Molecular Property Spectrometer™ Sensores de gases inflamáveis

Desenvolvidos pela NevadaNano, os sensores Molecular Property Spectrometer™ (MPS™) representam a próxima geração de detectores de gases inflamáveis. O MPS™ pode detetar rapidamente mais de 15 gases inflamáveis caracterizados de uma só vez. Até há pouco tempo, quem necessitasse de monitorizar gases inflamáveis tinha de selecionar um detetor de gases inflamáveis tradicional que contivesse um sensor de pelistor calibrado para um gás específico, ou que contivesse um sensor de infravermelhos (IR) que também varia na saída de acordo com o gás inflamável que está a ser medido e, por conseguinte, tem de ser calibrado para cada gás. Embora estas soluções sejam vantajosas, nem sempre são ideais. Por exemplo, ambos os tipos de sensores requerem calibração regular e os sensores de pelistor catalítico também necessitam de testes de impacto frequentes para garantir que não foram danificados por contaminantes (conhecidos como agentes de "envenenamento do sensor") ou por condições adversas. Em alguns ambientes, os sensores têm de ser mudados frequentemente, o que é dispendioso em termos de dinheiro e de tempo de inatividade, ou de disponibilidade do produto. A tecnologia de infravermelhos não consegue detetar o hidrogénio - que não tem assinatura de infravermelhos, e tanto os detectores de infravermelhos como os de pelistores detectam por vezes acidentalmente outros gases (ou seja, não calibrados), fornecendo leituras imprecisas que podem desencadear falsos alarmes ou preocupar os operadores.

Com base em mais de 50 anos de experiência em gás, a Crowcon é pioneira na tecnologia avançada de sensores tecnologia de sensor MPS que detecta e identifica com precisão mais de 15 gases inflamáveis diferentes num único dispositivo. Agora disponível nos principais detectores fixos e portáteis Xgard Bright detetor fixo e detectores portáteis Gasman e T4x.

Vantagens dos sensores de gás inflamável Molecular Property Spectrometer™

O sensor sensor MPS oferece características chave que proporcionam benefícios tangíveis no mundo real ao operador e, consequentemente, aos trabalhadores. Estas incluem:

Sem calibração

Quando se implementa um sistema que contém um detetor de cabeça fixa, é prática comum efetuar a manutenção de acordo com o calendário recomendado pelo fabricante. Isto implica custos regulares contínuos, bem como a possibilidade de interromper a produção ou o processo para efetuar a manutenção ou mesmo para obter acesso ao detetor ou a vários detectores. Também pode haver um risco para o pessoal quando os detectores são montados em ambientes particularmente perigosos. A interação com um sensor MPS é menos rigorosa porque não existem modos de falha não revelados, desde que haja ar presente. Seria errado dizer que não há necessidade de calibração. Uma calibração de fábrica, seguida de um teste de gás durante o comissionamento, é suficiente, pois há uma calibração interna automatizada sendo realizada a cada 2 segundos durante toda a vida útil do sensor. O que se pretende realmente dizer é - não há calibração do cliente.

Gás de múltiplas espécies - 'True LEL'™

Muitas indústrias e aplicações utilizam ou têm como subproduto vários gases no mesmo ambiente. Esta situação pode constituir um desafio para a tecnologia de sensores tradicional, que só consegue detetar um único gás para o qual foi calibrada no nível correto e pode resultar em leituras imprecisas e até em falsos alarmes que podem interromper o processo ou a produção se estiver presente outro tipo de gás inflamável. A falta de resposta ou a resposta excessiva frequentemente enfrentada em ambientes com vários gases pode ser frustrante e contraproducente, comprometendo a segurança das melhores práticas do utilizador. O sensor MPS™ pode detetar com precisão vários gases ao mesmo tempo e identificar instantaneamente o tipo de gás. Além disso, o sensor MPS™ tem uma compensação ambiental integrada e não requer um fator de correção aplicado externamente. Leituras imprecisas e alarmes falsos são coisa do passado.

