Tratamento de água: A necessidade de deteção de gás na deteção de cloro

As empresas de abastecimento de água ajudam a fornecer água limpa para beber, tomar banho e para usos industriais e comerciais. As estações de tratamento de águas residuais e os sistemas de esgotos ajudam a manter os nossos cursos de água limpos e higiénicos. Em todo o sector da água, o risco de exposição a gás e os perigos associados ao gás são consideráveis. Os gases nocivos podem ser encontrados em tanques de água, reservatórios de serviço, poços de bombagem, unidades de tratamento, áreas de armazenamento e manuseamento de produtos químicos, poços, esgotos, transbordos, furos e câmaras de visita.

O que é o cloro e porque é que é perigoso

O gás cloro (Cl2) tem uma cor verde-amarelada e é utilizado para esterilizar a água potável. No entanto, a maior parte do cloro é utilizada na indústria química, com aplicações típicas que incluem o tratamento da água, bem como nos plásticos e agentes de limpeza. O cloro gasoso pode ser reconhecido pelo seu odor pungente e irritante, que se assemelha ao odor da lixívia. O cheiro forte pode ser um aviso adequado para as pessoas que estão expostas. O Cl2 em si não é inflamável, mas pode reagir de forma explosiva ou formar compostos inflamáveis com outros produtos químicos, como a terebintina e o amoníaco.

O gás cloro pode ser reconhecido pelo seu odor pungente e irritante, semelhante ao odor da lixívia. O cheiro forte pode constituir um aviso adequado para as pessoas que estão expostas. O cloro é tóxico e, se inalado ou bebido em quantidades concentradas, pode ser fatal. Se o cloro gasoso for libertado no ar, as pessoas podem ser expostas através da pele, dos olhos ou por inalação. O cloro não é combustível, mas pode reagir com a maioria dos combustíveis, o que representa um risco de incêndio e explosão. Também reage violentamente com compostos orgânicos, como o amoníaco e o hidrogénio, causando potenciais incêndios e explosões.

Para que é utilizado o cloro

A cloração da água começou na Suécia durante o séculoXVIII com o objetivo de remover os odores da água. Este método continuou a ser utilizado apenas para remover os odores da água até 1890, altura em que o cloro foi identificado como uma substância eficaz para fins de desinfeção. O cloro foi utilizado pela primeira vez para fins de desinfeção na Grã-Bretanha no início dos anos 1900 e, no século seguinte, a cloração tornou-se o método mais utilizado para o tratamento da água, sendo atualmente utilizado para o tratamento da água na maioria dos países do mundo.

A cloração é um método que pode desinfetar a água com elevados níveis de microrganismos, em que o cloro ou uma substância que contenha cloro é utilizado para oxidar e desinfetar a água. Podem ser utilizados diferentes processos para atingir níveis seguros de cloro na água potável para prevenir doenças transmitidas pela água.

Porque é que preciso de detetar o cloro

O cloro, sendo mais denso que o ar, tende a dispersar-se por zonas baixas em áreas mal ventiladas ou estagnadas. Embora não seja inflamável por si só, o cloro pode tornar-se explosivo quando em contacto com substâncias como o amoníaco, o hidrogénio, o gás natural e a terebintina.

A reação do corpo humano ao cloro depende de vários factores: a concentração de cloro presente no ar, a duração e a frequência da exposição. Os efeitos também dependem do estado de saúde de um indivíduo e das condições ambientais durante a exposição. Por exemplo, quando pequenas quantidades de cloro são inaladas durante curtos períodos de tempo, podem afetar o sistema respiratório. Outros efeitos variam entre tosse e dores no peito, acumulação de fluidos nos pulmões, irritações na pele e nos olhos. De notar que estes efeitos não se verificam em condições naturais.

A nossa solução

A utilização de um detetor de cloro gasoso permite a deteção e a medição desta substância no ar para evitar quaisquer acidentes. Equipado com um sensor eletroquímico de cloro, um detetor de Cl2 fixo ou portátil, de gás único ou multigás, monitorizará a concentração de cloro no ar ambiente. Dispomos de uma vasta gama de produtos de deteção de gases para o ajudar a satisfazer as exigências da indústria de tratamento de águas.

