Segurança do gás balão: Os perigos do Hélio e do Nitrogénio 

O gás balão é uma mistura de hélio e ar. O gás balão é seguro quando utilizado correctamente, mas nunca se deve inalar deliberadamente o gás, pois é um asfixiante e pode resultar em complicações de saúde. Tal como outros asfixiantes, o hélio no gás balão ocupa uma parte do volume normalmente tomado pelo ar, impedindo que esse ar seja utilizado para manter o fogo ou para manter os corpos a funcionar.

Existem outros asfixiantes utilizados em aplicações industriais. Por exemplo, a utilização de nitrogénio tornou-se quase indispensável em numerosos processos industriais de fabrico e transporte. Embora as utilizações do azoto sejam numerosas, este deve ser manipulado de acordo com os regulamentos de segurança industrial. O azoto deve ser tratado como um potencial perigo para a segurança, independentemente da escala do processo industrial em que está a ser utilizado. O dióxido de carbono é normalmente utilizado como asfixiante, especialmente em sistemas de supressão de incêndio e alguns extintores de incêndio. Da mesma forma, o hélio é não inflamável, não tóxico e não reage com outros elementos em condições normais. No entanto, é essencial saber lidar adequadamente com o hélio, uma vez que um mal-entendido poderia levar a erros de julgamento que poderiam resultar numa situação fatal, uma vez que o hélio é utilizado em muitas situações quotidianas. Quanto a todos os gases, é vital o cuidado e manuseamento adequados dos recipientes de hélio.

Quais são os perigos?

Quando se inala hélio, consciente ou inconscientemente, ele desloca o ar, que é em parte oxigénio. Isto significa que ao inalar, o oxigénio que normalmente estaria presente nos seus pulmões foi substituído por hélio. Como o oxigénio desempenha um papel em muitas funções do seu corpo, incluindo o pensamento e o movimento, demasiadas deslocações representam um risco para a saúde. Tipicamente, inalar um pequeno volume de hélio terá um efeito de alteração da voz, contudo, pode também causar um pouco de vertigem e há sempre o potencial para outros efeitos, incluindo náuseas, náuseas, leveza de cabeça e/ou uma perda temporária de consciência - todos os efeitos da deficiência de oxigénio.

  • Como a maioria dos asfixiantes, o gás nitrogénio, tal como o gás hélio, é incolor e inodoro. Na ausência de dispositivos detectores de azoto, o risco de os trabalhadores industriais serem expostos a uma concentração perigosa de azoto é significativamente maior. Também enquanto o hélio se afasta frequentemente da área de trabalho devido à sua baixa densidade, o nitrogénio permanece, espalhando-se da fuga e não se dispersa rapidamente. Assim, os sistemas que operam com azoto desenvolvem fugas não detectadas, o que constitui uma grande preocupação regulamentar em matéria de segurança. As directrizes de prevenção de saúde ocupacional tentam abordar este risco acrescido utilizando verificações de segurança adicionais do equipamento. O problema são as baixas concentrações de oxigénio que afectam o pessoal. Inicialmente, os sintomas incluem ligeira falta de ar e tosse, tonturas e talvez inquietação, seguidas de dor respiratória rápida e confusão, com inalação prolongada resultando em tensão arterial elevada, broncoespasmo e edema pulmonar.
  • O hélio pode causar exactamente estes mesmos sintomas se estiver contido num volume e não puder escapar. E em cada caso, uma substituição completa do ar pelo gás asfixiante causa um rápido derrame onde uma pessoa simplesmente desmaia onde se encontra, resultando numa variedade de lesões.

Melhores Práticas de Segurança de Gás Balão

De acordo com OSHA directrizes, são necessários testes obrigatórios para espaços industriais confinados, sendo a responsabilidade atribuída a todos os empregadores. A amostragem do ar atmosférico dentro destes espaços ajudará a determinar a sua aptidão para respirar. Os testes a realizar na amostragem do ar mais importante incluem concentrações de oxigénio, mas também a presença de gases combustíveis e testes de vapores tóxicos para identificar a acumulação desses gases.

Independentemente da duração da estadia, a OSHA exige que todos os empregadores forneçam um acompanhante mesmo à porta de um espaço exigido pela licença, sempre que o pessoal estiver a trabalhar dentro dele. Esta pessoa é obrigada a monitorizar constantemente as condições gasosas dentro do espaço e a chamar socorristas se o trabalhador dentro do espaço confinado se tornar insensível. É vital notar que em nenhum momento o acompanhante deve tentar entrar no espaço perigoso para realizar um salvamento sem assistência.

Em áreas restritas a circulação forçada de ar de esboço reduzirá significativamente a acumulação de hélio, azoto ou outro gás asfixiante e limitará as hipóteses de uma exposição fatal. Embora esta estratégia possa ser utilizada em áreas com baixos riscos de fuga de azoto, os trabalhadores estão proibidos de entrar em ambientes de gás nitrogénio puro sem utilizar equipamento respiratório apropriado. Nestes casos, o pessoal deve utilizar equipamento de ar apropriado fornecido artificialmente.

Perigos de Gás Sazonais

No que diz respeito à segurança do gás não há nenhuma estação baixa, embora seja importante saber que existe algo como a segurança do gás sazonal. Quando as temperaturas sobem e descem, ou a chuva cai em dilúvio, pode ter impactos únicos nos seus aparelhos a gás. Para o ajudar a compreender melhor a segurança do gás sazonal, eis tudo o que precisa de saber sobre os principais desafios ao longo do ano.

Segurança do gás nas férias

Quando estiver de férias, a última coisa que lhe vai na mente é a segurança do gás, no entanto, é crucial que se mantenha em segurança. Quer sejam umas longas férias de Verão ou uma escapadela de fim-de-semana de Inverno, está a embalar um monitor de monóxido de carbono na sua mala? Se não, deve estar. A segurança do gás nas férias é tão importante como em casa, isto porque quando está de férias tem menos conhecimento ou controlo sobre o estado de quaisquer aparelhos a gás.

