Dlaczego przy produkcji cementu emitowany jest gaz?

Jak produkuje się cement?

Beton jest jednym z najważniejszych i najczęściej stosowanych materiałów w światowym budownictwie. Beton jest szeroko stosowany w budowie zarówno budynków mieszkalnych, jak i komercyjnych, mostów, dróg i innych.

Kluczowym składnikiem betonu jest cement, substancja wiążąca, która spaja wszystkie pozostałe składniki betonu (na ogół żwir i piasek). Każdego roku na świecie zużywa się ponad 4 miliardy ton cementuilustrując ogromną skalę globalnego przemysłu budowlanego.

Wytwarzanie cementu to złożony proces, rozpoczynający się od surowców, takich jak wapień i glina, które umieszczane są w dużych piecach o długości do 120 m, które są podgrzewane do temperatury 1500°C. Podczas podgrzewania w tak wysokiej temperaturze, reakcje chemiczne powodują łączenie się tych surowców, tworząc cement.

Jak wiele procesów przemysłowych, produkcja cementu nie jest pozbawiona zagrożeń. Produkcja cementu może potencjalnie uwalniać gazy, które są szkodliwe dla pracowników, społeczności lokalnych i środowiska.

Jakie zagrożenia gazowe występują przy produkcji cementu?

Gazy emitowane zazwyczaj w cementowniach to dwutlenek węgla (CO2), tlenki azotu (NOx) i dwutlenek siarki (SO2), przy czymCO2 stanowi większość emisji.

Dwutlenek siarki obecny w cementowniach pochodzi z reguły z surowców, które są wykorzystywane w procesie produkcji cementu. Głównym zagrożeniem gazowym, na które należy zwrócić uwagę jest dwutlenek węgla, przy czym przemysł cementowy odpowiada za ogromne 8% światowej emisjiCO2 ..

Większość emisji dwutlenku węgla powstaje w wyniku procesu chemicznego zwanego kalcynacją. Ma to miejsce, gdy wapień jest podgrzewany w piecach, co powoduje jego rozpad naCO2 i tlenek wapnia. Innym głównym źródłemCO2 jest spalanie paliw kopalnych. Piece używane w produkcji cementu są zazwyczaj ogrzewane przy użyciu gazu ziemnego lub węgla, co dodaje kolejne źródło dwutlenku węgla do tego, które jest generowane przez kalcynację.

Wykrywanie gazu w produkcji cementu

W przemyśle, który jest dużym producentem niebezpiecznych gazów, wykrywanie jest kluczowe. Crowcon oferuje szeroki zakres zarówno stałych jak i przenośnych rozwiązań detekcji.

Xgard Bright to nasz adresowalny stacjonarny detektor gazu z wyświetlaczem, zapewniający łatwość obsługi i niższe koszty instalacji. Xgard Bright posiada opcje wykrywania dwutlenku węgla i dwutlenku siarki. i dwutlenku siarkigazów, które stanowią największe zagrożenie podczas mieszania cementu.

Wytrzymała, przenośna i lekka konstrukcja Gasmanwytrzymała, a jednocześnie przenośna i lekka konstrukcja sprawiają, że jest to idealne rozwiązanie jednogazowe do produkcji cementu, dostępne w bezpiecznej wersjiCO2 oferującej pomiar 0-5% dwutlenku węgla.

W celu zwiększenia ochrony Gas-Pro detektor wielogazowy może być wyposażony w maksymalnie 5 czujników, w tym wszystkie najczęściej stosowane w produkcji cementu, CO2, SO2 i NO2.

Jak analizatory spalin wpisują się w plany rządu brytyjskiego dotyczące dekarbonizacji?

Kiedy rząd Wielkiej Brytanii ogłosił w marcu 2021 roku, że 1 miliard funtów z już przydzielonych funduszy zostanie przeznaczony na projekty mające na celu redukcję gazów cieplarnianychsektor energetyczny siedział z założonymi rękami i słuchał. I nie bez powodu - jak się okazało, 171 milionów funtów zostanie przeznaczonych na plan dekarbonizacji przemysłu który koncentruje się na wytwarzaniu gazu wodorowego oraz technologiach wychwytywania i składowania dwutlenku węgla.

Wiadomości te wykraczają jednak poza produkcję zielonej energii i dotyczą domowych i przemysłowych zastosowań HVAC. W geście, który odzwierciedla rolę, jaką inżynierowie i producenci HVAC mogą odegrać w zrównoważonym rozwoju, ponad 900 milionów funtów zostanie wydanych na modernizację budynków publicznych, takich jak szkoły i szpitale, za pomocą bardziej ekologicznego wyposażenia, takiego jak pompy ciepła, panele słoneczne i izolacja, co pozwoli na zmniejszenie emisji dwutlenku węgla (CO2).