Sem envenenamento de sensores

Em certos ambientes, os tipos de sensores tradicionais podem estar em risco de envenenamento. A pressão, a temperatura e a humidade extremas podem danificar os sensores, enquanto as toxinas e os contaminantes ambientais podem "envenenar" os sensores, conduzindo a um desempenho gravemente comprometido. Os detectores em ambientes onde possam ser encontrados venenos ou inibidores, os testes regulares e frequentes são a única forma de garantir que o desempenho não está a ser degradado. A falha do sensor devido a envenenamento pode ser uma experiência dispendiosa. A tecnologia do sensor MPS™ não é afetada pelos contaminantes do ambiente. Os processos que têm contaminantes agora têm acesso a uma solução que opera de forma confiável com um projeto à prova de falhas para alertar o operador e oferecer tranquilidade ao pessoal e aos ativos localizados em ambientes perigosos. Além disso, o sensor MPS não é prejudicado por concentrações elevadas de gás inflamável, que podem causar rachaduras em tipos de sensores catalíticos convencionais, por exemplo. O sensor MPS continua a funcionar.

Hidrogénio (H2)

A utilização do hidrogénio em processos industriais está a aumentar, uma vez que se procura encontrar uma alternativa mais limpa à utilização do gás natural. A deteção de hidrogénio está atualmente limitada a pelistores, semicondutores de óxido metálico, tecnologia de sensores electroquímicos e de condutividade térmica menos precisos devido à incapacidade dos sensores de infravermelhos para detetar hidrogénio. Quando confrontada com os desafios destacados acima em envenenamento ou alarmes falsos, a solução atual pode deixar o operador com testes de colisão e manutenção frequentes, além dos desafios de alarme falso. O sensor MPS™ oferece uma solução muito melhor para a deteção de hidrogénio, eliminando os desafios enfrentados com a tecnologia de sensores tradicionais. Um sensor de hidrogênio de longa duração e resposta relativamente rápida que não requer calibração durante todo o ciclo de vida do sensor, sem o risco de envenenamento ou alarmes falsos, pode economizar significativamente no custo total de propriedade e reduz a interação com a unidade, resultando em paz de espírito e risco reduzido para os operadores que utilizam a tecnologia MPS™. Tudo isso é possível graças à tecnologia MPS™, que é o maior avanço na deteção de gás em várias décadas.

Como funciona o sensor de gás inflamável Molecular Property Spectrometer™?

Um transdutor de sistema micro-eletromecânico (MEMS) - composto por uma membrana inerte à escala de um micrómetro com um aquecedor e um termómetro incorporados - mede as alterações nas propriedades térmicas do ar e dos gases na sua proximidade. Múltiplas medições, semelhantes a um "espetro" térmico, bem como dados ambientais são processados para classificar o tipo e a concentração de gás(es) inflamável(eis) presente(s), incluindo misturas de gases. A isto chama-se TrueLEL.

  1. O gás desarma-se rapidamente através da malha do sensor e entra na câmara do sensor, entrando no módulo do sensor MEMS.
  2. O aquecedor de joules aquece rapidamente a placa de aquecimento.
  3. As condições ambientais em tempo real (temperatura, pressão e humidade) são medidas pelo sensor ambiental integrado.
  4. A energia necessária para aquecer a amostra é medida com precisão utilizando um termómetro de resistência.
  5. O nível de gás, corrigido em função da categoria de gás e das condições ambientais, é calculado e enviado para o detetor de gás.

MPS nos nossos produtos

Xgard Bright

Muitas indústrias e aplicações utilizam ou têm como subproduto vários gases no mesmo ambiente. Isto pode ser um desafio para a tecnologia de sensores tradicional, que só pode detetar um único gás para o qual foram calibrados no nível correto e pode resultar em leituras imprecisas. 