Embora não haja muita diferença entre a segurança do gás numa caravana ou a segurança do gás em barcos, a segurança do gás quando se acampa numa tenda é diferente. Fogões de campismo a gás, aquecedores a gás (tais como aquecedores de mesa e de pátio), e até mesmo churrasqueiras a combustível sólido podem produzir monóxido de carbono (CO), levando assim a um possível envenenamento. Portanto, se forem levados para uma tenda, uma caravana ou qualquer outro espaço fechado, durante ou após a sua utilização, podem emitir CO nocivo, colocando qualquer pessoa à sua volta em perigo.

É também importante lembrar que regulamentos de segurança de gás em outros países podem diferir dos que se encontram fora do Reino Unido. Embora não se possa esperar que saiba o que é legal e o que não é onde quer que vá, pode mantê-lo a si e aos outros à sua volta em segurança, seguindo algumas dicas simples.

Dicas para a segurança do gás nas férias

  • Pergunte se os aparelhos a gás no seu alojamento foram objecto de manutenção e verificação de segurança.
  • Leve consigo um alarme audível de monóxido de carbono.
  • Quando chega, os aparelhos podem não funcionar da mesma forma que os que tem em casa. Se não forem fornecidas instruções, então contacte o seu representante de férias ou o proprietário do alojamento para obter assistência, caso não tenha a certeza.
    • Estar atento aos sinais de aparelhos a gás inseguros
    • Marcas negras e manchas à volta do aparelho
    • Chamas preguiçosas cor-de-laranja ou amarelas em vez de azuis estaladiços
    • Elevados níveis de condensação no seu alojamento
  • Nunca utilizar fogões a gás, fogões ou churrasqueiras para aquecimento, e garantir que têm ventilação adequada quando em uso.

Segurança do BBQ

O Verão é uma época para estar ao ar livre e desfrutar de longas noites. Quando chove ou brilha, acendemos os nossos churrascos, sendo a única preocupação geralmente se vai chover, ou se as salsichas estão completamente cozinhadas. Segurança do gás não é apenas algo para o lar, ou ambientes industriais, os churrascos precisam de atenção especial para garantir a sua segurança.

O monóxido de carbono é um gás que os seus riscos para a saúde são amplamente conhecidos, com muitos de nós a instalar detectores nas nossas casas e empresas. Contudo, a associação do monóxido de carbono está associada aos nossos churrascos é desconhecida. Se o tempo estiver mau, podemos decidir fazer churrascos na porta da garagem ou debaixo de uma tenda ou dossel. Alguns de nós podem até trazer os nossos churrascos para a tenda após a sua utilização. Todos estes podem ser potencialmente fatais, uma vez que o monóxido de carbono se acumula nestas áreas confinadas. Deve-se notar que a zona de cozedura deve estar bem longe dos edifícios e ser bem ventilada com ar fresco, caso contrário corre-se o risco de envenenamento por monóxido de carbono. Conhecer os sinais de envenenamento por monóxido de carbono é vital - Dores de cabeça, Náuseas, Falta de ar, Tonturas, Colapso ou Perda de consciência.

Igualmente com uma lata de gás propano ou butano, armazenamos nas nossas garagens, barracões e até mesmo nas nossas casas, sem saber que existe o risco de uma combinação potencialmente mortal de um espaço fechado, uma fuga de gás e uma faísca de um dispositivo eléctrico. Tudo isto poderia causar uma explosão.

Segurança do gás no Inverno

Quando o tempo frio se instala, as caldeiras a gás e o gás são queimados pela primeira vez em vários meses, para nos manterem quentes. No entanto, este aumento da utilização pode colocar uma pressão extra nos aparelhos e pode resultar na sua avaria. Por conseguinte, a preparação para o Inverno, assegurando os aparelhos a gás - incluindo caldeiras, aquecedores de ar quente, fogões e incêndios - têm sido regularmente verificados e mantidos em segurança por um engenheiro qualificado registado no Gas Safe, que transporta detectores de gás.

O que fazer se suspeitar de uma fuga de gás

Se conseguir cheirar gás ou pensar que pode haver uma fuga de gás numa propriedade, barco ou caravana, é importante agir rapidamente. Uma fuga de gás representa um risco de incêndio ou mesmo de explosão.

Deveria:

  • Extinguir quaisquer chamas nuas para parar a hipótese de incêndio ou explosão.
  • Desligar o gás no contador, se possível (e seguro para o fazer).
  • Abrir janelas para permitir a ventilação e assegurar a dissipação do gás.
  • Evacuar a área imediatamente para prevenir o risco de vida.
  • Informe imediatamente o seu representante de férias ou proprietário de alojamento ou equivalente.
  • Procure atenção médica se se sentir indisposto ou mostrar sinais de envenenamento por monóxido de carbono.

Sintomas de envenenamento por monóxido de carbono

Os sinais e sintomas de envenenamento por monóxido de carbono são muitas vezes confundidos com outras doenças, tais como intoxicação alimentar ou gripe. Os sintomas incluem:

  • Dor de cabeça
  • Dizziness
  • A falta de ar
  • Náuseas ou enjoos
  • Colapso
  • Perda de consciência

Qualquer pessoa que suspeite estar a sofrer de envenenamento por monóxido de carbono deve sair imediatamente para o ar fresco e procurar cuidados médicos urgentes.

Detectores pessoais de gás

O Clip SDG O detector pessoal de gás é concebido para resistir às condições de trabalho industriais mais duras e proporciona tempo de alarme líder na indústria, níveis de alarme variáveis e registo de eventos, bem como soluções de teste de colisão e calibração fáceis de utilizar.

Gasman com sensor de CO especializado é um detetor de gás único robusto e compacto, concebido para utilização nos ambientes mais difíceis. O seu design compacto e leve torna-o a escolha ideal para a deteção de gases industriais.

Manter a segurança dos serviços de emergência e dos socorristas

O pessoal dos serviços de emergência/primeiros socorros depara-se com riscos relacionados com o gás como parte do seu trabalho. No entanto, a avaliação imediata do ambiente que os rodeia é fundamental à chegada e a monitorização contínua durante uma situação de salvamento é vital para a saúde de todos os envolvidos.