Os detectores de gás fixos são ideais para monitorizar e alertar os gestores e trabalhadores das estações de tratamento de água para a presença de todos os principais perigos de gás. Os detectores de gás fixos podem ser posicionados de forma permanente no interior de tanques de água, sistemas de esgotos e quaisquer outras áreas que apresentem um risco elevado de exposição a gases.

Os detectores de gás portáteis são dispositivos de deteção de gás leves e robustos que podem ser usados no corpo. Os detectores de gás portáteis emitem um som e um sinal de alerta para os trabalhadores quando os níveis de gás atingem concentrações perigosas, permitindo a tomada de medidas. Os nossos Gasmane Gas-Pro portáteis têm opções fiáveis de sensores de cloro, para monitorização de um único gás e monitorização de vários gases.

Os painéis de controlo podem ser aplicados para coordenar numerosos dispositivos fixos de deteção de gás e fornecer um acionamento para sistemas de alarme.

Para obter mais informações sobre a deteção de gás na água e no tratamento de água, ou para explorar mais a gama de deteção de gás da Crowcon, entre em contacto.

Visão geral da indústria: Potência da bateria

As baterias são eficazes na redução de falhas de energia, uma vez que também podem armazenar o excesso de energia da rede tradicional. A energia armazenada nas baterias pode ser libertada sempre que é necessário um grande volume de energia, como durante uma falha de energia num centro de dados para evitar a perda de dados, ou como fonte de alimentação de reserva para um hospital ou aplicação militar para assegurar a continuidade de serviços vitais. As baterias de grande escala também podem ser utilizadas para colmatar lacunas de curto prazo na procura da rede. Estas baterias podem também ser utilizadas em tamanhos mais pequenos para alimentar carros eléctricos e podem ser ainda mais reduzidas para alimentar produtos comerciais, tais como telefones, comprimidos, computadores portáteis, altifalantes e - claro - detectores de gás pessoais.

As aplicações incluem armazenamento de pilhas, transporte e soldadura e podem ser segregadas em quatro categorias principais: Químico - por exemplo, amoníaco, hidrogénio, metanol e combustível sintético, electroquímico - ácido de chumbo, ião de lítio, Na-Cd, Na-ion, eléctrico - supercapacitores, armazenamento magnético supercondutor e Mecânico - ar comprimido, hidro bombeado, gravidade.

Perigos de gás

Incêndios de bateria de iões de lítio

Uma grande preocupação surge quando a electricidade estática ou um carregador defeituoso danifica o circuito de protecção da bateria. Estes danos podem resultar na fusão dos interruptores de estado sólido numa posição ON, sem que o utilizador saiba. Uma bateria com um circuito de protecção avariado pode funcionar normalmente, no entanto, não proporcionar protecção contra curto-circuitos. Um sistema de detecção de gás pode estabelecer se existe uma falha e pode ser utilizado num circuito de feedback para desligar a energia, selar o espaço e libertar um gás inerte (como o azoto) para a área, a fim de evitar qualquer incêndio ou explosão.

Vazamento de gases tóxicos antes da fuga térmica

A fuga térmica de células de lítio-metal e de lítio-ião resultou em vários incêndios. Com a investigação a mostrar que os incêndios alimentados por gases inflamáveis são ventilados a partir das baterias durante a fuga térmica. O electrólito de uma bateria de lítio-ião é inflamável e geralmente contém hexafluorofosfato de lítio (LiPF6) ou outros Li-salts contendo flúor. Em caso de sobreaquecimento, o electrólito evaporará e eventualmente será expelido das células da bateria. Os investigadores descobriram que as baterias comerciais de iões de lítio podem emitir quantidades consideráveis de fluoreto de hidrogénio (HF) durante um incêndio, e que as taxas de emissão variam para diferentes tipos de baterias e níveis de estado de carga (SOC). O fluoreto de hidrogénio pode penetrar na pele para afectar o tecido cutâneo profundo e mesmo osso e sangue. Mesmo com um mínimo de exposição, a dor e os sintomas podem não se apresentar durante várias horas, período durante o qual os danos são extremos.

