Visão geral da indústria: Resíduos para Energia

Os resíduos para a indústria energética utilizam vários métodos de tratamento de resíduos. Os resíduos sólidos municipais e industriais são convertidos em electricidade, e por vezes em calor para processamento industrial e sistemas de aquecimento urbano. O processo principal é obviamente a incineração, mas as etapas intermédias de pirólise, gaseificação e digestão anaeróbia são por vezes utilizadas para converter os resíduos em subprodutos úteis que são depois utilizados para gerar energia através de turbinas ou outros equipamentos. Esta tecnologia está a ganhar um amplo reconhecimento mundial como uma forma de energia mais ecológica e limpa do que a queima tradicional de combustíveis fósseis, e como um meio de reduzir a produção de resíduos.

Tipos de resíduos a energia

Incineração

A incineração é um processo de tratamento de resíduos que envolve a combustão de substâncias ricas em energia contidas nos materiais residuais, normalmente a altas temperaturas de cerca de 1000 graus C. As instalações industriais de incineração de resíduos são normalmente referidas como instalações de valorização energética de resíduos e são muitas vezes centrais eléctricas de dimensões consideráveis por direito próprio. A incineração e outros sistemas de tratamento de resíduos a alta temperatura são frequentemente descritos como "tratamento térmico". Durante o processo, os resíduos são convertidos em calor e vapor que podem ser utilizados para accionar uma turbina a fim de gerar electricidade. Este método tem actualmente uma eficiência de cerca de 15-29%, embora tenha potencial para melhorias.

Pyrolysis

A pirólise é um processo diferente de tratamento de resíduos onde a decomposição de resíduos sólidos de hidrocarbonetos, tipicamente plásticos, ocorre a altas temperaturas sem a presença de oxigénio, numa atmosfera de gases inertes. Este tratamento é geralmente conduzido a uma temperatura igual ou superior a 500 °C, fornecendo calor suficiente para desconstruir as moléculas de cadeia longa, incluindo os biopolímeros, em hidrocarbonetos de massa inferior mais simples.

Gasificação

Este processo é utilizado para produzir combustíveis gasosos a partir de combustíveis mais pesados e de resíduos que contêm material combustível. Neste processo, as substâncias carbonáceas são convertidas em dióxido de carbono (CO2), monóxido de carbono (CO) e uma pequena quantidade de hidrogénio a alta temperatura. Neste processo, o gás é gerado, o que constitui uma boa fonte de energia utilizável. Este gás pode então ser utilizado para produzir electricidade e calor.

Gasificação por Arco de Plasma

Neste processo, uma tocha de plasma é utilizada para ionizar material rico em energia. A Syngas é produzida, podendo depois ser utilizada para fazer fertilizantes ou gerar electricidade. Este método é mais uma técnica de eliminação de resíduos do que um meio sério de gerar gás, consumindo muitas vezes tanta energia quanto o gás que produz pode fornecer.

Razões do desperdício para a energia

Uma vez que esta tecnologia está a ganhar amplo reconhecimento a nível mundial no que diz respeito à produção de resíduos e à procura de energia limpa.

  • Evita as emissões de metano dos aterros sanitários
  • Compensação das emissões de gases com efeito de estufa (GEE) da produção de electricidade a partir de combustíveis fósseis
  • Recupera e recicla recursos valiosos, tais como metais
  • Produz energia de base e vapor limpos e fiáveis
  • Utiliza menos terra por megawatt do que outras fontes de energia renovável
  • Fonte de combustível renovável sustentável e estável (em comparação com o vento e a energia solar)
  • Destrói resíduos químicos
  • Resulta em baixos níveis de emissões, normalmente muito abaixo dos níveis permitidos
  • Destrói cataliticamente óxidos de azoto (NOx), dioxinas e furanos usando uma redução catalítica selectiva (SCR)

Quais são os perigos do gás?

Há muitos processos para transformar resíduos em energia, entre os quais, instalações de biogás, utilização de resíduos, piscina de lixiviados, combustão e recuperação de calor. Todos estes processos representam riscos de gás para aqueles que trabalham nestes ambientes.