Xgard Bright com tecnologia de sensor MPS™ proporciona um'TrueLEL™'para todos os gases inflamáveis em qualquer ambiente de múltiplas espécies semsem necessidade de calibraçãooumanutenção programadadurante o seuciclo de vida de mais de 5 anosreduzindo as interrupções nas suas operações e aumentando o tempo de atividade. Isto, por sua vez, reduz a interação com o detetor, resultando numcusto total de propriedade mais baixoao longo do ciclo de vida do sensor e um risco reduzido para o pessoal e para o resultado da produção para efetuar uma manutenção regular.OXgard Bright MPS™ éfeito sob medida para a deteção de hidrogênioCom o sensor MPS™, apenas um dispositivo é necessário, economizando espaço sem comprometer a segurança.

Gasman

A nossa tecnologia de sensor MPS™ foi concebida para os actuais ambientes multigás, resiste à contaminação e evita o envenenamento do sensor. Dê paz de espírito às suas equipas com um dispositivo concebido para qualquer ambiente. A tecnologia MPS nos nossos monitores de gás portáteis detecta hidrogénio e hidrocarbonetos comuns automaticamente num único sensor. O nosso fiável e seguro Gasman com tecnologia de sensor líder da indústria que as suas aplicações exigem.

Gasman O MPS™ fornece um'TrueLEL™'para todos os gases inflamáveis em qualquer ambiente de múltiplas espécies semrequerer calibraçãooumanutenção programadadurante o seuciclo de vida de mais de 5 anosreduzindo as interrupções nas suas operações e aumentando o tempo de atividade.Sendoresistente a venenose comduração da bateria duplicadaé mais provável que os operadores nunca fiquem sem um dispositivo.OGasman MPS™ é aprovado pela ATEXZona 0 aprovadapermitindo que os operadores entrem numa área em que uma atmosfera de gás explosivo esteja presente continuamente ou por longos períodos sem medo de que o seu Gasman incendeie o ambiente.

T4x

T4xUma vez que a indústria exige continuamente melhorias na segurança, redução do impacto ambiental e menor custo de propriedade, os nossos equipamentos portáteis fiáveis e de confiança T4x satisfaz essas necessidades com as suas tecnologias de sensores líderes da indústria. Foi especificamente concebido para satisfazer as exigências das suas aplicações. 

T4x ajuda as equipas de operações a concentrarem-se em tarefas de maior valor acrescentado aoreduzindo o número de substituições de sensoresem 75% e aumentando a fiabilidade dos sensores.

Ao assegurar a conformidade em todas as instalações, o T4x ajuda os gestores de saúde e segurança aoeliminando a necessidade de assegurar a calibração de cada dispositivopara o gás inflamável relevante, uma vez que detecta com precisão mais de 15 de uma só vez.Sendo resistente a venenose comduração da bateria duplicadaos operadores têm mais probabilidades de nunca ficarem sem um dispositivo.T4x reduz ocusto total de propriedade a 5 anosem mais de 25% epoupa 12g de de chumbo por detetoro que o torna muito mais fácil de reciclar no final da sua vida útil e melhor para o planeta.

Para mais informações sobre a Crowcon, visite https://www.crowcon.com ou para mais informações sobre MPS visite https://www.crowcon.com/mpsinfixed/

Uma breve história de detecção de gás 

A evolução da detecção de gás mudou consideravelmente ao longo dos anos. Ideias novas e inovadoras, desde canários a equipamento de monitorização portátil, proporcionam aos trabalhadores uma monitorização precisa e contínua dos gases.

A Revolução Industrial foi o catalisador no desenvolvimento da detecção de gás devido à utilização de combustível que mostrou grande promessa, tal como o carvão. Uma vez que o carvão pode ser extraído da terra através da exploração mineira ou subterrânea, ferramentas como capacetes e luzes de chama foram a sua única protecção contra os perigos da exposição ao metano no subsolo, que ainda estavam por descobrir. O gás metano é incolor e inodoro, o que torna difícil saber a sua presença até que um padrão perceptível de problemas de saúde seja descoberto. Os riscos de exposição ao gás resultaram na experimentação de métodos de detecção para preservar a segurança dos trabalhadores durante anos futuros.

