Krótka historia detekcji gazów 

Ewolucja wykrywania gazów zmieniła się znacząco na przestrzeni lat. Nowe, innowacyjne pomysły, od kanarków po przenośne urządzenia monitorujące, zapewniają pracownikom ciągłe, precyzyjne monitorowanie gazu.

Rewolucja przemysłowa była katalizatorem rozwoju detekcji gazu ze względu na wykorzystanie paliwa, które było bardzo obiecujące, takiego jak węgiel. Ponieważ węgiel może być wydobywany z ziemi w kopalniach lub pod ziemią, narzędzia takie jak hełmy i lampy płomieniowe były jedyną ochroną przed niebezpieczeństwem narażenia na metan pod ziemią, które nie zostało jeszcze odkryte. Metan jest bezbarwny i bezwonny, co sprawia, że trudno jest rozpoznać jego obecność, aż do momentu odkrycia zauważalnego wzorca problemów zdrowotnych. Ryzyko związane z narażeniem na gaz spowodowało, że zaczęto eksperymentować z metodami wykrywania, aby zachować bezpieczeństwo pracowników na długie lata.

Potrzeba wykrywania gazu

Kiedy narażenie na gaz stało się oczywiste, górnicy zrozumieli, że muszą wiedzieć, czy w kopalni znajduje się jakakolwiek kieszeń z gazem metanowym, w której pracują. Na początku XIX wieku powstał pierwszy detektor gazu, a wielu górników nosiło na hełmach lampy płomieniowe, aby móc widzieć podczas pracy, więc zdolność do wykrywania niezwykle łatwopalnego metanu była najważniejsza. Pracownik zakładał na siebie gruby, mokry koc i nosił długi knot z podpalonym końcem. Wchodząc do kopalni, osoba ta przesuwała płomień wokół i wzdłuż ścian w poszukiwaniu kieszeni gazowych. W przypadku ich znalezienia następował zapłon i reakcja, o której informowano załogę, podczas gdy osoba dokonująca detekcji była chroniona przed kocem. Z czasem opracowano bardziej zaawansowane metody wykrywania gazu.

Wprowadzenie kanarków

Wykrywanie gazu zostało przeniesione z ludzi na kanarki ze względu na ich głośne ćwierkanie i podobne systemy nerwowe do kontrolowania wzorców oddechowych. Kanarki umieszczano w określonych miejscach kopalni, skąd pracownicy sprawdzali, czy kanarki nie ucierpiały na zdrowiu. Podczas pracy górnicy słuchali ćwierkania kanarków. Jeśli kanarek zaczął potrząsać klatką, był to silny wskaźnik ekspozycji kieszeni gazowej, w której zaczął wpływać na jego zdrowie. Górnicy ewakuowali się wtedy z kopalni i stwierdzili, że wejście do niej jest niebezpieczne. W niektórych przypadkach, jeśli kanarek przestał ćwierkać, górnicy wiedzieli, że należy szybciej opuścić kopalnię, zanim narażenie na gaz będzie miało szansę wpłynąć na ich zdrowie.

Światło płomienia

W wyniku obaw o bezpieczeństwo zwierząt, płomień był kolejnym etapem ewolucji w zakresie wykrywania gazu w kopalni. Podczas gdy zapewniała światło dla górników, płomień był umieszczony w osłonie, która pochłaniała wszelkie ciepło i zatrzymywała płomień, aby zapobiec zapaleniu się metanu, który mógł być obecny. Zewnętrzna powłoka zawierała szklany element z trzema nacięciami biegnącymi poziomo. Środkowa linia była ustawiona jako idealne środowisko gazowe, podczas gdy dolna linia wskazywała środowisko ubogie w tlen, a górna linia wskazywała narażenie na metan lub środowisko wzbogacone w tlen. Górnicy zapalali płomień w środowisku ze świeżym powietrzem. Jeśli płomień obniżył się lub zaczął ginąć, wskazywałoby to, że atmosfera miała niskie stężenie tlenu. Jeśli płomień się powiększył, górnicy wiedzieli, że metan był obecny z tlenem, w obu przypadkach wskazując, że muszą opuścić kopalnię.