Dentro de uma fábrica de biogás, é produzido biogás. Este é formado quando materiais orgânicos como os resíduos agrícolas e alimentares são decompostos por bactérias num ambiente pobre em oxigénio. Este é um processo chamado digestão anaeróbica. Quando o biogás é capturado, pode ser utilizado para produzir calor e electricidade para motores, microturbinas e células de combustível. Claramente, o biogás tem um elevado teor de metano, bem como um substancial teor de sulfureto de hidrogénio (H2S), o que gera múltiplos perigos graves em termos de gás. (Leia o nosso blogue para mais informações sobre biogás). Contudo, existe um risco elevado de incêndio e explosão, perigos de espaço confinado, asfixia, esgotamento do oxigénio e envenenamento por gás, geralmente por H2Sou amoníaco (NH3). Os trabalhadores de uma unidade de biogás devem ter detectores pessoais de gás que detectem e monitorizem gás inflamável, oxigénio e gases tóxicos, como o H2Se o CO.

Dentro de uma recolha de lixo é comum encontrar metano de gás inflamável (CH4) e gases tóxicos H2S, CO e NH3. Isto deve-se ao facto de que os depósitos de lixo são construídos a vários metros de profundidade e os detectores de gás são normalmente montados no alto em áreas que tornam esses detectores difíceis de manter e calibrar. Em muitos casos, um sistema de amostragem é uma solução prática, uma vez que as amostras de ar podem ser levadas para um local conveniente e medidas.

O lixiviado é um líquido que drena (lixiviados) de uma área onde os resíduos são recolhidos, com piscinas de lixiviado apresentando uma série de perigos de gás. Estes incluem o risco de gás inflamável (risco de explosão), H2S(veneno, corrosão), amoníaco (veneno, corrosão), CO (veneno) e níveis adversos de oxigénio (asfixia). Piscina de lixiviados e passagens que conduzem à piscina de lixiviados que requerem monitorização de CH4, H2S, CO, NH3, oxigénio (O2) eCO2. Vários detectores de gás devem ser colocados ao longo de rotas para a piscina de lixiviados, com saída ligada a painéis de controlo externos.

A combustão e a recuperação de calor requerem a detecção de O2 e de gases tóxicos dióxido de enxofre (SO2) e CO. Todos estes gases representam uma ameaça para aqueles que trabalham em áreas de caldeiras.

Outro processo que é classificado como um risco de gás é um purificador de ar de exaustão. O processo é perigoso uma vez que o gás de combustão da incineração é altamente tóxico. Isto porque contém poluentes tais como dióxido de azoto (NO2), SO2, cloreto de hidrogénio (HCL) e dioxina. NO2 e SO2 são gases com efeito de estufa importantes, enquanto que o HCL todos estes tipos de gases aqui mencionados são prejudiciais para a saúde humana.

Para ler mais sobre os resíduos para a indústria energética, visite a nossa página da indústria.

Visão geral da indústria: Alimentação e Bebidas 

A indústria alimentar e de bebidas (F&B) inclui todas as empresas envolvidas no processamento de matérias-primas alimentares, bem como as que as embalam e distribuem. Isto inclui alimentos frescos, preparados, bem como alimentos embalados, e bebidas alcoólicas e não alcoólicas.

A indústria alimentar e de bebidas está dividida em dois grandes segmentos, que são a produção e a distribuição de bens comestíveis. O primeiro grupo, a produção, inclui a transformação de carnes e queijos e a criação de refrigerantes, bebidas alcoólicas, alimentos embalados, e outros alimentos modificados. Qualquer produto destinado ao consumo humano, para além de produtos farmacêuticos, passa por este sector. A produção abrange também a transformação de carnes, queijos e alimentos embalados, lacticínios e bebidas alcoólicas. O sector de produção exclui alimentos e produtos frescos que são produzidos directamente através da agricultura, uma vez que estes são abrangidos pela agricultura.

O fabrico e o processamento de alimentos e bebidas criam riscos substanciais de exposição ao fogo e a gases tóxicos. Muitos gases são utilizados para cozer, processar e refrigerar alimentos. Estes gases podem ser altamente perigosos - ou tóxicos, inflamáveis, ou ambos.