Co jednak z indywidualnymi gospodarstwami domowymi i jednostkami biznesowymi, które codziennie odwiedza wielu pracowników działów HVAC? To pytanie zadało sobie kilku komentatorów i wydaje się, że - przynajmniej na razie - główny nacisk na ograniczenie wpływu na środowisko prywatnych systemów grzewczych i wodno-kanalizacyjnych będzie nadal pochodził od producentów, inżynierów i instalatorów pracujących w sektorze HVAC. 

A to już spora odpowiedzialność. Według Office for National Statisticsw 2020 r. w Wielkiej Brytanii było około 27,8 mln gospodarstw domowych; statystyki rządowe z 2019 r. wskazują, że około 15% emisji gazów cieplarnianych w Wielkiej Brytanii (w szczególności dwutlenku węgla, metanu, gazów F i podtlenku azotu) pochodziło z tych właśnie budynków mieszkalnych. To spora ilość nadmiaru CO2 do uprzątnięcia.

Co zatem mogą zrobić pracownicy HVAC, aby pomóc w dekarbonizacji?

Jeśli dysponują odpowiednim sprzętem, inżynierowie ogrzewania i hydraulicy mogą pomóc zmniejszyć tę liczbę o 15%. Na przykład, są oni dobrze przygotowani do pomiaru CO2 i innych gazów cieplarnianych: podczas gdy większość analizatorów spalin mierzy CO2, niektóre mogą również mierzyć NO/NOx (np. Sprint Pro 5 i Sprint Pro 6).

Analizator spalin dający szeroki zakres łatwych do odczytania i interpretacji pomiarów pozwala inżynierom stwierdzić, kiedy urządzenia nie działają prawidłowo i czy konieczna jest modernizacja (np. na pompę ciepła dotowaną przez rząd). dotowaną przez rząd pompę ciepła) może być konieczna.

Jest to pilna potrzeba: wiele gospodarstw domowych korzysta ze sprzętu AGD tak długo, jak to możliwe, mimo że starsze urządzenia są zwykle znacznie mniej przyjazne dla środowiska niż ich nowoczesne odpowiedniki. Jest to wystarczająco szkodliwe dla środowiska, ale korzystanie z wadliwie działającego starszego urządzenia to najgorszy z możliwych rezultatów. 

Dobry analizator spalin dostarczy odczytów niezbędnych do przekonania wielu klientów do bardziej efektywnej dekarbonizacji ich domów lub firm. Umożliwi on również inżynierowi usunięcie wielu problemów w bardziej nowoczesnych i wydajnych urządzeniach, przywracając je do pierwotnych standardów działania i ponownie chroniąc naszą planetę. 

Pomoc w osiągnięciu zerowego bilansu netto

Pod koniec 2021 r. rząd Wielkiej Brytanii przedstawił swój plan osiągnięcia zerowej emisji netto do roku 2050, a każdy inżynier ogrzewania w kraju ma w tym projekcie do odegrania ważną rolę. Chociaż sprawdzanie gazów spalinowych może być codziennością dla wielu inżynierów HVAC, faktem jest, że emisje pochodzące z gospodarstw domowych i przedsiębiorstw stanowią znaczną część emisji CO2 i innych niebezpiecznych gazów. Choć przekonanie pojedynczego gospodarstwa domowego do działania w oparciu o niższą emisję dwutlenku węgla może nie wydawać się wielkim przedsięwzięciem, jego wpływ może być bardzo znaczący, jeśli działania te zostaną rozszerzone na cały kraj.

Jak długo wytrzyma mój czujnik gazu?

Detektory gazów są szeroko stosowane w wielu gałęziach przemysłu (m.in. w uzdatnianiu wody, przemyśle rafineryjnym, petrochemicznym, hutniczym i budowlanym ) do ochrony personelu i sprzętu przed niebezpiecznymi gazami i ich skutkami. Użytkownicy urządzeń przenośnych i stacjonarnych znają potencjalnie znaczące koszty związane z utrzymaniem bezpiecznej pracy przyrządów przez cały okres ich eksploatacji. Czujniki gazu służą do pomiaru stężenia interesujących nas analitów, takich jak CO (tlenek węgla), CO2 (dwutlenek węgla) lub NOx (tlenek azotu). W zastosowaniach przemysłowych najczęściej stosowane są dwa rodzaje czujników gazu: elektrochemiczne do gazów toksycznych i pomiaru tlenu oraz pelistorowe (lub katalityczne) do gazów palnych. W ostatnich latach wprowadzono na rynek zarówno Tlen i MPS (Molecular Property Spectrometer) pozwoliło na poprawę bezpieczeństwa.