Que Gases estão Presentes?

Gases tóxicos como o monóxido de carbono (CO) e o cianeto de hidrogénio (HCN) estão presentes se houver um incêndio. Individualmente, estes gases são perigosos e mesmo mortais, os dois combinados são exponencialmente piores, conhecidos como os gémeos tóxicos.

O monóxido de carbono (CO) é um gás incolor, inodoro, insípido e venenoso produzido pela queima incompleta de combustíveis à base de carbono, incluindo gás, petróleo, madeira, e carvão. Só quando o combustível não queima totalmente é que o excesso de CO é produzido, o que é venenoso. Quando o excesso de CO entra no corpo, impede o sangue de levar oxigénio às células, tecidos, e órgãos. O CO é venenoso porque não se consegue vê-lo, prová-lo ou cheirá-lo, mas o CO pode matar rapidamente sem aviso prévio.

O Cianeto de Hidrogénio (HCN) é um químico industrial importante e são produzidas mais de um milhão de toneladas a nível mundial todos os anos. O Cianeto de Hidrogénio (HCN) é um líquido ou gás incolor ou azul claro que é extremamente inflamável. Tem um ligeiro odor a amêndoa amarga, embora isto não seja detectável por todos. Há muitas utilizações para o cianeto de hidrogénio, principalmente no fabrico de tintas, plásticos, fibras sintéticas (por exemplo, nylon) e outros produtos químicos. O cianeto de hidrogénio e outros compostos de cianeto também têm sido utilizados como fumigante para controlar pragas. Com outros usos sendo na limpeza de metais, jardinagem, extracção de minérios, galvanoplastia, tinturaria, impressão e fotografia. O cianeto de sódio e potássio e outros sais de cianeto podem ser feitos a partir de cianeto de hidrogénio.

Quais são os riscos?

Estes gases são perigosos individualmente. No entanto, a exposição a ambos combinados é ainda mais perigosa, pelo que um detector adequado de gases CO e HCN é essencial onde os gémeos tóxicos são encontrados. Normalmente, o fumo visível é um bom guia, contudo os Gémeos Tóxicos são ambos incolores. Combinados estes gases são normalmente encontrados em incêndios. nos quais, os bombeiros e outro pessoal de emergência são treinados para procurarem o envenenamento por CO nos incêndios. No entanto, devido ao aumento da utilização de plásticos e fibras sintéticas, o HCN pode ser libertado até 200ppm em incêndios domésticos e industriais. Estes dois gases causam milhares de mortes anuais relacionadas com incêndios, pelo que necessita de maior consideração na detecção de gás de incêndio.

A presença de HCN no ambiente pode nem sempre levar à exposição. No entanto, para que o HCN cause quaisquer efeitos adversos à saúde, é necessário entrar em contacto com ele, ou seja, respirar, comer, beber, ou através do contacto com a pele ou os olhos. Após a exposição a qualquer produto químico, os efeitos adversos para a saúde dependem de uma série de factores, tais como a quantidade a que está exposto (dose), a forma como é exposto, a duração da exposição, a forma do produto químico e se foi exposto a qualquer outro produto químico. Como o HCN é muito tóxico, pode impedir o organismo de utilizar correctamente o oxigénio. Os primeiros sinais de exposição ao HCN incluem dor de cabeça, doença, tonturas, confusão e até sonolência. Uma exposição substancial pode levar rapidamente à inconsciência, à adaptação, ao coma e possivelmente à morte. Se uma exposição substancial for sobrevivida, pode haver efeitos a longo prazo de danos no cérebro e outros danos no sistema nervoso. Os efeitos do contacto com a pele requerem uma grande superfície da pele para serem expostos.

Que produtos estão disponíveis?

A utilização de detectores de gás portáteis é essencial para as equipas de serviço de emergência/primeiros socorros. Os gases tóxicos são produzidos quando os materiais são queimados, o que significa que podem estar presentes gases e vapores inflamáveis.

O nosso Gas-Pro detetor portátil multigases oferece a deteção de até 5 gases numa solução compacta e robusta. Tem um visor de fácil leitura montado na parte superior, o que o torna fácil de utilizar e ideal para a deteção de gases em espaços confinados. Uma bomba interna opcional, activada com a placa de fluxo, facilita os testes de pré-entrada e permite que o Gas-Pro seja utilizado nos modos de bomba ou de difusão. Alterações do pelistor no terreno para metano, hidrogénio, propano, etano e acetileno (0-100% LEL, com resolução de 1% LEL). Ao permitir alterações no pelistor no terreno, os detectores Gas-Pro dão aos utilizadores a flexibilidade de testar convenientemente uma gama de gases inflamáveis, sem necessidade de vários sensores ou detectores. Para além disso, podem continuar a calibrar utilizando os recipientes de metano existentes, poupando tempo e dinheiro. O O sensor de gás para cianeto de hidrogénio tem uma gama de medição de monitorização de 0-30 ppm com uma resolução de 0,1 ppm.

Tetra 3 O monitor portátil multigases pode detetar e monitorizar os quatro gases mais comuns (monóxido de carbono, metano, oxigénio e sulfureto de hidrogénio), mas também uma gama alargada: amoníaco, ozono, dióxido de enxofre, H2 CO filtrado (para instalações siderúrgicas) e dióxido de carbono IR (apenas para utilização em áreas seguras).

T4 O detetor de gás portátil 4 em 1 oferece uma proteção eficaz contra 4 perigos de gás comuns: monóxido de carbono, sulfureto de hidrogénio, gases inflamáveis e esgotamento de oxigénio. O detetor multigases T4 inclui agora uma melhor deteção de pentano, hexano e outros hidrocarbonetos de cadeia longa.

O Clip Single Gas Detetor (SDG) é um detetor de gás industrial concebido para utilização em áreas perigosas e oferece uma monitorização fiável e duradoura de duração fixa numa embalagem compacta, leve e sem manutenção. O Clip SGD tem uma duração de 2 anos e está disponível para sulfureto de hidrogénio (H2S), monóxido de carbono (CO) ou oxigénio (O2).