Czujnik katalityczny

Chociaż płomień świetlny stanowił postęp w technologii wykrywania gazu, nie był jednak podejściem "uniwersalnym" dla wszystkich branż. Dlatego też czujnik katalityczny był pierwszym detektorem gazu, który ma podobieństwo do nowoczesnej technologii. Czujniki te działają na zasadzie, że kiedy gaz się utlenia, wytwarza ciepło. Czujnik katalityczny działa poprzez zmianę temperatury, która jest proporcjonalna do stężenia gazu. Chociaż był to krok naprzód w rozwoju technologii wymaganej do wykrywania gazu, początkowo wymagał on ręcznej obsługi w celu uzyskania odczytu.

Nowoczesna technologia

Technologia wykrywania gazów została bardzo rozwinięta od początku XIX wieku, kiedy to zarejestrowano pierwszy detektor gazu. Obecnie we wszystkich branżach stosuje się ponad pięć różnych typów czujników, w tym Elektrochemiczne, Kulki katalityczne (Pellistor), Detektor fotojonizacji (PID) i Technologia podczerwieni (IR), wraz z najnowocześniejszymi czujnikami Spektrometr właściwości molekularnych™ (MPS) i Long-Life Oxygen (LLO2), współczesne detektory gazu charakteryzują się wysoką czułością, dokładnością, a przede wszystkim niezawodnością, co pozwala zapewnić bezpieczeństwo wszystkim pracownikom, zmniejszając liczbę wypadków śmiertelnych w miejscu pracy.

Co to jest Pellistor (kulki katalityczne)? 

Czujniki pelistorowe składają się z dwóch dopasowanych cewek z drutu, z których każda jest osadzona w ceramicznej kulce. Przez cewki przepływa prąd, podgrzewając kulki do temperatury około 230˚C. Kulka nagrzewa się w wyniku spalania, co powoduje powstanie różnicy temperatur między tą aktywną a drugą "referencyjną" kulką. Powoduje to różnicę w oporności, która jest mierzona; ilość obecnego gazu jest wprost proporcjonalna do zmiany oporności, dzięki czemu można dokładnie określić stężenie gazu jako procent jego dolnej granicy wybuchowości (% LEL*). Palny gaz spala się na kulce, a wytworzone dodatkowe ciepło powoduje wzrost oporu cewki, który jest mierzony przez przyrząd w celu wskazania stężenia gazu. Czujniki pelistorowe są szeroko stosowane w przemyśle, w tym na platformach wiertniczych, w rafineriach oraz w budownictwie podziemnym, np. w kopalniach i tunelach.

Korzyści z zastosowania czujników pelistorowych?

Czujniki pelistorowe są stosunkowo tanie ze względu na różnice w poziomie technologii w porównaniu z bardziej złożonymi technologiami, takimi jak czujniki podczerwienijednak ich wymiana może być wymagana częściej. Dzięki liniowej charakterystyce wyjściowej odpowiadającej stężeniu gazu, można zastosować współczynniki korekcyjne do obliczenia przybliżonej reakcji pelistorów na inne gazy palne, co może sprawić, że pelistory będą dobrym wyborem w przypadku obecności wielu gazów i par palnych.

Czynniki wpływające na Czujnik pelistorowy Żywotność

Dwa główne czynniki, które skracają żywotność czujnika, to narażenie na wysokie stężenie gazu oraz zatrucie lub zablokowanie czujnika. Ekstremalne wstrząsy mechaniczne lub wibracje również mogą wpływać na żywotność czujnika.