Uma necessidade de detecção de gás

Assim que a exposição ao gás se tornou aparente, os mineiros compreenderam que precisavam de saber se a mina tinha alguma bolsa de gás metano onde estivessem a trabalhar. No início do século XIX, o primeiro detector de gás foi registado com muitos mineiros a usarem luzes de chama nos seus capacetes para poderem ver enquanto trabalhavam, pelo que ser capaz de detectar o metano extremamente inflamável era primordial. O trabalhador usava uma manta espessa e húmida sobre os seus corpos enquanto transportava um pavio comprido com a extremidade acesa em chamas. Entrando nas minas, o indivíduo movia a chama à volta e ao longo das paredes à procura de bolsas de gás. Se fosse encontrada, uma reacção inflamar-se-ia e seria notada à tripulação enquanto a pessoa que detectasse estava protegida da manta. Com o tempo, foram desenvolvidos métodos mais avançados de detecção de gás.

A Introdução das Canárias

A detecção de gás passou de humanos para canários devido aos seus altos chilros e sistemas nervosos semelhantes para controlar os padrões respiratórios. Os canários eram colocados em certas áreas da mina, a partir daí os trabalhadores verificavam os canários para cuidar deles, bem como para ver se a sua saúde tinha sido afectada. Durante os turnos de trabalho, os mineiros ouviam os canários a chilrear. Se um canário começasse a abanar a sua gaiola, isso era um forte indicador da exposição a uma bolsa de gás na qual começava a afectar a sua saúde. Os mineiros evacuavam então a mina e observavam que a sua entrada era insegura. Em algumas ocasiões, se o canário parasse de chilrear todos juntos, os mineiros sabiam que deveriam sair mais depressa antes que a exposição ao gás tivesse uma oportunidade de afectar a sua saúde.

A chama da luz

A luz da chama foi a evolução seguinte para a detecção de gás na mina, como resultado de preocupações com a segurança animal. Enquanto fornecia luz aos mineiros, a chama foi alojada num invólucro de detonador de chamas que absorvia qualquer calor e capturava a chama para evitar que esta acendesse qualquer metano que pudesse estar presente. A concha exterior continha uma peça de vidro com três incisões na horizontal. A linha do meio foi definida como o ambiente ideal de gás, enquanto a linha inferior indicava um ambiente pobre em oxigénio, e a linha superior indicava exposição ao metano ou um ambiente enriquecido em oxigénio. Os mineiros acenderiam a chama num ambiente com ar fresco. Se a chama baixasse ou começasse a morrer, isso indicaria que a atmosfera tinha uma baixa concentração de oxigénio. Se a chama crescesse, os mineiros sabiam que o metano estava presente com oxigénio, ambos os casos indicando que precisavam de sair da mina.

O Sensor Catalítico

Embora a luz da chama fosse um desenvolvimento na tecnologia de detecção de gás, não era, no entanto, uma abordagem de "tamanho único" para todas as indústrias. Portanto, o sensor catalítico foi o primeiro detector de gás que tem uma semelhança com a tecnologia moderna. Os sensores funcionam com base no princípio de que quando um gás se oxida, produz calor. O sensor catalítico funciona através da mudança de temperatura, que é proporcional à concentração de gás. Embora isto tenha sido um passo em frente no desenvolvimento da tecnologia necessária para a detecção de gás, ainda exigia inicialmente uma operação manual para receber uma leitura.

Tecnologia dos tempos modernos

A tecnologia de detecção de gás foi tremendamente desenvolvida desde o início do século XIX, no qual o primeiro detector de gás foi registado. Com agora mais de cinco tipos diferentes de sensores comummente utilizados em todas as indústrias, incluindo Electroquímica, Contas catalíticas (Pellistor), Detector de fotoionização (PID) e Tecnologia de infravermelhos (RI), juntamente com os sensores mais modernos Propriedade Molecular Spectrometer™ (MPS) e Oxigénio de Longa Vida (LLO2), os modernos detectores de gás são altamente sensíveis, precisos mas, o mais importante, fiáveis, o que permite que todo o pessoal permaneça seguro reduzindo o número de acidentes mortais no local de trabalho.