Gasman é um dispositivo com todas as funções numa embalagem compacta e leve - perfeito para clientes que necessitam de mais opções de sensores, TWA e capacidade de dados. Está disponível com sensor O2 de longa duração e tecnologia de sensor MPS.

O SensorMPS fornece tecnologia avançada que elimina a necessidade de calibrar e fornece um 'LEL verdadeiro' para a leitura de quinze gases inflamáveis, mas pode detectar todos os gases inflamáveis num ambiente multiespecífico. Muitas indústrias e aplicações utilizam ou têm como produto por produto vários gases dentro do mesmo ambiente. Isto pode ser um desafio para a tecnologia de sensores tradicionais que podem detectar apenas um único gás para o qual foram calibrados e pode resultar numa leitura imprecisa e mesmo em falsos alarmes que podem parar o processo ou a produção. Os desafios enfrentados em ambientes com múltiplas espécies de gases podem ser frustrantes e contraproducentes. O nosso sensor MPS™ pode detectar com precisão vários gases ao mesmo tempo e identificar instantaneamente o tipo de gás. O nosso sensor MPS™ tem uma compensação ambiental a bordo e não requer um factor correccional. Leituras inexactas e falsos alarmes são coisa do passado.

Crowcon Connect é uma solução de segurança de gás e de percepção de conformidade que utiliza um serviço de dados em nuvem flexível que oferece uma visão accionável da frota de detectores. Este software baseado em nuvem fornece uma visão de nível superior da utilização de dispositivos com painel de instrumentos mostrando a proporção de dispositivos que são atribuídos ou não atribuídos a um operador, para a região ou área específica seleccionada. O Fleet Insights fornece uma visão geral dos dispositivos ligados/desligados, sincronizados ou em alarme.

Porque é que os profissionais de HVAC estão em risco devido ao monóxido de carbono - e como o gerir

O monóxido de carbono (CO) é um gás inodoro, incolor e insípido que é também altamente tóxico e potencialmente inflamável (a níveis superiores: 10,9% Volume ou 109.000ppm). É produzido pela combustão incompleta de combustíveis fósseis tais como madeira, petróleo, carvão, parafina, GPL, gasolina e gás natural. Muitos sistemas e unidades HVAC queimam combustíveis fósseis, pelo que não é difícil perceber porque é que os profissionais de HVAC podem estar expostos ao CO no seu trabalho. Talvez tenha sentido, no passado, tonturas ou náuseas, ou teve uma dor de cabeça durante ou depois de um trabalho? Neste post do blog, vamos analisar o CO e os seus efeitos, e considerar como é que os riscos podem ser geridos.

Como é gerado o CO?

Como já vimos, o CO é produzido pela combustão incompleta de combustíveis fósseis. Isto acontece geralmente quando há uma falta geral de manutenção, ar insuficiente - ou o ar é de qualidade insuficiente - para permitir a combustão completa.

Por exemplo, a combustão eficiente do gás natural gera dióxido de carbono e vapor de água. Mas se houver ar inadequado onde essa combustão tem lugar, ou se o ar utilizado para a combustão ficar viciado, a combustão falha e produz fuligem e CO. Se houver vapor de água na atmosfera, isto pode reduzir ainda mais o nível de oxigénio e acelerar a produção de CO.

Quais são os perigos do CO?

Normalmente, o corpo humano utiliza hemoglobina para transportar oxigénio através da corrente sanguínea. No entanto, é mais fácil para a hemoglobina absorver e fazer circular o CO do que o oxigénio. Consequentemente, quando há CO à volta, o perigo surge porque a hemoglobina do corpo "prefere" o CO ao oxigénio. Quando a hemoglobina absorve CO desta forma, fica saturada com CO, que é rápida e eficazmente transportado para todas as partes do corpo sob a forma de carboxihaemoglobina.

Isto pode causar uma série de problemas físicos, dependendo de quanto CO está no ar. Por exemplo:

200 partes por milhão (ppm) podem causar dores de cabeça em 2-3 horas.
400 ppm podem causar dores de cabeça e náuseas em 1-2 horas, ameaçando a vida em 3 horas.
800 ppm podem causar convulsões, dores de cabeça graves e vómitos em menos de uma hora, inconsciência dentro de 2 horas.
1,500 ppm podem causar tonturas, náuseas e inconsciência em menos de 20 minutos; morte dentro de 1 hora.
6,400 ppm podem causar inconsciência após duas a três respirações; morte dentro de 15 minutos.

Porque é que os trabalhadores do HVAC estão em risco?

Alguns dos eventos mais comuns em definições de AVAC podem levar à exposição a CO, por exemplo:

Trabalhar em espaços confinados, tais como caves ou pombais.
Trabalhar em aparelhos de aquecimento que estejam a funcionar mal, em mau estado de conservação, e/ou com selos quebrados ou desgastados; gripes e chaminés bloqueadas, partidas ou colapsadas; permitir a entrada de produtos de combustão na área de trabalho.
Trabalhar em aparelhos com gripe aberta, especialmente se a chaminé estiver a derramar, a ventilação for deficiente e/ou a chaminé estiver bloqueada.
Trabalhar em chaminés sem combustão e/ou fogões a gás, especialmente quando o volume da sala é de tamanho inadequado e/ou a ventilação é deficiente.

Quanto é demasiado?

O Health and Safety Executive (HSE) publica uma lista de limites de exposição no local de trabalho para muitas substâncias tóxicas, incluindo o CO. Pode descarregar a última versão gratuitamente do seu website em www.hse.gov.uk/pubns/books/eh40.htm, mas na altura da redacção (Novembro de 2021) os limites de CO são:

Limite de exposição no local de trabalho

Gás Fórmula Número CAS Limite de exposição a longo prazo
(8-hr Período de referência da TWA)
Limite de Exposição de Curto Prazo
(15-min. Período de referência)
Monóxido de carbono CO 630-08-0 20ppm (partes por milhão) 100ppm (partes por milhão)

Como posso permanecer seguro e provar o cumprimento?