Zdolność powierzchni katalizatora do utleniania gazu zmniejsza się, gdy jest on zatruty lub zahamowany. W niektórych zastosowaniach, w których nie występują związki hamujące lub zatruwające, znane są czasy eksploatacji czujników wynoszące do dziesięciu lat. Pelistory o wyższej mocy mają większe kulki, a więc więcej katalizatora, a większa aktywność katalityczna zapewnia mniejszą podatność na zatrucie. Bardziej porowate kulki umożliwiają łatwiejszy dostęp gazu do większej ilości katalizatora, co pozwala uzyskać większą aktywność katalityczną z objętości powierzchni, a nie tylko z powierzchni. Umiejętne wstępne projektowanie i zaawansowane procesy produkcyjne zapewniają maksymalną porowatość perełek.

Wytrzymałość stopki ma również ogromne znaczenie, ponieważ narażenie na wysokie stężenia gazów (>100% LEL) może naruszyć integralność czujnika, powodując jego pęknięcie. Wpływa to na wydajność i często powoduje przesunięcia w sygnale zerowym/linii bazowej. Niekompletne spalanie powoduje odkładanie się węgla na stopce: węgiel "rośnie" w porach i powoduje uszkodzenia mechaniczne lub po prostu przeszkadza gazowi w dotarciu do pelistora. Węgiel może jednak z czasem ulec wypaleniu, odsłaniając miejsca katalityczne.

Ekstremalne wstrząsy mechaniczne lub wibracje mogą w rzadkich przypadkach spowodować pęknięcie cewek pelistora. Problem ten jest bardziej powszechny w przypadku przenośnych niż stacjonarnych detektorów gazu, ponieważ są one bardziej narażone na upuszczenie, a stosowane w nich pelistory mają mniejszą moc (aby maksymalnie wydłużyć czas pracy baterii) i dlatego wykorzystują delikatniejsze zwoje z cieńszego drutu.

Co się stanie, gdy Pellistor zostanie zatruty?

Zatruty pelistor pozostaje sprawny elektrycznie, ale może nie reagować na gaz, ponieważ nie wytwarza sygnału wyjściowego w kontakcie z gazem palnym. Oznacza to, że czujka nie przełączy się w stan alarmowy, sprawiając wrażenie, że otoczenie jest bezpieczne.

Związki zawierające krzem, ołów, siarkę i fosforany w ilości zaledwie kilku części na milion (ppm) mogą pogorszyć działanie pellistora. Dlatego niezależnie od tego, czy chodzi o coś w środowisku pracy, czy o coś tak nieszkodliwego jak sprzęt do czyszczenia lub krem do rąk, zbliżenie tego do pellistora może oznaczać, że obniżasz skuteczność czujnika, nawet o tym nie wiedząc.

Dlaczego silikony są szkodliwe?

Silikony Silikony mają swoje zalety, ale mogą być bardziej powszechne, niż początkowo sądziłeś. Niektóre przykłady to szczeliwa, kleje, smary oraz izolacja termiczna i elektryczna. Silikony są w stanie zatruć czujnik na pelistorze przy bardzo niskich poziomach, ponieważ działają kumulatywnie, po trochu.

Produkty

Nasza strona produkty przenośne wszystkie wykorzystują przenośne kulki pelistorowe o niskiej mocy. Wydłuża to żywotność baterii, ale może powodować zatrucia. Dlatego oferujemy alternatywne rozwiązania, które nie powodują zatrucia, takie jak czujniki IR i MPS. Nasza strona produkty stacjonarne wykorzystują porowate, wysokoenergetyczne pelistory stałe.

Aby dowiedzieć się więcej, odwiedź stronę naszą stronę techniczną, aby uzyskać więcej informacji.

Jak długo wytrzyma mój czujnik gazu?