Perigos de gás

Processamento alimentar

Os métodos secundários de processamento alimentar incluem a fermentação, aquecimento, refrigeração, desidratação ou cozedura de algum tipo. Muitos tipos de processamento alimentar comercial consistem em cozedura, especialmente caldeiras a vapor industriais. As caldeiras a vapor são normalmente alimentadas a gás (gás natural ou GPL) ou utilizam uma combinação de gás e fuelóleo. Para as caldeiras a gás, o gás natural consiste principalmente em metano (CH4), um gás altamente combustível, mais leve que o ar, que é canalizado directamente para as caldeiras. Em contraste, o GPL consiste principalmente em propano (C3H8), e normalmente requer um tanque de armazenamento de combustível no local. Sempre que forem utilizados gases inflamáveis no local, a ventilação mecânica forçada deve ser incluída nas áreas de armazenamento, em caso de fugas. Tal ventilação é normalmente accionada por detectores de gás que são instalados perto de caldeiras e em salas de armazenamento.

Desinfecção química

A indústria F&B leva a higiene muito a sério, uma vez que a mais pequena contaminação das superfícies e do equipamento pode proporcionar um terreno de reprodução ideal para todos os tipos de germes. O sector F&B exige, portanto, uma limpeza e desinfecção rigorosas, que devem satisfazer as normas da indústria.

Existem três métodos de desinfecção comummente utilizados em F&B: térmica, radiação e química. A desinfecção química com compostos à base de cloro é, de longe, a forma mais comum e eficaz de desinfectar equipamento ou outras superfícies. Isto porque os compostos à base de cloro são baratos, de acção rápida e eficazes contra uma variedade de microrganismos. Vários compostos clorados diferentes são comummente utilizados, entre os quais o hipoclorito, cloraminas orgânicas e inorgânicas, e dióxido de cloro. A solução de hipoclorito de sódio (NaOCl) é armazenada em tanques enquanto o dióxido de cloro (ClO2) o gás é normalmente gerado no local.

Em qualquer combinação, os compostos de cloro são perigosos e a exposição a altas concentrações de cloro pode causar graves problemas de saúde. Os gases de cloro são normalmente armazenados no local e deve ser instalado um sistema de detecção de gás, com uma saída de relé para accionar ventiladores uma vez detectado um elevado nível de cloro.

Embalagem de alimentos

A embalagem de alimentos serve muitos propósitos; permite que os alimentos sejam transportados e armazenados em segurança, protege os alimentos, indica o tamanho das porções e fornece informações sobre o produto. Para manter os alimentos seguros durante muito tempo, é necessário remover o oxigénio do recipiente porque, caso contrário, a oxidação ocorrerá quando o alimento entrar em contacto com o oxigénio. A presença de oxigénio também promove o crescimento bacteriano, que é prejudicial quando consumido. No entanto, se a embalagem for lavada com azoto, o prazo de validade dos alimentos embalados pode ser prolongado.

Os embaladores utilizam frequentemente nitrogénio (N2) métodos de descarga para a conservação e armazenamento dos seus produtos. O nitrogénio é um gás não reactivo, não odorífero e não tóxico. Impede a oxidação dos alimentos frescos com açúcares ou gorduras, impede o crescimento de bactérias perigosas e inibe a sua deterioração. Por último, evita o colapso das embalagens, criando uma atmosfera pressurizada. O nitrogénio pode ser gerado no local utilizando geradores ou entregue em cilindros. Os geradores de gás são rentáveis e proporcionam um fornecimento ininterrupto de gás. O nitrogénio é um asfixiante, capaz de deslocar o oxigénio no ar. Como não tem cheiro e não é tóxico, os trabalhadores podem não se aperceber das condições de baixo teor de oxigénio antes que seja demasiado tarde.

Níveis de oxigénio inferiores a 19% causarão tonturas e perda de consciência. Para prevenir isto, o conteúdo de oxigénio deve ser monitorizado com um sensor electroquímico. A instalação de detectores de oxigénio em áreas de embalagem garante a segurança dos trabalhadores e a detecção precoce de fugas.