A melhor maneira de se proteger dos perigos do CO é usar um detector portátil de gás CO de alta qualidade. Crowcon's Clip for CO é um detector de gás pessoal leve de 93g que soa a 90db de alarme sempre que o desgaste está a ser exposto a 30 e 100 ppm de CO. O Clip CO é um detector de gás portátil descartável com uma vida útil de 2 anos ou um máximo de 2900 minutos de alarme; o que for mais cedo.

Porque é que as certificações de gás são importantes?

Quem classifica os certificados de gás?

Uma das preocupações mais significativas num local de trabalho industrial é o risco potencial de incêndio ou/e explosão. Contudo, existem directivas que estabelecem normas que visam o controlo de atmosferas explosivas. ATEX (ATmosphere EXplosibles) é o nome normalmente dado a duas directivas europeias para o controlo de ambientes explosivos. IECEX (International Electrotechnical Commission for Explosive Atmospheres) é a certificação que todos os dispositivos eléctricos são obrigados a passar pela Comissão Electrotécnica Internacional para assegurar que cumprem uma norma mínima de segurança que determinará se podem ser utilizados em ambientes perigosos ou explosivos. Para a US Underwriters Limited (UL) é uma organização de segurança que fornece produtos que devem ser vendidos no mercado com autenticação que são seguros para utilização. Da mesma forma, as Normas Nacionais Canadianas (CSA) fornecem produtos colocados no mercado ou postos em serviço com uma certificação de segurança que indica que estão aptos a ser utilizados. Contudo, o nível de integridade da segurança (SIL) é o nível de redução do risco proporcionado por uma função de segurança, ou para especificar um nível alvo de redução do risco. Os certificados fornecidos tanto pela ATEX como pela Sil são aquilo em que os operadores confiam para evitar incêndios e explosões, mas também para manter todos os que se encontram em locais de trabalho industriais seguros.

Perigos no local de trabalho

Há demasiados perigos no local de trabalho para contar, contudo, um local perigoso é declarado como uma área em que a substância combustível ou inflamável é ou tem o potencial de estar presente. Os locais perigosos são especificados pelo tipo de perigo combustível e a probabilidade da sua presença. Estas classificações são determinadas por classificações estabelecidas pelo National Electric Code (NEC) nos Estados Unidos e pelas International Electrochemical Commissions (IEC) a nível internacional. Estas são definidas de duas formas; ou por Class/Sistema de Classificação/Divisão na América do Norte ou por Zonas/Grupos a nível internacional.

Classe e Divisões

Divisões:

Divisão 1: Há uma probabilidade de o perigo estar presente durante condições normais de funcionamento

Divisão 2: O perigo está presente durante condições anormais (isto é, em caso de derrame ou fuga)

Aulas:

Classe 1: Gás

Classe 2: Poeira

Classe 3: Fibras

Zonas e Grupos 

Zonas: identificar a possibilidade de um perigo estar presente

Zona 0: O perigo está presente continuamente e por um período de tempo prolongado

Zona 1: Há uma hipótese de o perigo estar presente mas em funcionamento normal condições

Zona 2: Não é provável que o perigo esteja presente em condições normais durante um período prolongado de hora

Grupos: Identificar o tipo particular de perigo

Grupo 1: Riscos específicos da indústria mineira

Grupo 2: Ter um grupo que identifique o perigo é gasoso por natureza

A: Metano, propano, e outros gases semelhantes

B: Etileno e gases ou aqueles que representam um risco de perigo semelhante

C: Acetileno, hidrogénio ou riscos similares

Grupo 3: Poeiras e outros grupos por tamanho da partícula e tipo de material

Compreender os Logotipos de Certificação

Os logótipos localizados no equipamento identificam quem ou que associação testou e avaliou o equipamento, garantindo a sua segurança com base em normas estabelecidas. Muitas associações certificam o equipamento como sendo à prova de explosão, esclarecendo que qualquer ignição será contida dentro do dispositivo e não representará uma ameaça para o ambiente exterior. Esta acção é intrinsecamente segura, impedindo assim que o dispositivo crie uma faísca que possa conduzir a uma explosão num ambiente perigoso.

Porque é que os certificados são importantes

Embora seja difícil identificar toda a classificação, para garantir que o equipamento foi certificado seguro, é essencial procurar logótipos familiares como sinal primário de que o equipamento é seguro e não representará uma ameaça para o ambiente. Os certificados permitem uma visualização fácil para o operador não só garantir que os dispositivos funcionam correctamente, mas também proteger todos aqueles que se encontram no ambiente perigoso, o seu conjunto à medida.

Qual é a diferença entre um pellistor e um sensor IR?

Os sensores desempenham um papel fundamental quando se trata de monitorizar gases e vapores inflamáveis. Ambiente, tempo de resposta e intervalo de temperatura são apenas algumas das coisas a considerar quando se decide qual é a melhor tecnologia.

Neste blog, estamos a destacar as diferenças entre os sensores pellistor (catalíticos) e os sensores infravermelhos (IR), porque existem prós e contras para ambas as tecnologias, e como saber qual a melhor forma de se adequar a diferentes ambientes.

Sensor Pellistor

Um sensor de gás pellistor é um dispositivo utilizado para detectar gases ou vapores combustíveis que se encontram dentro do intervalo explosivo para avisar da subida dos níveis de gás. O sensor é uma bobina de fio de platina com um catalisador inserido no interior para formar um pequeno grânulo activo que baixa a temperatura a que o gás se inflama à sua volta. Quando um gás combustível está presente, a temperatura e resistência do grânulo aumenta em relação à resistência do grânulo de referência inerte. A diferença na resistência pode ser medida, permitindo a medição do gás presente. Devido aos catalisadores e esferas, um sensor pellistor é também conhecido como um sensor de esferas catalítico ou catalítico.

Originalmente criados na década de 1960 pelo cientista e inventor britânico, Alan Baker, os sensores de pellistor foram inicialmente concebidos como uma solução para a lâmpada de segurança contra as chamas e técnicas canárias de longa duração. Mais recentemente, os dispositivos são utilizados em aplicações industriais e subterrâneas, tais como minas ou túneis, refinarias de petróleo e plataformas petrolíferas.