Detektory gazów są szeroko stosowane w wielu gałęziach przemysłu (m.in. w uzdatnianiu wody, przemyśle rafineryjnym, petrochemicznym, hutniczym i budowlanym ) do ochrony personelu i sprzętu przed niebezpiecznymi gazami i ich skutkami. Użytkownicy urządzeń przenośnych i stacjonarnych znają potencjalnie znaczące koszty związane z utrzymaniem bezpiecznej pracy przyrządów przez cały okres ich eksploatacji. Czujniki gazu służą do pomiaru stężenia interesujących nas analitów, takich jak CO (tlenek węgla), CO2 (dwutlenek węgla) lub NOx (tlenek azotu). W zastosowaniach przemysłowych najczęściej stosowane są dwa rodzaje czujników gazu: elektrochemiczne do gazów toksycznych i pomiaru tlenu oraz pelistorowe (lub katalityczne) do gazów palnych. W ostatnich latach wprowadzono na rynek zarówno Tlen i MPS (Molecular Property Spectrometer) pozwoliło na poprawę bezpieczeństwa.

Skąd mam wiedzieć, że mój czujnik uległ awarii?

W ciągu ostatnich kilku dekad powstało kilka patentów i technik stosowanych w detektorach gazu, które twierdzą, że są w stanie określić, kiedy czujnik elektrochemiczny uległ awarii. Większość z nich jednak tylko wnioskuje, że czujnik działa poprzez jakąś formę stymulacji elektrody i może dawać fałszywe poczucie bezpieczeństwa. Jedyną pewną metodą wykazania, że czujnik działa, jest zastosowanie gazu testowego i zmierzenie reakcji: test uderzeniowy lub pełna kalibracja.

Czujnik elektrochemiczny

Czujnikielektrochemiczne są najczęściej stosowane w trybie dyfuzyjnym, w którym gaz z otoczenia przedostaje się przez otwór w ściance komórki. Niektóre przyrządy wykorzystują pompę do dostarczania próbek powietrza lub gazu do czujnika. Aby zapobiec przedostawaniu się wody lub olejów do wnętrza komory, na otworze umieszcza się membranę z PTFE. Zakresy i czułości czujników mogą być zróżnicowane dzięki zastosowaniu otworów o różnych rozmiarach. Większe otwory zapewniają wyższą czułość i rozdzielczość, natomiast mniejsze otwory zmniejszają czułość i rozdzielczość, ale zwiększają zasięg.

Czynniki wpływające na żywotność czujnika elektrochemicznego

Istnieją trzy główne czynniki, które wpływają na żywotność czujnika, w tym temperatura, ekspozycja na ekstremalnie wysokie stężenia gazów i wilgotność. Inne czynniki obejmują elektrody czujnika oraz ekstremalne wibracje i wstrząsy mechaniczne.

Skrajne temperatury mogą wpływać na żywotność czujnika. Producent podaje zakres temperatur roboczych dla urządzenia: zazwyczaj od -30˚C do +50˚C. Czujniki wysokiej jakości będą jednak w stanie wytrzymać chwilowe przekroczenia tych limitów. Krótka (1-2 godziny) ekspozycja na temperaturę 60-65˚C w przypadku czujników H2S lub CO (na przykład) jest akceptowalna, ale powtarzające się incydenty spowodują odparowanie elektrolitu i przesunięcia w odczycie bazowym (zerowym) oraz spowolnienie reakcji.

Narażenie na działanie ekstremalnie wysokich stężeń gazu może również pogorszyć wydajność czujnika. Czujniki elektrochemiczne są zazwyczaj testowane poprzez wystawienie ich na działanie nawet dziesięciokrotnie wyższych stężeń niż te, na które zostały zaprojektowane. Czujniki skonstruowane przy użyciu wysokiej jakości materiału katalizatora powinny być w stanie wytrzymać takie narażenia bez zmian w składzie chemicznym lub długotrwałej utraty wydajności. Czujniki z mniejszym obciążeniem katalizatora mogą ulec uszkodzeniu.