Instalações de Refrigeração

As instalações frigoríficas da indústria F&B são utilizadas para manter os alimentos frescos durante longos períodos de tempo. As instalações de armazenamento de alimentos em grande escala utilizam frequentemente sistemas de refrigeração baseados em amoníaco (> 50% NH3), uma vez que é eficiente e económico. No entanto, o amoníaco é tóxico e inflamável; é também mais leve que o ar e enche rapidamente os espaços fechados. O amoníaco pode tornar-se inflamável se for libertado num espaço fechado onde esteja presente uma fonte de ignição, ou se um recipiente de amoníaco anidro for exposto ao fogo.

A amónia é detectada com tecnologia de sensores electro-químicos (tóxicos) e catalíticos (inflamáveis). A detecção portátil, incluindo detectores de um ou vários gases, pode monitorizar a exposição instantânea e TWA a níveis tóxicos de NH3. Foi demonstrado que os monitores pessoais multi-gás melhoram a segurança dos trabalhadores onde é utilizado um ppm de baixa gama para levantamentos de rotina do sistema e gama inflamável durante a manutenção do sistema. Os sistemas fixos de detecção incluem uma combinação de detectores de nível tóxico e inflamável ligados a painéis de controlo locais - estes são normalmente fornecidos como parte de um sistema de arrefecimento. Os sistemas fixos também podem ser utilizados para sobretensões de processo e controlo de ventilação.

Indústria Cervejeira e de Bebidas

O risco envolvido no fabrico de álcool envolve equipamento de fabrico de grande dimensão que pode ser potencialmente prejudicial, tanto para o funcionamento como devido aos fumos e vapores que podem ser emitidos para a atmosfera e, subsequentemente, afectar o ambiente. O etanol é o principal risco combustível encontrado nas destilarias e cervejeiras é o dos fumos e vapores produzidos pelo etanol. Com a capacidade de ser emitido por fugas em tanques, barris, bombas de transferência, tubos e mangueiras flexíveis, o vapor de etanol é um risco muito real de incêndio e explosão enfrentado por aqueles que trabalham na indústria da destilaria. Uma vez que o gás e o vapor são libertados na atmosfera, podem rapidamente construir-se e representar um perigo para a saúde dos trabalhadores. Vale a pena notar aqui, contudo, que a concentração necessária para causar danos à saúde dos trabalhadores tem de ser muito elevada. Com isto em mente, o risco mais significativo do etanol no ar é o de explosão. Este facto reforça a importância do equipamento de detecção de gás para reconhecer e remediar de imediato quaisquer fugas, de modo a evitar consequências desastrosas.

Embalagem, Transporte e Dispensação

Uma vez engarrafado o vinho e embalado a cerveja, estes devem ser entregues nos pontos de venda relevantes. Isto inclui normalmente empresas de distribuição, armazéns e, no caso das cervejeiras, dracmas. Cerveja e refrigerantes utilizam dióxido de carbono ou uma mistura de dióxido de carbono e azoto como forma de entregar uma bebida à "torneira". Estes gases também dão à cerveja uma cabeça mais duradoura e melhoram a qualidade e o sabor.

Mesmo quando a bebida está pronta a ser entregue, os perigos relacionados com o gás permanecem. Estes surgem em qualquer actividade em instalações que contenham garrafas de gás comprimido, devido ao risco de aumento dos níveis de dióxido de carbono ou níveis de oxigénio esgotados (devido a níveis elevados de azoto). Dióxido de carbono (CO2) ocorre naturalmente na atmosfera (0,04%).CO2 é incolor e inodoro, mais pesado que o ar e, se escapar, tenderá a afundar-se no chão.CO2 recolhe em caves e no fundo de contentores e espaços confinados, tais como tanques e silos.CO2 é gerada em grandes quantidades durante a fermentação. Também é injectado em bebidas durante a carbonatação.

Para saber mais sobre os perigos do gás na produção de alimentos e bebidas visite o nossopágina da indústriapara mais informações.

Os perigos do gás na agricultura e na agricultura 

A agricultura e a agricultura é uma indústria colossal em todo o mundo, fornecendo mais de 44 milhões de empregos na UE e maquilhagem mais de 10% do emprego total nos EUA.

Com uma vasta gama de processos envolvidos neste sector, há necessariamente perigos que devem ser considerados. Estes incluem perigos de gases como o metano, sulfureto de hidrogénio, amoníaco, dióxido de carbono e óxido nitroso.