Os benefícios dos Sensores MPS 

Desenvolvido porNevadaNano, Propriedade Molecular Spectrometer™ (MPS™) os sensores representam a nova geração de detectores de gás inflamável. MPS™ pode detectar rapidamente mais de 15 gases inflamáveis caracterizados de uma só vez. Até há pouco tempo, qualquer pessoa que precisasse de monitorizar gases inflamáveis tinha de seleccionar um detector de gases inflamáveis tradicional contendo um pellistor sensor calibrado para um gás específico, ou que contenha um infravermelho (IR) sensor que também varia na saída de acordo com o gás inflamável que está a ser medido, e por isso precisa de ser calibrado para cada gás. Embora estas continuem a ser soluções benéficas, nem sempre são ideais. Por exemplo, ambos os tipos de sensores requerem calibração regular e os sensores do pellistor catalítico também necessitam de testes de colisão frequentes para garantir que não foram danificados por contaminantes (conhecidos como agentes de "envenenamento do sensor") ou por condições adversas. Em alguns ambientes, os sensores devem ser frequentemente substituídos, o que é dispendioso tanto em termos de dinheiro como de tempo de paragem, ou de disponibilidade do produto. A tecnologia IR não pode detectar hidrogénio - que não tem assinatura IR, e tanto os detectores IR como os pellistor detectam por vezes incidentalmente outros gases (isto é, não calibrados), dando leituras inexactas que podem desencadear falsos alarmes ou preocupar os operadores.

O MPS™ O sensor fornece características chave que proporcionam benefícios tangíveis no mundo real ao operador e, consequentemente, aos trabalhadores. Estes incluem:

Sem calibração

Ao implementar um sistema contendo um detector de cabeça fixa, é prática comum a manutenção segundo um horário recomendado definido pelo fabricante. Isto implica custos regulares contínuos, bem como potenciais perturbações na produção ou no processo de manutenção ou mesmo acesso ao detector ou a múltiplos detectores. Também pode haver um risco para o pessoal quando os detectores são montados em ambientes particularmente perigosos. A interacção com um sensor MPS é menos rigorosa porque não existem modos de falha não revelados, desde que haja ar presente. Seria errado dizer que não há requisitos de calibração. Uma calibração de fábrica, seguida de um teste de gás quando a colocação em funcionamento é suficiente, porque há uma calibração interna automatizada a ser realizada a cada 2 segundos durante toda a vida útil do sensor. O que realmente se pretende é - nenhuma calibração do cliente.

O Xgard Bright com tecnologia de sensor MPS™ não necessita de calibração. Isto, por sua vez, reduz a interação com o detetor, resultando num custo total de propriedade mais baixo ao longo do ciclo de vida do sensor e num risco reduzido para o pessoal e para o resultado da produção para efetuar uma manutenção regular. Continua a ser aconselhável verificar periodicamente a limpeza do detetor de gás, uma vez que o gás não consegue passar através de acumulações espessas de material obstrutivo e, por conseguinte, não chega ao sensor.

Gás multi espécies - 'True LEL'™

Muitas indústrias e aplicações utilizam ou têm como subproduto múltiplos gases dentro do mesmo ambiente. Isto pode ser um desafio para a tecnologia de sensores tradicionais que podem detectar apenas um único gás para o qual foram calibrados ao nível correcto e pode resultar numa leitura imprecisa e mesmo em falsos alarmes que podem parar o processo ou a produção se outro tipo de gás inflamável estiver presente. A falta de resposta ou a sobre-resposta frequentemente enfrentada em ambientes com vários gases pode ser frustrante e contraproducente comprometendo a segurança das melhores práticas de utilização. O sensor MPS™ pode detectar com precisão vários gases ao mesmo tempo e identificar instantaneamente o tipo de gás. Além disso, o sensor MPS™ tem uma compensação ambiental a bordo e não requer um factor correccional aplicado externamente. Leituras inexactas e falsos alarmes são coisa do passado.