Najbardziej znaczący wpływ na żywotność czujnika ma wilgotność. Idealne warunki środowiskowe dla czujników elektrochemicznych to 20˚C i 60% RH (wilgotności względnej). Gdy wilgotność otoczenia wzrasta powyżej 60% RH woda będzie absorbowana do elektrolitu powodując jego rozcieńczenie. W skrajnych przypadkach zawartość cieczy może wzrosnąć 2-3 krotnie, potencjalnie powodując wyciek z korpusu czujnika, a następnie przez styki. Poniżej 60%RH woda w elektrolicie zacznie się odwadniać. Czas odpowiedzi może ulec znacznemu wydłużeniu wraz z odwodnieniem elektrolitu. Elektrody czujników mogą w nietypowych warunkach zostać zatrute przez przeszkadzające gazy, które adsorbują się na katalizatorze lub reagują z nim tworząc produkty uboczne, które hamują działanie katalizatora.

Ekstremalne wibracje i wstrząsy mechaniczne mogą również uszkodzić czujniki poprzez pęknięcie spoin, które łączą ze sobą platynowe elektrody, paski łączące (lub druty w niektórych czujnikach) i styki.

Normalna" żywotność czujnika elektrochemicznego

Elektrochemiczne czujniki powszechnie występujących gazów, takich jak tlenek węgla czy siarkowodór, mają trwałość eksploatacyjną określaną zazwyczaj na 2-3 lata. W przypadku bardziej egzotycznych gazów, takich jak fluorowodór, żywotność czujnika może wynosić jedynie 12-18 miesięcy. W idealnych warunkach (stabilna temperatura i wilgotność w okolicach 20˚C i 60%RH), bez obecności zanieczyszczeń, czujniki elektrochemiczne mogą pracować ponad 4000 dni (11 lat). Okresowe wystawienie na działanie gazu docelowego nie ogranicza żywotności tych maleńkich ogniw paliwowych: wysokiej jakości czujniki posiadają dużą ilość materiału katalitycznego i wytrzymałe przewodniki, które nie ulegają wyczerpaniu w wyniku reakcji.

Czujnik pelistorowy

Czujnikipelistorowe składają się z dwóch dopasowanych cewek drucianych, z których każda jest osadzona w ceramicznej kulce. Przez cewki przepływa prąd, podgrzewając kulki do temperatury około 500˚C. Palny gaz spala się na kulce, a wytworzone dodatkowe ciepło powoduje wzrost rezystancji cewki, która jest mierzona przez urządzenie w celu wskazania stężenia gazu.

Czynniki wpływające na żywotność czujnika pellistorowego

Dwa główne czynniki, które wpływają na żywotność czujnika to ekspozycja na wysokie stężenie gazu oraz poising lub inhibicja czujnika. Ekstremalne wstrząsy mechaniczne lub wibracje mogą również wpłynąć na żywotność czujnika. Zdolność powierzchni katalizatora do utleniania gazu zmniejsza się, gdy został on zatruty lub zahamowany. Żywotność czujnika przekraczająca dziesięć lat jest powszechna w zastosowaniach, w których nie występują związki hamujące lub zatruwające. Pellistory o większej mocy mają większą aktywność katalityczną i są mniej podatne na zatrucie. Bardziej porowate kulki również mają większą aktywność katalityczną, ponieważ ich powierzchnia jest większa. Umiejętne wstępne projektowanie i wyrafinowane procesy produkcyjne zapewniają maksymalną porowatość perełek. Narażenie na wysokie stężenie gazu (>100%LEL) może również pogorszyć działanie czujnika i spowodować przesunięcie sygnału zerowego/linii bazowej. Niekompletne spalanie powoduje osadzanie się węgla na kulce: węgiel "rośnie" w porach i powoduje uszkodzenia mechaniczne. Węgiel może jednak z czasem ulec wypaleniu, odsłaniając miejsca katalityczne. Ekstremalne wstrząsy mechaniczne lub wibracje mogą w rzadkich przypadkach spowodować pęknięcie cewek pelistora. Problem ten jest bardziej powszechny w przenośnych niż stacjonarnych detektorach gazu, ponieważ są one bardziej narażone na upuszczenie, a stosowane pelistory są mniejszej mocy (aby zmaksymalizować żywotność baterii) i dlatego używają bardziej delikatnych cewek z cieńszego drutu.

Skąd mam wiedzieć, że mój czujnik uległ awarii?