O metano é um gás incolor e inodoro que pode ter efeitos nocivos para os seres humanos, resultando em fala desarticulada, problemas de visão, perda de memória, náuseas e, em casos extremos, pode ter impacto na respiração e no coração, levando potencialmente à inconsciência e mesmo à morte. Em ambientes agrícolas, é criado através da digestão anaeróbica de material orgânico, tal como estrume. A quantidade de metano gerada é exacerbada em áreas mal ventiladas ou com temperaturas elevadas, e em áreas com particular falta de fluxo de ar, o gás pode acumular-se, ficar retido e causar explosões.

Dióxido de carbono (CO2) é um gás que é produzido naturalmente na atmosfera, cujos níveis podem ser aumentados por processos agrícolas.O CO2 pode ser emitido por uma série de processos agrícolas, incluindo a produção agrícola e pecuária, sendo também emitido por algum equipamento que é utilizado em aplicações agrícolas. Os espaços de armazenamento utilizados para resíduos e grãos e silos selados são particularmente preocupantes devido à capacidade de emissão deCO2 para acumular e deslocar oxigénio, aumentando o risco de asfixia tanto para os animais como para os seres humanos.

Do mesmo modo, ao metano, o sulfureto de hidrogénio provém da decomposição anaeróbica da matéria orgânica e também pode ser encontrado numa série de processos agrícolas relacionados com a produção e consumo de biogás. H2S impede que o oxigénio seja transportado para os nossos órgãos vitais e áreas onde se acumula têm frequentemente concentrações reduzidas de oxigénio, aumentando o risco de asfixia onde os níveis de H2S são elevados. Embora possa ser considerado mais fácil de detectar devido ao seu distinto cheiro a "ovo podre", a intensidade do cheiro diminui de facto em concentrações mais elevadas e exposição prolongada. A níveis elevados, o H2S pode causar grave irritação e acumulação de fluidos nos pulmões e impacto no sistema nervoso.

Amoníaco (NH3) é um gás encontrado nos resíduos animais que é frequentemente espalhado e emitido através da disseminação de chorume em terras agrícolas. Tal como acontece com muitos dos gases cobertos, o impacto do amoníaco é aumentado quando há falta de ventilação. É prejudicial para o bem-estar tanto do gado como dos seres humanos, causando doenças respiratórias nos animais, enquanto níveis elevados podem levar a queimaduras e inchaço das vias respiratórias e danos pulmonares nos seres humanos e podem ser fatais.

Óxido de nitrogénio (NO2) é outro gás a ter em conta na agricultura e na indústria agrícola. Está presente nos fertilizantes sintéticos que são frequentemente utilizados em práticas agrícolas mais intensivas para assegurar um maior rendimento das culturas. Os potenciais impactos negativos na saúde do NO2 nos humanos incluem função pulmonar reduzida, hemorragia interna, e problemas respiratórios contínuos.

Os trabalhadores desta indústria estão frequentemente em movimento e, para este fim específico, a Crowcon oferece uma vasta gama de detectores de gás fixos e portáteis para manter os trabalhadores seguros. A gama portátil da Crowcon inclui T4, Gas-Pro, Clip SGD e Gasman todos os quais oferecem capacidades de deteção fiáveis e transportáveis para uma variedade de gases. Os nossos detectores de gás fixos são utilizados quando a fiabilidade, a segurança e a ausência de falsos alarmes são fundamentais para uma proteção eficiente e eficaz de bens e áreas, e incluem o Xgard e o Xgard Bright. Combinados com uma variedade dos nossos detectores fixos, os nossos painéis de controlo de deteção de gás oferecem uma gama flexível de soluções que medem gases inflamáveis, tóxicos e oxigénio, comunicam a sua presença e activam alarmes ou equipamento associado. Gasmaster, Vortex e os painéis de controlo endereçáveis.

Para saber mais sobre os perigos do gás na agricultura e na agricultura visite a nossa página da indústria para mais informações.