Sem envenenamento por sensor

Em certos ambientes, os tipos de sensores tradicionais podem estar sob risco de envenenamento. A pressão extrema, temperatura e humidade têm todos o potencial de danificar os sensores, enquanto que as toxinas e contaminantes ambientais podem "envenenar" os sensores, levando a um desempenho gravemente comprometido. Detectores em ambientes onde podem ser encontrados venenos ou inibidores, testes regulares e frequentes são a única forma de garantir que o desempenho não está a ser degradado. A falha dos sensores devido a envenenamento pode ser uma experiência dispendiosa. A tecnologia do sensor MPS™ não é afectada por contaminações no ambiente. Os processos que têm contaminantes têm agora acesso a uma solução que funciona de forma fiável com design seguro contra falhas para alertar o operador a oferecer uma paz de espírito ao pessoal e bens localizados em ambiente perigoso. Além disso, o sensor MPS não é prejudicado por concentrações elevadas de gás inflamável, o que pode causar rachaduras em tipos de sensores catalíticos convencionais, por exemplo. O sensor MPS continua a funcionar.

Hidrogénio (H2)

A utilização do hidrogénio em processos industriais está a aumentar, uma vez que se procura encontrar uma alternativa mais limpa à utilização do gás natural. A deteção de hidrogénio está atualmente limitada a pelistores, semicondutores de óxido metálico, electroquímicos e tecnologia de sensores de condutividade térmica menos precisos devido à incapacidade dos sensores de infravermelhos para detetar hidrogénio. Quando confrontada com os desafios destacados acima em envenenamento ou alarmes falsos, a solução atual pode deixar o operador com testes de colisão e manutenção frequentes, além dos desafios de alarme falso. O sensor MPS™ oferece uma solução muito melhor para a deteção de hidrogénio, eliminando os desafios enfrentados com a tecnologia de sensores tradicionais. Um sensor de hidrogênio de longa duração e resposta relativamente rápida que não requer calibração durante todo o ciclo de vida do sensor, sem o risco de envenenamento ou alarmes falsos, pode economizar significativamente no custo total de propriedade e reduz a interação com a unidade, resultando em paz de espírito e risco reduzido para os operadores que utilizam a tecnologia MPS™. Tudo isso é possível graças à tecnologia MPS™, que é o maior avanço na deteção de gás em várias décadas. O Gasman com MPS está preparado para o hidrogénio (H2). Um único sensor MPS detecta com precisão o hidrogénio e os hidrocarbonetos comuns numa solução à prova de falhas e resistente a venenos, sem recalibração.

Para mais informações sobre Crowcon, visite https://www.crowcon.com ou para mais sobre MPSTM visite https://www.crowcon.com/mpsinfixed/

Quanto tempo durará o meu sensor de gás?

Os detectores de gás são amplamente utilizados em muitas indústrias (tais como tratamento de água, refinaria, petroquímica, aço e construção, para citar algumas) para proteger pessoal e equipamento de gases perigosos e seus efeitos. Os utilizadores de dispositivos portáteis e fixos estarão familiarizados com os custos potencialmente significativos de manter os seus instrumentos a funcionar em segurança ao longo da sua vida operacional. Entende-se que os sensores de gás fornecem uma medição da concentração de alguns analitos de interesse, tais como CO (monóxido de carbono), CO2 (dióxido de carbono), ou NOx (óxido de azoto). Existem dois sensores de gás mais utilizados em aplicações industriais: electroquímicos para medição de gases tóxicos e oxigénio, e pelistores (ou esferas catalíticas) para gases inflamáveis. Nos últimos anos, a introdução de ambos Oxigénio e MPS (Espectrómetro de Propriedade Molecular) permitiram uma maior segurança.

Como posso saber quando o meu sensor falhou?

Houve várias patentes e técnicas aplicadas a detectores de gás nas últimas décadas que afirmam ser capazes de determinar quando um sensor electroquímico falhou. A maioria destas, no entanto, apenas inferem que o sensor está a funcionar através de alguma forma de estimulação de eléctrodos e pode fornecer uma falsa sensação de segurança. O único método seguro de demonstrar que um sensor está a funcionar é a aplicação de gás de teste e a medição da resposta: um teste de colisão ou calibração completa.