Hidrogénio e risco de explosão

Com as células combustíveis de hidrogénio a ganhar popularidade como alternativas ao combustível fóssil, é importante estar consciente dos perigos do hidrogénio. Como todos os combustíveis, o hidrogénio é altamente inflamável e, se houver fugas, há um risco real de incêndio. As baterias tradicionais de chumbo ácido produzem hidrogénio quando estão a ser carregadas. Estas baterias são normalmente carregadas em conjunto, por vezes na mesma sala ou área, o que pode gerar um risco de explosão, especialmente se a sala não for devidamente ventilada. A maioria das aplicações de hidrogénio não pode utilizar odorantes por razões de segurança, uma vez que o hidrogénio se dispersa mais rapidamente do que os odorantes. Existem normas de segurança aplicáveis às estações de abastecimento de hidrogénio, sendo necessário um equipamento de protecção adequado para todos os trabalhadores. Isto inclui detectores pessoais, capazes de detectar o nível ppm de hidrogénio, bem como o nível %LEL. Os níveis de alarme padrão são definidos em 20% e 40% LEL que é 4% volume, mas algumas aplicações podem desejar ter uma gama personalizada de PPM e níveis de alarme para captar rapidamente as acumulações de hidrogénio.

Para saber mais sobre os perigos dos perigos do gás na energia das baterias visite o nossopágina da indústriapara mais informações.

Uma breve história de detecção de gás 

A evolução da detecção de gás mudou consideravelmente ao longo dos anos. Ideias novas e inovadoras, desde canários a equipamento de monitorização portátil, proporcionam aos trabalhadores uma monitorização precisa e contínua dos gases.

A Revolução Industrial foi o catalisador no desenvolvimento da detecção de gás devido à utilização de combustível que mostrou grande promessa, tal como o carvão. Uma vez que o carvão pode ser extraído da terra através da exploração mineira ou subterrânea, ferramentas como capacetes e luzes de chama foram a sua única protecção contra os perigos da exposição ao metano no subsolo, que ainda estavam por descobrir. O gás metano é incolor e inodoro, o que torna difícil saber a sua presença até que um padrão perceptível de problemas de saúde seja descoberto. Os riscos de exposição ao gás resultaram na experimentação de métodos de detecção para preservar a segurança dos trabalhadores durante anos futuros.

Uma necessidade de detecção de gás

Assim que a exposição ao gás se tornou aparente, os mineiros compreenderam que precisavam de saber se a mina tinha alguma bolsa de gás metano onde estivessem a trabalhar. No início do século XIX, o primeiro detector de gás foi registado com muitos mineiros a usarem luzes de chama nos seus capacetes para poderem ver enquanto trabalhavam, pelo que ser capaz de detectar o metano extremamente inflamável era primordial. O trabalhador usava uma manta espessa e húmida sobre os seus corpos enquanto transportava um pavio comprido com a extremidade acesa em chamas. Entrando nas minas, o indivíduo movia a chama à volta e ao longo das paredes à procura de bolsas de gás. Se fosse encontrada, uma reacção inflamar-se-ia e seria notada à tripulação enquanto a pessoa que detectasse estava protegida da manta. Com o tempo, foram desenvolvidos métodos mais avançados de detecção de gás.

A Introdução das Canárias

A detecção de gás passou de humanos para canários devido aos seus altos chilros e sistemas nervosos semelhantes para controlar os padrões respiratórios. Os canários eram colocados em certas áreas da mina, a partir daí os trabalhadores verificavam os canários para cuidar deles, bem como para ver se a sua saúde tinha sido afectada. Durante os turnos de trabalho, os mineiros ouviam os canários a chilrear. Se um canário começasse a abanar a sua gaiola, isso era um forte indicador da exposição a uma bolsa de gás na qual começava a afectar a sua saúde. Os mineiros evacuavam então a mina e observavam que a sua entrada era insegura. Em algumas ocasiões, se o canário parasse de chilrear todos juntos, os mineiros sabiam que deveriam sair mais depressa antes que a exposição ao gás tivesse uma oportunidade de afectar a sua saúde.