Os sensores Pellistor têm um custo relativamente mais baixo devido às diferenças no nível de tecnologia em comparação com os sensores IR, contudo pode ser necessário substituí-los com maior frequência.

Com uma saída linear correspondente à concentração de gás, podem ser utilizados factores de correcção para calcular a resposta aproximada dos pelistores a outros gases inflamáveis, o que pode fazer dos pelistores uma boa escolha quando há múltiplos vapores inflamáveis presentes.

Não só isto, mas também os pelistores dentro de detectores fixos com saídas em ponte mV, como o Xgard tipo 3, são altamente adequados para áreas de difícil acesso, uma vez que os ajustes de calibração podem ter lugar no painel de controlo local.

Por outro lado, os pelistores lutam em ambientes onde há pouco ou pouco oxigénio, uma vez que o processo de combustão pelo qual trabalham, requer oxigénio. Por este motivo, os instrumentos de espaço confinado que contêm sensores LEL tipo pellistor catalítico incluem frequentemente um sensor para medir o oxigénio.

Em ambientes onde os compostos contêm silício, chumbo, enxofre e fosfatos, o sensor é susceptível de envenenamento (perda irreversível de sensibilidade) ou inibição (perda reversível de sensibilidade), o que pode ser um perigo para as pessoas no local de trabalho.

Se expostos a concentrações elevadas de gás, os sensores pellistor podem ser danificados. Em tais situações, os pelistores não "falham em segurança", o que significa que não é dada qualquer notificação quando uma falha do instrumento é detectada. Qualquer falha só pode ser identificada através de testes de colisão antes de cada utilização, para garantir que o desempenho não está a ser degradado.

 

Sensor IR

A tecnologia de sensores infravermelhos baseia-se no princípio de que a luz infravermelha (IR) de um determinado comprimento de onda será absorvida pelo gás alvo. Normalmente existem dois emissores dentro de um sensor que geram feixes de luz infravermelha: um feixe de medição com um comprimento de onda que será absorvido pelo gás alvo, e um feixe de referência que não será absorvido. Cada feixe é de igual intensidade e é desviado por um espelho dentro do sensor para um foto-receptor. A diferença resultante na intensidade, entre o feixe de referência e o feixe de medição, na presença do gás alvo é utilizada para medir a concentração de gás presente.

Em muitos casos, a tecnologia de sensores infravermelhos (IR) pode ter uma série de vantagens sobre os pelistores ou ser mais fiável em áreas onde o desempenho dos sensores baseados em pelistores pode ser imperioso - incluindo ambientes com baixo teor de oxigénio e inertes. Apenas o feixe de infravermelhos interage com as moléculas de gás circundantes, dando ao sensor a vantagem de não enfrentar a ameaça de envenenamento ou inibição.

A tecnologia IV fornece testes à prova de falhas. Isto significa que se o feixe infravermelho falhar, o utilizador será notificado desta falha.

Gas-Pro A TK utiliza um sensor duplo de infravermelhos - a melhor tecnologia para os ambientes especializados em que os detectores de gás normais não funcionam, quer se trate de purga de tanques ou de libertação de gás.

Um exemplo de um dos nossos detectores baseados em IR é o Crowcon Gas-Pro IR, ideal para a indústria do petróleo e do gás, com a disponibilidade para detetar metano, pentano ou propano em ambientes potencialmente explosivos e com baixo teor de oxigénio, onde os sensores pelistor podem ter dificuldades. Também utilizamos um sensor de %LEL e %Volume de gama dupla no nosso Gas-Pro TK, que é adequado para medir e alternar entre ambas as medições, para que esteja sempre a funcionar em segurança com o parâmetro correto.

No entanto, os sensores IR não são todos perfeitos, pois só têm uma saída linear para o gás alvo; a resposta de um sensor IR a outros vapores inflamáveis então o gás alvo será não linear.

Tal como os pelistores são susceptíveis a envenenamento, os sensores IR são susceptíveis a choques mecânicos e térmicos graves e também fortemente afectados por alterações de pressão brutas. Além disso, os sensores infravermelhos não podem ser utilizados para detectar gás Hidrogénio, pelo que sugerimos a utilização de pelistores ou sensores electromecânicos nesta circunstância.

O principal objectivo da segurança é seleccionar a melhor tecnologia de detecção para minimizar os perigos no local de trabalho. Esperamos que, identificando claramente as diferenças entre estes dois sensores, possamos sensibilizar para a forma como vários ambientes industriais e perigosos podem permanecer seguros.

Para mais orientações sobre sensores pellistor e IR, pode descarregar o nosso whitepaper que inclui ilustrações e diagramas para ajudar a determinar a melhor tecnologia para a sua aplicação.

Não encontrará sensores Crowcon a dormir no local de trabalho

Os sensores MOS (semicondutores de óxido metálico) têm sido vistos como uma das soluções mais recentes para combater a detecção de sulfureto de hidrogénio (H2S) em temperaturas flutuantes de até 50°C até meados dos anos vinte, bem como em climas húmidos como o Médio Oriente.

No entanto, os utilizadores e os profissionais de detecção de gás perceberam que os sensores MOS não são a tecnologia de detecção mais fiável. Este blogue cobre a razão pela qual esta tecnologia pode revelar-se difícil de manter e os problemas que os utilizadores podem enfrentar.

Um dos maiores inconvenientes da tecnologia é a responsabilidade do sensor "ir dormir" quando não encontra gás durante um período de tempo. É claro que este é um enorme risco de segurança para os trabalhadores da zona... ninguém quer enfrentar um detector de gás que, em última análise, não detecta gás.

Os sensores MOS requerem um aquecedor para se igualarem, permitindo-lhes produzir uma leitura consistente. Contudo, quando inicialmente ligado, o aquecedor leva tempo a aquecer, causando um atraso significativo entre a ligação dos sensores e a resposta ao gás perigoso. Por conseguinte, os fabricantes de MOS recomendam aos utilizadores que permitam o equilíbrio do sensor durante 24-48 horas antes da calibração. Alguns utilizadores podem achar isto um entrave à produção, bem como um tempo prolongado para a manutenção e manutenção.