Sensor Electroquímico

Os sensoreselectroquímicos são os mais utilizados no modo de difusão em que o gás no ambiente entra através de um buraco na face da célula. Alguns instrumentos utilizam uma bomba para fornecer amostras de ar ou gás ao sensor. Uma membrana de PTFE é colocada sobre o buraco para impedir a entrada de água ou óleos na célula. As gamas e sensibilidades dos sensores podem ser variadas na concepção, utilizando furos de diferentes tamanhos. Os furos maiores proporcionam maior sensibilidade e resolução, enquanto que os furos mais pequenos reduzem a sensibilidade e resolução, mas aumentam o alcance.

Factores que afectam a vida do sensor electroquímico

Há três factores principais que afectam a vida do sensor, incluindo a temperatura, a exposição a concentrações de gás extremamente elevadas e a humidade. Outros factores incluem os eléctrodos dos sensores e as vibrações extremas e choques mecânicos.

Os extremos de temperatura podem afectar a vida útil do sensor. O fabricante indicará uma gama de temperaturas de funcionamento para o instrumento: tipicamente -30˚C a +50˚C. Os sensores de alta qualidade serão, contudo, capazes de resistir a excursões temporárias para além destes limites. A exposição curta (1-2 horas) a 60-65˚C para sensores H2S ou CO (por exemplo) é aceitável, mas incidentes repetidos resultarão na evaporação do electrólito e deslocamentos na leitura da linha de base (zero) e numa resposta mais lenta.

A exposição a concentrações de gás extremamente elevadas também pode comprometer o desempenho do sensor. Os sensores electroquímicos são tipicamente testados pela exposição a até dez vezes o seu limite de concepção. Os sensores construídos com material catalisador de alta qualidade devem ser capazes de resistir a tais exposições sem alterações na química ou perda de desempenho a longo prazo. Os sensores com menor carga de catalisador podem sofrer danos.

A influência mais considerável na vida do sensor é a humidade. A condição ambiental ideal para sensores electroquímicos é 20˚Celsius e 60% RH (humidade relativa). Quando a humidade ambiente aumenta para além de 60%RH, a água será absorvida pelo electrólito causando diluição. Em casos extremos, o conteúdo líquido pode aumentar 2-3 vezes, resultando potencialmente em fugas do corpo do sensor, e depois através dos pinos. Abaixo de 60%RH a água do electrólito começará a desidratar. O tempo de resposta pode ser significativamente prolongado à medida que o electrólito ou desidratado. Os eléctrodos dos sensores podem, em condições invulgares, ser envenenados por gases interferentes que se adsorvem no catalisador ou reagem com ele criando subprodutos que inibem o catalisador.

Vibrações extremas e choques mecânicos também podem danificar os sensores, fraturando as soldaduras que ligam os eléctrodos de platina, ligando tiras (ou fios em alguns sensores) e pinos juntos.

Expectativa de vida 'Normal' do Sensor Electroquímico

Os sensores electroquímicos para gases comuns tais como monóxido de carbono ou sulfureto de hidrogénio têm uma vida operacional tipicamente declarada de 2-3 anos. Os sensores de gases mais exóticos, como o fluoreto de hidrogénio, podem ter uma vida útil de apenas 12-18 meses. Em condições ideais (temperatura e humidade estáveis na região de 20˚C e 60%RH) sem incidência de contaminantes, sabe-se que os sensores electroquímicos funcionam há mais de 4000 dias (11 anos). A exposição periódica ao gás alvo não limita a vida útil destas minúsculas células de combustível: os sensores de alta qualidade têm uma grande quantidade de material catalisador e condutores robustos que não se esgotam com a reacção.