A chama da luz

A luz da chama foi a evolução seguinte para a detecção de gás na mina, como resultado de preocupações com a segurança animal. Enquanto fornecia luz aos mineiros, a chama foi alojada num invólucro de detonador de chamas que absorvia qualquer calor e capturava a chama para evitar que esta acendesse qualquer metano que pudesse estar presente. A concha exterior continha uma peça de vidro com três incisões na horizontal. A linha do meio foi definida como o ambiente ideal de gás, enquanto a linha inferior indicava um ambiente pobre em oxigénio, e a linha superior indicava exposição ao metano ou um ambiente enriquecido em oxigénio. Os mineiros acenderiam a chama num ambiente com ar fresco. Se a chama baixasse ou começasse a morrer, isso indicaria que a atmosfera tinha uma baixa concentração de oxigénio. Se a chama crescesse, os mineiros sabiam que o metano estava presente com oxigénio, ambos os casos indicando que precisavam de sair da mina.

O Sensor Catalítico

Embora a luz da chama fosse um desenvolvimento na tecnologia de detecção de gás, não era, no entanto, uma abordagem de "tamanho único" para todas as indústrias. Portanto, o sensor catalítico foi o primeiro detector de gás que tem uma semelhança com a tecnologia moderna. Os sensores funcionam com base no princípio de que quando um gás se oxida, produz calor. O sensor catalítico funciona através da mudança de temperatura, que é proporcional à concentração de gás. Embora isto tenha sido um passo em frente no desenvolvimento da tecnologia necessária para a detecção de gás, ainda exigia inicialmente uma operação manual para receber uma leitura.

Tecnologia dos tempos modernos

A tecnologia de detecção de gás foi tremendamente desenvolvida desde o início do século XIX, no qual o primeiro detector de gás foi registado. Com agora mais de cinco tipos diferentes de sensores comummente utilizados em todas as indústrias, incluindo Electroquímica, Contas catalíticas (Pellistor), Detector de fotoionização (PID) e Tecnologia de infravermelhos (RI), juntamente com os sensores mais modernos Propriedade Molecular Spectrometer™ (MPS) e Oxigénio de Longa Vida (LLO2), os modernos detectores de gás são altamente sensíveis, precisos mas, o mais importante, fiáveis, o que permite que todo o pessoal permaneça seguro reduzindo o número de acidentes mortais no local de trabalho.

Como funcionam os sensores electroquímicos? 

Os sensores electroquímicos são os mais utilizados no modo de difusão em que o gás no ambiente entra através de um buraco na face da célula. Alguns instrumentos utilizam uma bomba para fornecer amostras de ar ou gás ao sensor. Uma membrana de PTFE é colocada sobre o buraco para impedir a entrada de água ou óleos na célula. As gamas e sensibilidades dos sensores podem ser variadas na concepção, utilizando furos de diferentes tamanhos. Os furos maiores proporcionam maior sensibilidade e resolução, enquanto que os furos mais pequenos reduzem a sensibilidade e resolução, mas aumentam o alcance.

Benefícios

Os sensores electroquímicos têm várias vantagens.

  • Pode ser específico para um determinado gás ou vapor na gama de peças por milhão. No entanto, o grau de selectividade depende do tipo de sensor, do gás alvo e da concentração de gás que o sensor é concebido para detectar.
  • Elevada repetibilidade e taxa de precisão. Uma vez calibrado a uma concentração conhecida, o sensor proporcionará uma leitura precisa a um gás alvo que é repetível.
  • Não susceptível de envenenamento por outros gases, com a presença de outros vapores ambientais não diminuirá ou reduzirá a vida útil do sensor.
  • Menos caro que a maioria das outras tecnologias de detecção de gás, tais como RI ou PID tecnologias. Os sensores electroquímicos são também mais económicos.

Questões com sensibilidade cruzada

Sensibilidade cruzada ocorre quando um gás diferente do gás que está a ser monitorizado/detectado pode afectar a leitura dada por um sensor electroquímico. Isto faz com que o eléctrodo dentro do sensor reaja mesmo que o gás alvo não esteja realmente presente, ou provoca uma leitura e/ou alarme de outro modo impreciso para esse gás. A sensibilidade cruzada pode causar vários tipos de leitura imprecisa em detectores de gás electroquímico. Estes podem ser positivos (indicando a presença de um gás mesmo que este não esteja realmente presente ou indicando um nível desse gás acima do seu verdadeiro valor), negativos (uma resposta reduzida ao gás alvo, sugerindo que este está ausente quando está presente, ou uma leitura que sugere que existe uma concentração do gás alvo inferior à que existe), ou o gás interferente pode causar inibição.