O atraso do aquecedor não é o único problema. Utiliza muita energia que coloca um problema adicional de mudanças dramáticas de temperatura no cabo de alimentação DC, causando alterações na voltagem como a cabeça do detector e imprecisões na leitura do nível de gás. 

Como o seu nome de semicondutor de óxido metálico sugere, os sensores baseiam-se em semicondutores que se reconhecem à deriva com alterações na humidade - algo que não é ideal para o clima húmido do Médio Oriente. Noutras indústrias, os semicondutores são frequentemente encapsulados em resina epóxi para evitar isto, no entanto, num sensor de gás este revestimento seria o mecanismo de detecção de gás uma vez que o gás não conseguiria alcançar o semicondutor. O dispositivo também está aberto ao ambiente ácido criado pela areia local no Médio Oriente, afectando a condutividade e precisão da leitura do gás.

Outra implicação de segurança significativa de um sensor MOS é que com saída a níveis próximos de zero de H2S podem ser falsos alarmes. Muitas vezes, o sensor é utilizado com um nível de "supressão de zero" no painel de controlo. Isto significa que o painel de controlo pode mostrar uma leitura de zero durante algum tempo após os níveis de H2S terem começado a subir. Este registo tardio da presença de gás de baixo nível pode então atrasar o aviso de uma fuga grave de gás, a oportunidade de evacuação e o risco extremo de vidas.

Os sensores MOS primam pela rapidez de reacção ao H2S, pelo que a necessidade de um sinter contraria este benefício. Devido ao H2S ser um gás "pegajoso", é capaz de ser adsorvido em superfícies incluindo as de sinterização, o que resulta numa diminuição da velocidade a que o gás atinge a superfície de detecção.

Para resolver os inconvenientes dos sensores MOS, revisitámos e melhorámos a tecnologia eletroquímica com o nosso novo sensor H2Sde alta temperatura (HT) para XgardIQ. Os novos desenvolvimentos do nosso sensor permitem um funcionamento até 70°C a 0-95%rh - uma diferença significativa em relação a outros fabricantes que afirmam uma deteção até 60°C, especialmente nos ambientes adversos do Médio Oriente.

O nosso novo sensor HT H2S provou ser uma solução fiável e resiliente para a detecção de H2S a altas temperaturas - uma solução que não adormece no trabalho!

Clique aqui para obter mais informações sobre o nosso novo sensor H2Sde alta temperatura (HT) para XgardIQ.

Uma solução engenhosa para o problema das altas temperaturas H2S

Devido ao calor extremo no Médio Oriente subindo até 50°C na altura do Verão, a necessidade de uma detecção de gás fiável é crítica. Neste blogue, concentramo-nos na necessidade de detecção de sulfureto de hidrogénio (H2S)- um desafio a longo prazo para a indústria de detecção de gás do Médio Oriente.

Combinando um novo truque com tecnologia antiga, temos a resposta para uma deteção de gás fiável para ambientes no rigoroso clima do Médio Oriente. O nosso novo sensor H2Sde alta temperatura (HT) para XgardIQ foi revisitado e melhorado pela nossa equipa de especialistas da Crowcon, utilizando uma combinação de duas adaptações engenhosas ao seu design original.

Nos sensores H2S tradicionais, a detecção baseia-se na tecnologia electroquímica, onde os eléctrodos são utilizados para detectar alterações induzidas num electrólito pela presença do gás alvo. Contudo, as altas temperaturas combinadas com baixa humidade fazem com que o electrólito seque, prejudicando o desempenho do sensor, pelo que o sensor tem de ser substituído regularmente; o que significa elevados custos de substituição, tempo e esforços.

Tornar o novo sensor tão avançado em relação ao seu predecessor é a sua capacidade de reter os níveis de humidade dentro do sensor, impedindo a evaporação mesmo em climas de alta temperatura. O sensor actualizado é baseado em gel electrolítico, adaptado para o tornar mais higroscópico e evitar a desidratação durante mais tempo.

Além disso, o poro na caixa do sensor foi reduzido, limitando a humidade da fuga. Este gráfico indicava uma perda de peso que é indicativa de perda de humidade. Quando armazenado a 55°C ou 65°C durante um ano, apenas 3% do peso é perdido. Outro sensor típico perderia 50% do seu peso em 100 dias, nas mesmas condições.

Para uma óptima detecção de fugas, o nosso novo e notável sensor dispõe também de uma caixa de sensor remoto opcional, enquanto o ecrã do transmissor e os controlos do botão de pressão são posicionados para um acesso seguro e fácil para os operadores a uma distância até 15metros.

 

Os resultados do nosso novo sensor HT H2Spara XgardIQ falam por si, com um ambiente de funcionamento até 70°C a 0-95%rh, bem como com um tempo de resposta de 0-200ppm e T90 inferior a 30 segundos. Ao contrário de outros sensores para a deteção de H2S, oferece uma esperança de vida superior a 24 meses, mesmo em climas difíceis como o Médio Oriente.

A resposta aos desafios da detecção de gás no Médio Oriente cai nas mãos do nosso novo sensor, proporcionando aos seus utilizadores um desempenho rentável e fiável.

Clique aqui para mais informações sobre o Crowcon HT H2S sensou.

Mais uma vez, Gas-Pro é o "detetor de eleição" para uma expedição ambiental a um vulcão

Todos nós conhecemos o termo aquecimento global e vemos frequentemente estatísticas sobre os efeitos potenciais que isto poderia ter no nosso planeta. Uma dessas previsões é que até ao final deste século o globo aumentará a temperatura entre 0,8 e 4 graus.

O que muitos de nós podem não saber é que os vulcões, que são um fenómeno completamente natural, contribuem com uma quantidade significativa de gases para a nossa atmosfera. E estes gases não são actualmente considerados nos modelos climáticos do mundo, o que significa que existe potencialmente uma grande margem de erro.