Skąd mam wiedzieć, że mój czujnik uległ awarii?

W ciągu ostatnich kilku dekad powstało kilka patentów i technik stosowanych w detektorach gazu, które twierdzą, że są w stanie określić, kiedy czujnik elektrochemiczny uległ awarii. Większość z nich jednak tylko wnioskuje, że czujnik działa poprzez jakąś formę stymulacji elektrody i może dawać fałszywe poczucie bezpieczeństwa. Jedyną pewną metodą wykazania, że czujnik działa, jest zastosowanie gazu testowego i zmierzenie reakcji: test uderzeniowy lub pełna kalibracja.

Czujnik elektrochemiczny

Czujnikielektrochemiczne są najczęściej stosowane w trybie dyfuzyjnym, w którym gaz z otoczenia przedostaje się przez otwór w ściance komórki. Niektóre przyrządy wykorzystują pompę do dostarczania próbek powietrza lub gazu do czujnika. Aby zapobiec przedostawaniu się wody lub olejów do wnętrza komory, na otworze umieszcza się membranę z PTFE. Zakresy i czułości czujników mogą być zróżnicowane dzięki zastosowaniu otworów o różnych rozmiarach. Większe otwory zapewniają wyższą czułość i rozdzielczość, natomiast mniejsze otwory zmniejszają czułość i rozdzielczość, ale zwiększają zasięg.

Czynniki wpływające na żywotność czujnika elektrochemicznego

Istnieją trzy główne czynniki, które wpływają na żywotność czujnika, w tym temperatura, ekspozycja na ekstremalnie wysokie stężenia gazów i wilgotność. Inne czynniki obejmują elektrody czujnika oraz ekstremalne wibracje i wstrząsy mechaniczne.

Skrajne temperatury mogą wpływać na żywotność czujnika. Producent podaje zakres temperatur roboczych dla urządzenia: zazwyczaj od -30˚C do +50˚C. Czujniki wysokiej jakości będą jednak w stanie wytrzymać chwilowe przekroczenia tych limitów. Krótka (1-2 godziny) ekspozycja na temperaturę 60-65˚C w przypadku czujników H2S lub CO (na przykład) jest akceptowalna, ale powtarzające się incydenty spowodują odparowanie elektrolitu i przesunięcia w odczycie bazowym (zerowym) oraz spowolnienie reakcji.

Narażenie na działanie ekstremalnie wysokich stężeń gazu może również pogorszyć wydajność czujnika. Czujniki elektrochemiczne są zazwyczaj testowane poprzez wystawienie ich na działanie nawet dziesięciokrotnie wyższych stężeń niż te, na które zostały zaprojektowane. Czujniki skonstruowane przy użyciu wysokiej jakości materiału katalizatora powinny być w stanie wytrzymać takie narażenia bez zmian w składzie chemicznym lub długotrwałej utraty wydajności. Czujniki z mniejszym obciążeniem katalizatora mogą ulec uszkodzeniu.

Najbardziej znaczący wpływ na żywotność czujnika ma wilgotność. Idealne warunki środowiskowe dla czujników elektrochemicznych to 20˚C i 60% RH (wilgotności względnej). Gdy wilgotność otoczenia wzrasta powyżej 60% RH woda będzie absorbowana do elektrolitu powodując jego rozcieńczenie. W skrajnych przypadkach zawartość cieczy może wzrosnąć 2-3 krotnie, potencjalnie powodując wyciek z korpusu czujnika, a następnie przez styki. Poniżej 60%RH woda w elektrolicie zacznie się odwadniać. Czas odpowiedzi może ulec znacznemu wydłużeniu wraz z odwodnieniem elektrolitu. Elektrody czujników mogą w nietypowych warunkach zostać zatrute przez przeszkadzające gazy, które adsorbują się na katalizatorze lub reagują z nim tworząc produkty uboczne, które hamują działanie katalizatora.

Ekstremalne wibracje i wstrząsy mechaniczne mogą również uszkodzić czujniki poprzez pęknięcie spoin, które łączą ze sobą platynowe elektrody, paski łączące (lub druty w niektórych czujnikach) i styki.