Factores que afectam a vida útil dos sensores electroquímicos

Há três factores principais que afectam a vida do sensor, incluindo a temperatura, a exposição a concentrações de gás extremamente elevadas e a humidade. Outros factores incluem os eléctrodos dos sensores e as vibrações extremas e choques mecânicos.

Os extremos de temperatura podem afectar a vida útil do sensor. O fabricante indicará uma gama de temperaturas de funcionamento para o instrumento: tipicamente -30˚C a +50˚C. Os sensores de alta qualidade serão, contudo, capazes de resistir a excursões temporárias para além destes limites. A exposição curta (1-2 horas) a 60-65˚C para sensores H2S ou CO (por exemplo) é aceitável, mas incidentes repetidos resultarão na evaporação do electrólito e deslocamentos na leitura da linha de base (zero) e numa resposta mais lenta.

A exposição a concentrações de gás extremamente elevadas também pode comprometer o desempenho do sensor. Electroquímica Os sensores são tipicamente testados por exposição a até dez vezes o seu limite de concepção. Os sensores construídos com material catalisador de alta qualidade devem ser capazes de resistir a tais exposições sem alterações na química ou perda de desempenho a longo prazo. Os sensores com menor carga de catalisador podem sofrer danos.

A influência mais considerável na vida do sensor é a humidade. A condição ambiental ideal para sensores electroquímicos é 20˚Celsius e 60% RH (humidade relativa). Quando a humidade ambiente aumenta para além de 60%RH, a água será absorvida pelo electrólito causando diluição. Em casos extremos, o conteúdo líquido pode aumentar 2-3 vezes, resultando potencialmente em fugas do corpo do sensor, e depois através dos pinos. Abaixo de 60%RH, a água do electrólito começará a desidratar. O tempo de resposta pode ser significativamente prolongado à medida que o electrólito ou desidratado. Os eléctrodos dos sensores podem, em condições invulgares, ser envenenados por gases interferentes que se adsorvem no catalisador ou reagem com ele criando subprodutos que inibem o catalisador.

Vibrações extremas e choques mecânicos também podem danificar os sensores, fraturando as soldaduras que ligam os eléctrodos de platina, ligando tiras (ou fios em alguns sensores) e pinos juntos.

Esperança de vida 'normal' do sensor electroquímico

Os sensores electroquímicos para gases comuns, tais como monóxido de carbono ou sulfureto de hidrogénio, têm um vida operacional tipicamente declarado aos 2-3 anos. Os sensores de gases mais exóticos, como o fluoreto de hidrogénio, podem ter uma vida útil de apenas 12-18 meses. Em condições ideais (temperatura e humidade estáveis na região de 20˚C e 60%RH) sem incidência de contaminantes, sabe-se que os sensores electroquímicos funcionam há mais de 4000 dias (11 anos). A exposição periódica ao gás alvo não limita a vida útil destas minúsculas células de combustível: os sensores de alta qualidade têm uma grande quantidade de material catalisador e condutores robustos que não se esgotam com a reacção.

Produtos

Como os sensores electroquímicos são mais económico, Temos uma gama de produtos portáteis e produtos fixos que utilizam este tipo de sensor para detectar gases.

Para explorar mais, visite a nossa página técnica para mais informações.

Quanto tempo durará o meu sensor de gás?

Os detectores de gás são amplamente utilizados em muitas indústrias (tais como tratamento de água, refinaria, petroquímica, aço e construção, para citar algumas) para proteger pessoal e equipamento de gases perigosos e seus efeitos. Os utilizadores de dispositivos portáteis e fixos estarão familiarizados com os custos potencialmente significativos de manter os seus instrumentos a funcionar em segurança ao longo da sua vida operacional. Entende-se que os sensores de gás fornecem uma medição da concentração de alguns analitos de interesse, tais como CO (monóxido de carbono), CO2 (dióxido de carbono), ou NOx (óxido de azoto). Existem dois sensores de gás mais utilizados em aplicações industriais: electroquímicos para medição de gases tóxicos e oxigénio, e pelistores (ou esferas catalíticas) para gases inflamáveis. Nos últimos anos, a introdução de ambos Oxigénio e MPS (Espectrómetro de Propriedade Molecular) permitiram uma maior segurança.