No entanto, isto pode estar prestes a mudar, pois Yves Moussallam, um inspirador vulcanólogo francês, que com o apoio da Rolex e dos Prémios Rolex para Empresas de 2019, fez da sua missão compreender os vulcões e o seu impacto no nosso planeta. Aventura-se nestes ambientes dramáticos e perigosos para tomar medidas que são utilizadas por cientistas e climatologistas para melhorar os seus modelos de previsão.

Ao observar os vulcões, e ao recolher estes dados de importância vital, está a ajudar o mundo a compreender o impacto que os vulcões estão a ter nas alterações climáticas.

Yves não é um estranho para as expedições vulcânicas. Em 2015, conduziu uma pequena equipa à zona de subducção Nazca na América do Sul. A sua missão era fornecer a primeira estimativa precisa e em grande escala do fluxo de várias espécies de gás volátil.

Para manter a equipa segura, Yves seleccionou o equipamento de deteção da Crowcon e ficou encantado com a funcionalidade leve, limpa e segura do Gas man e do Gas-Pro.

Agora Yves está de volta com uma nova expedição e voltou-se para Crowcon mais uma vez. Desta vez, Yves dirige-se para a região da Melanésia em Itália. Os satélites, utilizados para seguir o comportamento vulcânico, mostraram que esta região é responsável por aproximadamente um terço das emissões globais de gás vulcânico.

A sua expedição escalará estes vulcões e fará medições directamente na pluma vulcânica.

Há dois métodos principais para medir gases em vulcões. O primeiro é via satélite que capta imagens do espaço. O segundo é ir directamente para o campo e medir o gás libertado na sua fonte.

Os peritos acreditam que o método de trabalhar directamente no terreno é o mais preciso, uma vez que está posicionado muito mais perto da fonte, pelo que existe um risco reduzido de erro.

Para efetuar estas medições é necessário equipamento experimentado, testado e fiável e, com o historial comprovado da Crowcon, Yves recorreu novamente a Gas-Pro.

O sistema Crowcon Gas-Pro inclui uma função de registo de dados a bordo que fornecerá uma linha extra de dados e uma ideia da exposição média, o que é importante para expedições que se estendem por períodos mais longos. É também leve, o que é extremamente benéfico quando se transporta equipamento volumoso.

Todos na Crowcon desejam a Yves uma expedição segura e bem sucedida e esperamos que os dados que ele reúne nos ajudem a compreender o impacto que os vulcões têm no nosso mundo.

#Rolex #RolexAwards #PerpetualPlanet #Perpétuo

Ajudá-lo a manter-se seguro durante a época do churrasco

Quem não gosta de um churrasco de Verão? Venha chover ou brilhar, acendemos os nossos churrascos, sendo a única preocupação geralmente se vai chover, ou se as salsichas estão completamente cozinhadas.

Embora estes sejam importantes, (especialmente certificar-se que as salsichas são cozinhadas!) muitos de nós desconhecemos completamente os riscos potenciais.

O monóxido de carbono é um gás que recebeu a sua quota-parte justa de publicidade com muitos de nós a instalar detectores nas nossas casas e empresas, mas o monóxido de carbono completamente desconhecido está associado aos nossos churrascos.

Se o tempo estiver mau, podemos decidir fazer churrasco na porta da garagem ou debaixo de uma tenda ou dossel. Alguns de nós podem até trazer os nossos churrascos para a tenda após a sua utilização. Todos estes podem ser potencialmente fatais, uma vez que o monóxido de carbono se acumula nestas áreas confinadas.

Igualmente com uma lata de gás propano ou butano, armazenamos nas nossas garagens, barracões e até mesmo nas nossas casas, sem saber que existe o risco de uma combinação potencialmente mortal de um espaço fechado, uma fuga de gás e uma faísca de um dispositivo eléctrico. Tudo isto poderia causar uma explosão.

Dito isto, os churrascos estão aqui para ficar e se os utilizarmos em segurança, são uma óptima maneira de passar uma tarde de Verão. Portanto, aqui está uma selecção de factos e dicas da nossa equipa de segurança na Crowcon que esperamos o ajudem a desfrutar de um Verão seguro e delicioso pela frente!

 

Factos rápidos e dicas sobre carvão vegetal para churrasco:

  • O monóxido de carbono é um gás incolor e inodoro, por isso só porque não o podemos cheirar ou ver, não significa que não esteja lá
  • O monóxido de carbono é um subproduto da queima de combustíveis fósseis, que inclui carvão vegetal e gás de BBQ
  • Utilize sempre o seu BBQ numa área aberta bem ventilada, pois pode acumular-se até níveis tóxicos em espaços fechados
  • Nunca trazer um carvão para uma tenda, mesmo que pareça frio. Lembre-se de que um churrasco a arder ainda irá emitir monóxido de carbono.
  • Esteja atento e aja rapidamente se alguém experimentar os sintomas de envenenamento por monóxido de carbono que incluem dores de cabeça, tonturas, falta de ar, náuseas, confusão, colapso e inconsciência. Estes sintomas podem ser potencialmente fatais

 

Factos rápidos e dicas sobre as latas de gás:

  • Os barbecues a gás tendem a utilizar propano, butano ou GPL (que é uma mistura dos dois)
  • Os BBQs a gás têm buracos no fundo para evitar a acumulação de gás. Isto porque o gás é mais pesado do que o ar, pelo que se acumula em áreas baixas ou preenche um espaço de baixo para cima.
  • Para evitar a acumulação de gás, as latas devem ser sempre armazenadas no exterior, em pé, numa área bem ventilada, longe de fontes de calor, e longe de espaços baixos fechados
  • Se guardar o seu BBQ na garagem, certifique-se de que desliga o recipiente de gás e que o guarda no exterior
  • Quando estiver a usar o seu BBQ, mantenha o canister de lado para que não fique debaixo e próximo da fonte de calor e posicione o BBQ num espaço aberto
  • Manter sempre o recipiente longe de fontes de ignição ao mudar de recipiente
  • Certifique-se sempre de desligar o gás no churrasco, bem como no regulador do canister, após a utilização