Normalna" żywotność czujnika elektrochemicznego

Elektrochemiczne czujniki powszechnie występujących gazów, takich jak tlenek węgla czy siarkowodór, mają trwałość eksploatacyjną określaną zazwyczaj na 2-3 lata. W przypadku bardziej egzotycznych gazów, takich jak fluorowodór, żywotność czujnika może wynosić jedynie 12-18 miesięcy. W idealnych warunkach (stabilna temperatura i wilgotność w okolicach 20˚C i 60%RH), bez obecności zanieczyszczeń, czujniki elektrochemiczne mogą pracować ponad 4000 dni (11 lat). Okresowe wystawienie na działanie gazu docelowego nie ogranicza żywotności tych maleńkich ogniw paliwowych: wysokiej jakości czujniki posiadają dużą ilość materiału katalitycznego i wytrzymałe przewodniki, które nie ulegają wyczerpaniu w wyniku reakcji.

Czujnik pelistorowy

Czujnikipelistorowe składają się z dwóch dopasowanych cewek drucianych, z których każda jest osadzona w ceramicznej kulce. Przez cewki przepływa prąd, podgrzewając kulki do temperatury około 500˚C. Palny gaz spala się na kulce, a wytworzone dodatkowe ciepło powoduje wzrost rezystancji cewki, która jest mierzona przez urządzenie w celu wskazania stężenia gazu.

Czynniki wpływające na żywotność czujnika pellistorowego

Dwa główne czynniki, które wpływają na żywotność czujnika to ekspozycja na wysokie stężenie gazu oraz poising lub inhibicja czujnika. Ekstremalne wstrząsy mechaniczne lub wibracje mogą również wpłynąć na żywotność czujnika. Zdolność powierzchni katalizatora do utleniania gazu zmniejsza się, gdy został on zatruty lub zahamowany. Żywotność czujnika przekraczająca dziesięć lat jest powszechna w zastosowaniach, w których nie występują związki hamujące lub zatruwające. Pellistory o większej mocy mają większą aktywność katalityczną i są mniej podatne na zatrucie. Bardziej porowate kulki również mają większą aktywność katalityczną, ponieważ ich powierzchnia jest większa. Umiejętne wstępne projektowanie i wyrafinowane procesy produkcyjne zapewniają maksymalną porowatość perełek. Narażenie na wysokie stężenie gazu (>100%LEL) może również pogorszyć działanie czujnika i spowodować przesunięcie sygnału zerowego/linii bazowej. Niekompletne spalanie powoduje osadzanie się węgla na kulce: węgiel "rośnie" w porach i powoduje uszkodzenia mechaniczne. Węgiel może jednak z czasem ulec wypaleniu, odsłaniając miejsca katalityczne. Ekstremalne wstrząsy mechaniczne lub wibracje mogą w rzadkich przypadkach spowodować pęknięcie cewek pelistora. Problem ten jest bardziej powszechny w przenośnych niż stacjonarnych detektorach gazu, ponieważ są one bardziej narażone na upuszczenie, a stosowane pelistory są mniejszej mocy (aby zmaksymalizować żywotność baterii) i dlatego używają bardziej delikatnych cewek z cieńszego drutu.

Skąd mam wiedzieć, że mój czujnik uległ awarii?

Zatruty pelistor pozostaje sprawny elektrycznie, ale może nie reagować na gaz. W związku z tym detektor gazu i system sterowania mogą wydawać się być w dobrym stanie, ale wyciek gazu palnego może nie zostać wykryty.

Czujnik tlenu

Ikona Long Life 02

Nasz nowy bezołowiowy, trwały czujnik tlenu nie posiada ściśniętych pasm ołowiu, przez które musi przenikać elektrolit, co pozwala na stosowanie gęstego elektrolitu, który oznacza brak wycieków, korozji spowodowanej wyciekiem i większe bezpieczeństwo. Dodatkowa wytrzymałość tego czujnika pozwala nam zaoferować 5-letnią gwarancję.

Czujniki tlenu odługiej żywotności mają 5-letni okres eksploatacji, charakteryzują się krótszym czasem przestojów, niższymi kosztami eksploatacji i mniejszym oddziaływaniem na środowisko. Precyzyjnie mierzą tlen w szerokim zakresie stężeń od 0 do 30% objętości i stanowią nową generację czujników do wykrywania gazu O2.

Czujnik MPS

MPS Czujnik oferuje zaawansowaną technologię, która eliminuje konieczność kalibracji i zapewnia "prawdziwy poziom LEL (dolnej granicy wybuchowości)" przy odczycie dla piętnastu gazów palnych, ale może wykrywać wszystkie gazy palne w środowisku wielogatunkowym, co skutkuje niższymi kosztami bieżącej konserwacji i mniejszą interakcją z urządzeniem. Zmniejsza to ryzyko dla personelu i pozwala uniknąć kosztownych przestojów. Czujnik MPS jest również odporny na zatrucie czujnika.  