Como posso saber quando o meu sensor falhou?

Houve várias patentes e técnicas aplicadas a detectores de gás nas últimas décadas que afirmam ser capazes de determinar quando um sensor electroquímico falhou. A maioria destas, no entanto, apenas inferem que o sensor está a funcionar através de alguma forma de estimulação de eléctrodos e pode fornecer uma falsa sensação de segurança. O único método seguro de demonstrar que um sensor está a funcionar é a aplicação de gás de teste e a medição da resposta: um teste de colisão ou calibração completa.

Sensor Electroquímico

Os sensoreselectroquímicos são os mais utilizados no modo de difusão em que o gás no ambiente entra através de um buraco na face da célula. Alguns instrumentos utilizam uma bomba para fornecer amostras de ar ou gás ao sensor. Uma membrana de PTFE é colocada sobre o buraco para impedir a entrada de água ou óleos na célula. As gamas e sensibilidades dos sensores podem ser variadas na concepção, utilizando furos de diferentes tamanhos. Os furos maiores proporcionam maior sensibilidade e resolução, enquanto que os furos mais pequenos reduzem a sensibilidade e resolução, mas aumentam o alcance.

Factores que afectam a vida do sensor electroquímico

Há três factores principais que afectam a vida do sensor, incluindo a temperatura, a exposição a concentrações de gás extremamente elevadas e a humidade. Outros factores incluem os eléctrodos dos sensores e as vibrações extremas e choques mecânicos.

Os extremos de temperatura podem afectar a vida útil do sensor. O fabricante indicará uma gama de temperaturas de funcionamento para o instrumento: tipicamente -30˚C a +50˚C. Os sensores de alta qualidade serão, contudo, capazes de resistir a excursões temporárias para além destes limites. A exposição curta (1-2 horas) a 60-65˚C para sensores H2S ou CO (por exemplo) é aceitável, mas incidentes repetidos resultarão na evaporação do electrólito e deslocamentos na leitura da linha de base (zero) e numa resposta mais lenta.

A exposição a concentrações de gás extremamente elevadas também pode comprometer o desempenho do sensor. Os sensores electroquímicos são tipicamente testados pela exposição a até dez vezes o seu limite de concepção. Os sensores construídos com material catalisador de alta qualidade devem ser capazes de resistir a tais exposições sem alterações na química ou perda de desempenho a longo prazo. Os sensores com menor carga de catalisador podem sofrer danos.

A influência mais considerável na vida do sensor é a humidade. A condição ambiental ideal para sensores electroquímicos é 20˚Celsius e 60% RH (humidade relativa). Quando a humidade ambiente aumenta para além de 60%RH, a água será absorvida pelo electrólito causando diluição. Em casos extremos, o conteúdo líquido pode aumentar 2-3 vezes, resultando potencialmente em fugas do corpo do sensor, e depois através dos pinos. Abaixo de 60%RH a água do electrólito começará a desidratar. O tempo de resposta pode ser significativamente prolongado à medida que o electrólito ou desidratado. Os eléctrodos dos sensores podem, em condições invulgares, ser envenenados por gases interferentes que se adsorvem no catalisador ou reagem com ele criando subprodutos que inibem o catalisador.

Vibrações extremas e choques mecânicos também podem danificar os sensores, fraturando as soldaduras que ligam os eléctrodos de platina, ligando tiras (ou fios em alguns sensores) e pinos juntos.

Expectativa de vida 'Normal' do Sensor Electroquímico

Os sensores electroquímicos para gases comuns tais como monóxido de carbono ou sulfureto de hidrogénio têm uma vida operacional tipicamente declarada de 2-3 anos. Os sensores de gases mais exóticos, como o fluoreto de hidrogénio, podem ter uma vida útil de apenas 12-18 meses. Em condições ideais (temperatura e humidade estáveis na região de 20˚C e 60%RH) sem incidência de contaminantes, sabe-se que os sensores electroquímicos funcionam há mais de 4000 dias (11 anos). A exposição periódica ao gás alvo não limita a vida útil destas minúsculas células de combustível: os sensores de alta qualidade têm uma grande quantidade de material catalisador e condutores robustos que não se esgotam com a reacção.