Sensor Pellistor

Os sensoresPellistor consistem em duas bobinas de arame emparelhadas, cada uma delas embutida numa conta de cerâmica. A corrente é passada através das bobinas, aquecendo os grânulos para aproximadamente 500˚C. Queimaduras de gás inflamável no grânulo e o calor adicional gerado produz um aumento na resistência da bobina que é medida pelo instrumento para indicar a concentração de gás.

Factores que afectam a vida do sensor Pellistor

Os dois principais factores que afectam a vida útil do sensor incluem a exposição a uma concentração elevada de gás e o posicionamento ou inibição do sensor. O choque mecânico extremo ou vibração também pode afectar a vida útil do sensor. A capacidade da superfície do catalisador para oxidar o gás reduz quando este foi envenenado ou inibido. A vida útil do sensor mais de dez anos é comum em aplicações onde compostos inibidores ou envenenadores não estão presentes. Os pelistores de maior potência têm maior actividade catalítica e são menos vulneráveis ao envenenamento. As esferas mais porosas também têm maior actividade catalítica à medida que o seu volume de superfície aumenta. Uma concepção inicial qualificada e processos de fabrico sofisticados asseguram a máxima porosidade dos grânulos. A exposição a elevadas concentrações de gás (>100%LEL) também pode comprometer o desempenho do sensor e criar um desvio no sinal de zero/linha de base. A combustão incompleta resulta em depósitos de carbono no talão: o carbono 'cresce' nos poros e cria danos mecânicos. O carbono pode, contudo, ser queimado ao longo do tempo para revelar de novo os locais catalíticos. O choque mecânico extremo ou vibração pode também, em casos raros, causar uma quebra nas bobinas do pellistor. Esta questão é mais prevalente nos detectores de gás portáteis do que nos detectores de gás de ponto fixo, uma vez que são mais susceptíveis de serem largados, e os pelistores utilizados são de menor potência (para maximizar a duração da bateria) e, portanto, utilizam bobinas de arame mais delicadas e mais finas.

Como posso saber quando o meu sensor falhou?

Um pellistor que tenha sido envenenado permanece electricamente operacional mas pode não responder ao gás. Assim, o detector e o sistema de controlo de gás pode parecer estar num estado saudável, mas uma fuga de gás inflamável pode não ser detectada.

Sensor de oxigénio

Ícone Long Life 02

O nosso novo sensor de oxigénio sem chumbo e de longa duração não tem fios comprimidos de chumbo que o electrólito tem de penetrar, permitindo a utilização de um electrólito espesso, o que significa que não há fugas, não há corrosão induzida por fugas, e maior segurança. A robustez adicional deste sensor permite-nos oferecer, com confiança, uma garantia de 5 anos por mais um elemento mental.

Os sensores deoxigénio de longa duração têm uma longa vida útil de 5 anos, com menos tempo de paragem, menor custo de propriedade, e impacto ambiental reduzido. Medem com precisão o oxigénio numa vasta gama de concentrações de 0 a 30% de volume e são a próxima geração de detecção de gases O2.

Sensor MPS

MPS O sensor fornece tecnologia avançada que elimina a necessidade de calibrar e fornece um 'LEL (limite explosivo inferior) verdadeiro' para a leitura de quinze gases inflamáveis, mas pode detectar todos os gases inflamáveis num ambiente multiespecífico, resultando em custos de manutenção contínuos mais baixos e numa interacção reduzida com a unidade. Isto reduz o risco para o pessoal e evita dispendiosos tempos de paragem. O sensor MPS é também imune ao envenenamento dos sensores.  

A falha do sensor devido a envenenamento pode ser uma experiência frustrante e dispendiosa. A tecnologia do sensor MPS™não é afectada por contaminações no ambiente. Os processos que têm contaminantes têm agora acesso a uma solução que funciona de forma fiável com design seguro contra falhas para alertar o operador a oferecer uma paz de espírito ao pessoal e bens localizados em ambiente perigoso. É agora possível detectar vários gases inflamáveis, mesmo em ambientes agressivos, utilizando apenas um sensor que não requer calibração e tem uma vida útil esperada de pelo menos 5 anos.