Zatruty pelistor pozostaje sprawny elektrycznie, ale może nie reagować na gaz. W związku z tym detektor gazu i system sterowania mogą wydawać się być w dobrym stanie, ale wyciek gazu palnego może nie zostać wykryty.

Czujnik tlenu

Ikona Long Life 02

Nasz nowy bezołowiowy, trwały czujnik tlenu nie posiada ściśniętych pasm ołowiu, przez które musi przenikać elektrolit, co pozwala na stosowanie gęstego elektrolitu, który oznacza brak wycieków, korozji spowodowanej wyciekiem i większe bezpieczeństwo. Dodatkowa wytrzymałość tego czujnika pozwala nam zaoferować 5-letnią gwarancję.

Czujniki tlenu odługiej żywotności mają 5-letni okres eksploatacji, charakteryzują się krótszym czasem przestojów, niższymi kosztami eksploatacji i mniejszym oddziaływaniem na środowisko. Precyzyjnie mierzą tlen w szerokim zakresie stężeń od 0 do 30% objętości i stanowią nową generację czujników do wykrywania gazu O2.

Czujnik MPS

MPS Czujnik oferuje zaawansowaną technologię, która eliminuje konieczność kalibracji i zapewnia "prawdziwy poziom LEL (dolnej granicy wybuchowości)" przy odczycie dla piętnastu gazów palnych, ale może wykrywać wszystkie gazy palne w środowisku wielogatunkowym, co skutkuje niższymi kosztami bieżącej konserwacji i mniejszą interakcją z urządzeniem. Zmniejsza to ryzyko dla personelu i pozwala uniknąć kosztownych przestojów. Czujnik MPS jest również odporny na zatrucie czujnika.  

Awaria czujnika spowodowana zatruciem może być frustrującym i kosztownym doświadczeniem. Technologia zastosowana w czujniku MPS™nie ulega wpływowi zanieczyszczeń znajdujących się w środowisku. Procesy, w których występują zanieczyszczenia, mają teraz dostęp do rozwiązania, które działa niezawodnie i jest wyposażone w konstrukcję zabezpieczającą przed awarią, która ostrzega operatora, zapewniając spokój personelowi i zasobom znajdującym się w niebezpiecznym środowisku. Obecnie możliwe jest wykrywanie wielu gazów palnych, nawet w trudnych warunkach środowiskowych, przy użyciu tylko jednego czujnika, który nie wymaga kalibracji i ma przewidywany okres eksploatacji wynoszący co najmniej 5 lat.

Niebezpieczeństwa związane z wodorem

Jako paliwo, wodór jest wysoce łatwopalny, a jego wycieki stwarzają poważne zagrożenie pożarowe. Jednak pożary wodoru różnią się znacznie od pożarów innych paliw. W przypadku wycieku cięższych paliw i węglowodorów, takich jak benzyna czy olej napędowy, gromadzą się one blisko ziemi. Natomiast wodór jest jednym z najlżejszych pierwiastków na Ziemi, więc w przypadku wycieku gaz szybko rozprasza się w górę. Dzięki temu prawdopodobieństwo zapłonu jest mniejsze, ale dalsza różnica polega na tym, że wodór zapala się i pali łatwiej niż benzyna czy olej napędowy. W rzeczywistości, nawet iskra elektryczności statycznej z palca człowieka wystarczy, aby wywołać wybuch, gdy wodór jest dostępny. Płomień wodoru jest również niewidoczny, więc trudno jest określić, gdzie tak naprawdę się pali, ale generuje on niskie promieniowanie cieplne z powodu braku węgla i ma tendencję do szybkiego wypalania się.