Sensor Pellistor

Os sensoresPellistor consistem em duas bobinas de arame emparelhadas, cada uma delas embutida numa conta de cerâmica. A corrente é passada através das bobinas, aquecendo os grânulos para aproximadamente 500˚C. Queimaduras de gás inflamável no grânulo e o calor adicional gerado produz um aumento na resistência da bobina que é medida pelo instrumento para indicar a concentração de gás.

Factores que afectam a vida do sensor Pellistor

Os dois principais factores que afectam a vida útil do sensor incluem a exposição a uma concentração elevada de gás e o posicionamento ou inibição do sensor. O choque mecânico extremo ou vibração também pode afectar a vida útil do sensor. A capacidade da superfície do catalisador para oxidar o gás reduz quando este foi envenenado ou inibido. A vida útil do sensor mais de dez anos é comum em aplicações onde compostos inibidores ou envenenadores não estão presentes. Os pelistores de maior potência têm maior actividade catalítica e são menos vulneráveis ao envenenamento. As esferas mais porosas também têm maior actividade catalítica à medida que o seu volume de superfície aumenta. Uma concepção inicial qualificada e processos de fabrico sofisticados asseguram a máxima porosidade dos grânulos. A exposição a elevadas concentrações de gás (>100%LEL) também pode comprometer o desempenho do sensor e criar um desvio no sinal de zero/linha de base. A combustão incompleta resulta em depósitos de carbono no talão: o carbono 'cresce' nos poros e cria danos mecânicos. O carbono pode, contudo, ser queimado ao longo do tempo para revelar de novo os locais catalíticos. O choque mecânico extremo ou vibração pode também, em casos raros, causar uma quebra nas bobinas do pellistor. Esta questão é mais prevalente nos detectores de gás portáteis do que nos detectores de gás de ponto fixo, uma vez que são mais susceptíveis de serem largados, e os pelistores utilizados são de menor potência (para maximizar a duração da bateria) e, portanto, utilizam bobinas de arame mais delicadas e mais finas.

Como posso saber quando o meu sensor falhou?

Um pellistor que tenha sido envenenado permanece electricamente operacional mas pode não responder ao gás. Assim, o detector e o sistema de controlo de gás pode parecer estar num estado saudável, mas uma fuga de gás inflamável pode não ser detectada.

Sensor de oxigénio

Ícone Long Life 02

O nosso novo sensor de oxigénio sem chumbo e de longa duração não tem fios comprimidos de chumbo que o electrólito tem de penetrar, permitindo a utilização de um electrólito espesso, o que significa que não há fugas, não há corrosão induzida por fugas, e maior segurança. A robustez adicional deste sensor permite-nos oferecer, com confiança, uma garantia de 5 anos por mais um elemento mental.

Os sensores deoxigénio de longa duração têm uma longa vida útil de 5 anos, com menos tempo de paragem, menor custo de propriedade, e impacto ambiental reduzido. Medem com precisão o oxigénio numa vasta gama de concentrações de 0 a 30% de volume e são a próxima geração de detecção de gases O2.

Sensor MPS

MPS O sensor fornece tecnologia avançada que elimina a necessidade de calibrar e fornece um 'LEL (limite explosivo inferior) verdadeiro' para a leitura de quinze gases inflamáveis, mas pode detectar todos os gases inflamáveis num ambiente multiespecífico, resultando em custos de manutenção contínuos mais baixos e numa interacção reduzida com a unidade. Isto reduz o risco para o pessoal e evita dispendiosos tempos de paragem. O sensor MPS é também imune ao envenenamento dos sensores.  

A falha do sensor devido a envenenamento pode ser uma experiência frustrante e dispendiosa. A tecnologia do sensor MPS™não é afectada por contaminações no ambiente. Os processos que têm contaminantes têm agora acesso a uma solução que funciona de forma fiável com design seguro contra falhas para alertar o operador a oferecer uma paz de espírito ao pessoal e bens localizados em ambiente perigoso. É agora possível detectar vários gases inflamáveis, mesmo em ambientes agressivos, utilizando apenas um sensor que não requer calibração e tem uma vida útil esperada de pelo menos 5 anos.