnie wykorzystany do produkcji energii elektrycznej i ciepła.

Zgazowanie łukiem plazmowym

W tym procesie palnik plazmowy jest używany do jonizacji materiału bogatego w energię. Powstaje syngaz, który może być następnie wykorzystany do produkcji nawozu lub wytworzenia energii elektrycznej. Metoda ta jest bardziej techniką utylizacji odpadów niż poważnym sposobem generowania gazu, często zużywa tyle energii, ile może dostarczyć produkowany przez nią gaz.

Przyczyny przekształcania odpadów w energię

Ponieważ technologia ta zyskuje szerokie uznanie na świecie w odniesieniu do produkcji odpadów i zapotrzebowania na czystą energię.

  • Unikanie emisji metanu ze składowisk odpadów
  • Kompensuje emisję gazów cieplarnianych (GHG) z produkcji energii elektrycznej z paliw kopalnych
  • Odzyskuje i przetwarza cenne zasoby, takie jak metale
  • Wytwarza czystą, niezawodną energię i parę z obciążeniem podstawowym
  • Wykorzystuje mniej gruntów na megawat niż inne źródła energii odnawialnej
  • Trwałe i stabilne źródło paliwa odnawialnego (w porównaniu do wiatru i słońca)
  • Niszczy odpady chemiczne
  • Rezultatem są niskie poziomy emisji, zwykle znacznie poniżej dozwolonych poziomów
  • Katalitycznie niszczy tlenki azotu (NOx), dioksyny i furany za pomocą selektywnej redukcji katalitycznej (SCR)

Jakie są zagrożenia gazowe?

Istnieje wiele procesów przekształcania odpadów w energię, należą do nich, biogazownie, wykorzystanie odpadów, basen z odciekami, spalanie i odzysk ciepła. Wszystkie te procesy stwarzają zagrożenia gazowe dla osób pracujących w tych środowiskach.

W biogazowni wytwarzany jest biogaz. Powstaje on, gdy materiały organiczne, takie jak odpady rolnicze i spożywcze, są rozkładane przez bakterie w środowisku pozbawionym tlenu. Jest to proces zwany fermentacją beztlenową. Po wychwyceniu biogazu można go wykorzystać do produkcji ciepła i energii elektrycznej dla silników, mikroturbin i ogniw paliwowych. Oczywiście biogaz ma wysoką zawartość metanu, jak również znaczną zawartość siarkowodoru (H2S), a to generuje wiele poważnych zagrożeń gazowych. (Więcej informacji na temat biogazu można znaleźć na naszym blogu). Istnieje podwyższone ryzyko pożaru i eksplozji, zagrożeń związanych z ograniczoną przestrzenią, uduszenia, wyczerpania tlenu i zatrucia gazem, zwykleH2Slub amoniakiem (NH3). Pracownicy w biogazowni muszą mieć osobiste detektory gazu, które wykrywają i monitorują gaz palny, tlen i gazy toksyczne, takie jakH2Si CO.

W zbiornikach na śmieci często można znaleźć gaz palny metan (CH4) oraz gazy toksyczneH2S, CO i NH3. Dzieje się tak dlatego, że bunkry na śmieci są budowane kilka metrów pod ziemią, a detektory gazu są zwykle montowane wysoko w pomieszczeniach, co utrudnia ich serwisowanie i kalibrację. W wielu przypadkach praktycznym rozwiązaniem jest system próbkowania, ponieważ próbki powietrza można przynieść w dogodne miejsce i dokonać pomiaru.

Odciek to ciecz, która odpływa (wypłukuje) z obszaru, w którym gromadzone są odpady, przy czym baseny z odciekiem stanowią szereg zagrożeń gazowych. Obejmują one ryzyko wystąpienia gazu palnego (zagrożenie wybuchem),H2S(trucizna, korozja), amoniaku (trucizna, korozja), CO (trucizna) oraz niekorzystnego poziomu tlenu (uduszenie). Basen odcieków i przejścia prowadzące do basenu odcieków wymagające monitorowania CH4,H2S, CO, NH3, tlenu (O2) iCO2. Wzdłuż dróg prowadzących do basenu odciekowego należy umieścić różne detektory gazowe, z wyjściem podłączonym do zewnętrznych central sterujących.

Spalanie i odzyskiwanie ciepła wymaga wykrywania O2 oraz toksycznych gazów: dwutlenku siarki (SO2) i CO. Wszystkie te gazy stanowią zagrożenie dla osób pracujących w pomieszczeniach kotłowni.

Innym procesem, który jest klasyfikowany jako zagrożenie gazowe, jest płuczka powietrza wylotowego. Proces ten jest niebezpieczny, ponieważ spaliny ze spalania są wysoce toksyczne. Zawierają one bowiem takie zanieczyszczenia jak dwutlenek azotu (NO2), SO2, chlorowodór (HCL) i dioksyny. NO2 i SO2 są głównymi gazami cieplarnianymi, natomiast HCL wszystkie wymienione tu rodzaje gazów są szkodliwe dla zdrowia człowieka.

Aby przeczytać więcej o branży waste to energy, odwiedź naszą stronę branżową.

Co jest przyczyną pożarów węglowodorów?  