Wodór jest bezwonny, bezbarwny i bez smaku, więc wycieki są trudne do wykrycia wyłącznie za pomocą ludzkich zmysłów. Wodór jest nietoksyczny, ale w pomieszczeniach zamkniętych, takich jak magazyny akumulatorów, może się gromadzić i powodować uduszenie poprzez wypieranie tlenu. To niebezpieczeństwo można w pewnym stopniu zniwelować dodając do paliwa wodorowego substancje zapachowe, nadające mu sztuczny zapach i ostrzegające użytkowników w przypadku wycieku. Ponieważ jednak wodór szybko się rozprasza, jest mało prawdopodobne, aby substancja zapachowa przemieszczała się wraz z nim. Wodór wyciekający w pomieszczeniach szybko się gromadzi, początkowo na poziomie sufitu, a ostatecznie wypełnia pomieszczenie. Dlatego umieszczenie detektorów gazu jest kluczowe dla wczesnego wykrycia wycieku.

Wodór jest zwykle przechowywany i transportowany w zbiornikach z wodorem ciekłym. Ostatnim problemem jest to, że ponieważ jest on sprężony, ciekły wodór jest bardzo zimny. Jeśli wodór wydostanie się ze zbiornika i wejdzie w kontakt ze skórą, może spowodować poważne odmrożenia, a nawet utratę kończyn.

Która technologia czujników jest najlepsza do wykrywania wodoru?

Crowcon posiada szeroką gamę produktów do wykrywania wodoru. Tradycyjne technologie czujników do wykrywania gazów palnych to pelistory i podczerwień (IR). Pelistorowe czujniki gazu (zwane również katalitycznymi czujnikami gazu z koralikami) są podstawową technologią wykrywania gazów palnych od lat 60-tych i możesz przeczytać więcej o czujnikach pelistorowych na naszej stronie poświęconej rozwiązaniom. Jednak ich kluczową wadą jest to, że w środowiskach o niskiej zawartości tlenu czujniki pelistorowe nie będą działać prawidłowo, a nawet mogą ulec awarii. W niektórych instalacjach istnieje ryzyko zatrucia lub zahamowania pracy pelistorów, co pozostawia pracowników bez ochrony. Czujniki pelistorowe nie są również odporne na uszkodzenia, a awaria czujnika nie zostanie wykryta, jeśli nie zostanie zastosowany gaz testowy.

Czujniki na podczerwień są niezawodnym sposobem wykrywania palnych węglowodorów w środowiskach o niskiej zawartości tlenu. Nie są one podatne na zatrucie, więc IR może znacznie zwiększyć bezpieczeństwo w tych warunkach. Przeczytaj więcej o czujnikach IR na naszej stronie poświęconej rozwiązaniom, a różnice między pelistorami i czujnikami IR w poniższym blogu.

Tak jak pelistory są podatne na zatrucie, tak czujniki IR są podatne na silne szoki mechaniczne i termiczne, a także silnie odczuwają zmiany ciśnienia. Dodatkowo, czujniki IR nie mogą być używane do wykrywania wodoru. Dlatego najlepszą opcją do wykrywania wodoru w gazach palnych jest technologia czujników z molekularnym spektrometrem właściwości (MPS™). Nie wymaga ona kalibracji przez cały cykl życia czujnika, a ponieważ MPS wykrywa gazy palne bez ryzyka zatrucia lub fałszywych alarmów, może znacznie obniżyć całkowity koszt posiadania i ograniczyć interakcje z urządzeniami, zapewniając spokój ducha i mniejsze ryzyko dla operatorów. Detekcja gazów z wykorzystaniem spektrometru właściwości molekularnych została opracowana na Uniwersytecie w Nevadzie i jest obecnie jedyną technologią detekcji gazów zdolną do jednoczesnego, bardzo dokładnego wykrywania wielu gazów palnych, w tym wodoru, za pomocą jednego czujnika.

Przeczytaj naszą białą księgę, aby dowiedzieć się więcej o naszej technologii czujników MPS, a aby uzyskać więcej informacji na temat wykrywania wodoru, odwiedź naszą stronę branżową i zapoznaj się z innymi naszymi zasobami dotyczącymi wodoru:

Co trzeba wiedzieć o wodorze?