Awaria czujnika spowodowana zatruciem może być frustrującym i kosztownym doświadczeniem. Technologia zastosowana w czujniku MPS™nie ulega wpływowi zanieczyszczeń znajdujących się w środowisku. Procesy, w których występują zanieczyszczenia, mają teraz dostęp do rozwiązania, które działa niezawodnie i jest wyposażone w konstrukcję zabezpieczającą przed awarią, która ostrzega operatora, zapewniając spokój personelowi i zasobom znajdującym się w niebezpiecznym środowisku. Obecnie możliwe jest wykrywanie wielu gazów palnych, nawet w trudnych warunkach środowiskowych, przy użyciu tylko jednego czujnika, który nie wymaga kalibracji i ma przewidywany okres eksploatacji wynoszący co najmniej 5 lat.

Dlaczego ważne jest aby mierzyć tlenek azotu (NOx)?

W UE i Wielkiej Brytanii jest obecnie obowiązkowe, aby wszystkie nowe domowe produkty grzewcze i hydrauliczne (o mocy do 400 kw) spełniały maksymalne poziomy emisji tlenków azotu (NOx). Jest to zgodne z wieloma międzynarodowymi regulacjami: Emisje NOx są kontrolowane przez prawo lub regulacje w wielu krajach (w tym USA, Kanada, Australia i Singapur), a te mogą się różnić w zależności od sektora (morskie i motoryzacyjne mogą mieć swoje własne specyficzne kodeksy i limity, na przykład).

Regulacja NOx jest konieczna, ponieważ gaz ten jest główną substancją zanieczyszczającą, związaną z tysiącami zgonów na całym świecie z powodu jego wpływu - zarówno bezpośredniego, jak i pośredniego - na zdrowie ludzkie. Powiązano go z astmą u dzieci, zapaleniem płuc i szeregiem innych zaburzeń układu oddechowego, a także z uszkodzeniami układu krążenia. NOx jest niebezpieczny dla zwierząt, roślin i ekosystemów, a także jest głównym składnikiem kwaśnych deszczy i smogu.

Pomimo swojej pojedynczej nazwy, NOx jest w rzeczywistości zbiorczym terminem dla tlenków azotu - rodziny wysoce reaktywnych i trujących gazów - które są produkowane podczas spalania paliw kopalnych. Chociaż zanieczyszczenie NOx jest problemem globalnym, duże miasta są szczególnie dotknięte przez spaliny samochodowe i emisje z systemów grzewczych; około jedna trzecia zanieczyszczeń NOx w każdym dużym mieście pochodzi z ogrzewania. Ponadto, dwutlenek azotu reaguje w świetle słonecznym z innymi gazami (takimi jak lotne związki organiczne) tworząc ozon, który jest gazem cieplarnianym.

Dlaczego warto mierzyć NOx?

Ponieważ emisje NOx są coraz bardziej regulowane, muszą one być mierzone w celu zapewnienia zgodności z odpowiednimi dyrektywami. Pomiar NOx z kotłów i innych urządzeń domowych jest również przeprowadzany w celu sprawdzenia, czy działają one bezpiecznie, a także w celu zapewnienia, że właściciel/operator i osoby w jego otoczeniu nie są narażone na nadmierną emisję NOx.

Pomiar NOx za pomocą analizatora spalin/analizatora spalania

Oprócz konieczności spełnienia wymagań przepisów, sektor HVAC uznaje rosnące znaczenie pomiaru NOx ze względu na ogólnoświatowy nacisk na zrównoważony rozwój i kwestie ekologiczne oraz świadomość jego szkodliwego wpływu na zdrowie. Znajduje to odzwierciedlenie w rosnącym rynku analizatorów spalania, które obliczają NOx (np. Sprint Pro 5 i Sprint Pro 6).

W krótkim i średnim okresie, zapotrzebowanie na pomiary NOx prawdopodobnie wzrośnie; redukcja emisji NOx jest kluczowym elementem polityki zrównoważonego rozwoju na całym świecie, a inżynierowie i projektanci HVAC traktują priorytetowo projektowanie lepszych, czystszych form ogrzewania (które będą musiały być benchmarkowane, weryfikowane i utrzymywane).

Z czasem, wysoce wydajne systemy o bardzo niskiej emisji NOx prawdopodobnie zdominują rynek, a pomiar NOx stanie się coraz ważniejszym parametrem i bardziej znaczącą częścią codziennej pracy w sektorze HVAC.

Nasze modele Sprint Pro 5 i 6 są wyposażone wz dedykowanymi czujnikami NO pozwalającymi na szereg opcji pomiaru NO i NOx