Pożary węglowodorowe powstają w wyniku spalania paliw zawierających węgiel w tlenie lub powietrzu. Większość paliw zawiera znaczne ilości węgla, w tym papier, benzyna i metan - przykłady paliw stałych, ciekłych i gazowych - stąd pożary węglowodorowe.

Aby istniało zagrożenie wybuchem, w powietrzu musi znajdować się co najmniej 4,4% metanu lub 1,7% propanu, ale w przypadku rozpuszczalników już 0,8-1,0% wypieranego powietrza może wystarczyć do stworzenia mieszanki paliwowo-powietrznej, która wybuchnie gwałtownie w kontakcie z jakąkolwiek iskrą.

Zagrożenia związane z pożarami węglowodorów

Pożary węglowodorów są uważane za bardzo niebezpieczne w porównaniu z pożarami, które zapaliły się w wyniku działania prostych materiałów palnych, ponieważ pożary te mogą płonąć na większą skalę, a także mogą wywołać eksplozję, jeśli uwolnionych płynów nie da się kontrolować lub opanować. Dlatego pożary te stanowią niebezpieczne zagrożenie dla każdego, kto pracuje w obszarze wysokiego ryzyka; zagrożenia te obejmują zagrożenia związane z energią, takie jak spalanie, spopielanie otaczających przedmiotów. Zagrożenie to wynika z tego, że pożary mogą szybko rosnąć, a ciepło może być przewodzone, przekształcane i wypromieniowywane na nowe źródła paliwa, powodując pożary wtórne.

Toksyczne Zagrożenia mogą być obecne w produktach spalaniana przykład na przykład, tlenek węgla (CO), cyjanowodór (HCN), kwas chlorowodorowy (HCL), azot ditlenek azotu (NO2) oraz różne wielopierścieniowych węglowodorów aromatycznych (PAH) niebezpieczne dla osób pracujących w tych środowiskach. CO wykorzystuje the tlen który jest używany do transportu . czerwonych krwinek wokół ciałaprzynajmniej tymczasowo, upośledzając zdolność organizmu do transportowania tlenu z płuc do komórek, które go potrzebują. HCN przyczynia się do tego problemu poprzez hamowanie enzymu, który mówi czerwonym krwinkom, aby wypuściły tlen, który mają tam, gdzie jest potrzebny - co jeszcze bardziej hamuje zdolność organizmu do dostarczenia tlenu do komórek, które go potrzebują. HCL jest ogólnąy kwaśnym związkiem, który powstaje w wyniku przegrzanieprzegrzanych kable. Jest to szkodliwe dla organizmu, jeśli spożycie ponieważ wpływa na na wyściółkę jamy ustnej, nosa, gardła, dróg oddechowych, oczu i płuc. NO2 jest powstaje podczas spalaniu w wysokiej temperaturze i może powodować uszkodzenia dróg oddechowych człowieka i zwiększać jego podatność na a w niektórych przypadkach prowadzić do ataków astmy. WWA oddziałują na organizm przez dłuższy okres czasuprzy czym w niektórych przypadkach prowadzić do nowotworów i innych chorób.

Możemy sprawdzić odpowiednie poziomy zdrowotne przyjęte jako limity bezpieczeństwa w miejscu pracy dla zdrowych pracowników w Europie oraz dopuszczalne limity narażenia w Stanach Zjednoczonych. Daje nam to 15-minutową średnią ważoną stężenia w czasie oraz 8-godzinną 8-godzinne średnie stężenie ważone czasem.

W przypadku gazów są to:

Gaz STEL (15-minutowa TWA) LTEL (8-godzinna TWA) LTEL (8hr TWA)
CO 100ppm 20ppm 50ppm
NO2 1ppm 0,5ppm 5 Limit sufitowy
HCL 1ppm 5ppm 5 Limit sufitowy
HCN 0,9 ppm 4,5ppm 10ppm

Różne stężenia odpowiadają różnym zagrożeniom związanym z gazami, przy czym niższe liczby są wymagane w bardziej niebezpiecznych sytuacjach. Na szczęście UE opracowała to wszystko za nas i włączyła do normy EH40.

Sposoby ochrony siebie

Możemy podjąć kroki, które zapewnią, że nie będziemy cierpieć z powodu narażenia na pożary lub ich niepożądane produkty spalania. Po pierwsze, oczywiście, możemy przestrzegać wszystkich środków bezpieczeństwa pożarowego, zgodnie z prawem. Po drugie, możemy przyjąć postawę proaktywną i nie dopuszczać do gromadzenia się potencjalnych źródeł paliwa. Wreszcie, możemy wykrywać i ostrzegać o obecności produktów spalania za pomocą odpowiednich urządzeń do wykrywania gazów.

Rozwiązania produktowe Crowcon

Crowcon oferuje szereg urządzeń zdolnych do wykrywania paliw i produktów spalania opisanych powyżej. Nasz PID wykrywają paliwa stałe i ciekłe w powietrzu, w postaci węglowodorów na cząstkach pyłu lub oparów rozpuszczalników. Urządzenia te obejmują nasz Gaz-Pro przenośny. Gazy mogą być wykrywane przez nasz Gasman pojedynczy gaz, T3 wielogazowe i Gas-Pro wielogazowe pompowane produkty przenośne oraz nasz Xgard, Xgard Bright i Xgard IQ z których każdy ma możliwość wykrywania wszystkich wymienionych gazów.