Zielony wodór - przegląd

Niebieski wodór - przegląd

Xgard Bright MPS zapewnia wykrywanie wodoru w zastosowaniach związanych z magazynowaniem energii

Czujniki pelistorowe - jak działają

Pellistorowe czujniki gazu (lub katalityczne czujniki gazu typu "bead") są podstawową technologią wykrywania gazów palnych od lat 60-tych. Pomimo omówienia szeregu zagadnień związanych z wykrywaniem gazów palnych i lotnych związków organicznych, nie przyjrzeliśmy się jeszcze jak działają pellistory. Aby to nadrobić, zamieszczamy film wyjaśniający, który, mamy nadzieję, zostanie pobrany i wykorzystany w ramach prowadzonych przez Państwa szkoleń.

Pellistor oparty jest na obwodzie mostka Wheatstone'a i zawiera dwie "kulki", z których obie otaczają platynowe cewki. Jedna z kulek ("aktywna") jest poddawana działaniu katalizatora, który obniża temperaturę, w której zapala się gaz wokół niej. Kulka ta staje się gorąca w wyniku spalania, co powoduje różnicę temperatur pomiędzy tą aktywną a drugą "referencyjną" kulką. Powoduje to różnicę w oporności, która jest mierzona; ilość obecnego gazu jest do niej wprost proporcjonalna, tak więc stężenie gazu jako procent jego dolnej granicy wybuchowości (%LEL*) może być dokładnie określone.

Gorąca kulka i obwody elektryczne znajdują się w ognioodpornej obudowie czujnika, za spiekanym metalowym przerywaczem płomienia (lub spiekiem), przez który przechodzi gaz. Zamknięte w tej obudowie czujnika, która utrzymuje wewnętrzną temperaturę 500°C, mogą zachodzić kontrolowane spalanie, odizolowane od środowiska zewnętrznego. W przypadku wysokich stężeń gazu, proces spalania może być niekompletny, co skutkuje powstaniem warstwy sadzy na aktywnej kulce. Powoduje to częściowe lub całkowite pogorszenie wydajności. Należy zachować ostrożność w środowiskach, w których mogą występować gazy o stężeniu powyżej 70% LEL.

Aby uzyskać więcej informacji na temat technologii czujników gazu dla gazów palnych, przeczytaj nasz artykuł porównawczy pelistory vs technologia czujników gazu na podczerwień: Czy implanty silikonowe pogarszają jakość wykrywania gazów?

*Liższa granica wybuchowości - Dowiedz się więcej

Kliknij w prawym górnym rogu filmu, aby uzyskać dostęp do pliku, który można pobrać.

Czy implanty silikonowe pogarszają Twoją wykrywalność gazów?

W zakresie detekcji gazów, pelistory są podstawową technologią wykrywania gazów palnych od lat 60-tych. W większości przypadków, przy prawidłowej konserwacji, pelistory są niezawodnym, opłacalnym środkiem monitorowania poziomu palnych gazów. Istnieją jednak okoliczności, w których technologia ta może nie być najlepszym wyborem, a zamiast niej należy rozważyć technologię podczerwieni (IR).

Continue reading "Czy implanty silikonowe pogarszają Twoją wykrywalność gazów?"

Kalibracja krzyżowa czujników pelistorowych (płomienia katalitycznego)‡.

Po zeszłotygodniowej względnej powadze, w tym tygodniu omawiam coś raczej poważniejszego.

Jeśli chodzi o wykrywanie węglowodorów, często nie mamy dostępnej butli z gazem docelowym, aby przeprowadzić prostą kalibrację, więc używamy gazu zastępczego i wykonujemy kalibrację krzyżową. Jest to problem, ponieważ pelistory dają względne reakcje na różne gazy palne na różnych poziomach. Stąd, w przypadku gazu o małej cząsteczce, takiego jak metan, pelistor jest bardziej czuły i daje wyższy odczyt niż w przypadku ciężkiego węglowodoru, takiego jak nafta.

Continue reading "Kalibracja krzyżowa czujników pellistorowych (płomienia katalitycznego)‡"