Protocolos de segurança de gás no tratamento de água

A água é vital para a nossa vida diária, tanto para uso pessoal e doméstico como para aplicações industriais/comerciais. Está em todo o lado, promovendo algumas reacções químicas e inibindo outras. Sendo utilizada para limpar superfícies, transportar produtos químicos para onde são utilizados e transportar produtos químicos indesejados. Fazer tudo e criar um gás algures em alguma quantidade. Fazer qualquer coisa com água, há tantas permutações de coisas que se podem juntar e reagir, gases dissolvidos que podem sair da solução, líquidos dissolvidos e sólidos que podem reagir para gerar gases. Além disso, é necessário determinar que gases se geram ao recolher, limpar, armazenar, transportar ou utilizar água. Os detectores de gás devem ser escolhidos em função do ambiente específico em que operam, neste caso altamente húmidos, frequentemente sujos, mas raramente fora da gama de temperaturas de 4 a 30 graus C. Todos os riscos estão presentes nestes ambientes complexos, com múltiplos perigos de gases tóxicos e inflamáveis e muitas vezes o risco adicional de esgotamento de oxigénio.

Perigos de gás

Para além dos riscos de gás comuns conhecidos na indústria; metano, sulfureto de hidrogénio e oxigénio, existem riscos de gás bi-produto e riscos de gás material de limpeza que ocorrem com produtos químicos de purificação como amoníaco, cloro, dióxido de cloro ou ozono que são utilizados na descontaminação dos resíduos e da água efluente, ou para remover micróbios da água limpa. Existe um grande potencial para a existência de muitos gases tóxicos ou explosivos como resultado dos produtos químicos utilizados na indústria da água. E a estes juntam-se os químicos que podem ser derramados ou despejados no sistema de resíduos da indústria, agricultura ou obras de construção.

O gás cloro (Cl2) tem uma cor verde-amarelada e é utilizado para esterilizar a água potável. No entanto, a maior parte do cloro é utilizada na indústria química, com aplicações típicas que incluem o tratamento da água, bem como nos plásticos e agentes de limpeza. O cloro gasoso pode ser reconhecido pelo seu odor pungente e irritante, que se assemelha ao odor da lixívia. O cheiro forte pode ser um aviso adequado para as pessoas que estão expostas. O Cl2 em si não é inflamável, mas pode reagir de forma explosiva ou formar compostos inflamáveis com outros produtos químicos, como a terebintina e o amoníaco.

O amoníaco (NH3) é um composto de azoto e hidrogénio e é um gás incolor e pungente, também conhecido por ser altamente solúvel quando em contacto com a água. Isto significa que o NH3 se dissolve rapidamente no abastecimento de água. Encontra-se em níveis muito baixos nos seres humanos e na natureza. É também frequentemente utilizado em algumas soluções de limpeza doméstica. Embora o NH3 tenha muitos benefícios, pode ser corrosivo e perigoso em determinadas circunstâncias. O amoníaco pode entrar nas águas residuais a partir de várias fontes diferentes, incluindo urina, estrume, produtos químicos de limpeza, produtos químicos de processo e produtos de aminoácidos. Se o NH3 entrar num sistema de tubagem de cobre, pode causar corrosão extensiva. Se o NH3 entrar na água, a sua toxicidade varia em função do pH exato da água. É possível que o amoníaco se decomponha em iões de amónio, que podem reagir com outros compostos presentes.

O dióxido de cloro (ClO2) é um gás oxidante normalmente utilizado para desinfetar a água potável. Quando utilizado em quantidades muito pequenas, é seguro e não acarreta riscos significativos para a saúde. Mas o ClO2 é um desinfetante forte que mata bactérias, vírus e fungos e, quando utilizado em doses elevadas, pode ser perigoso para as pessoas, uma vez que pode danificar os glóbulos vermelhos e o revestimento do trato gastrointestinal (GI).

O ozono (O3) é um gás com um odor antissético e sem cor que, na sua maioria, se forma naturalmente no ambiente. Quando inalado, o ozono pode ter uma série de efeitos nocivos para o organismo. Como é um gás incolor, é difícil de localizar sem um sistema de deteção eficaz. Mesmo quando são inaladas quantidades relativamente pequenas, o gás pode ter um impacto prejudicial no trato respiratório, causando inflamação e dores no peito, juntamente com tosse, falta de ar e irritação da garganta. Pode também atuar como um gatilho, provocando o agravamento de doenças como a asma.

Entrada em Espaço Confinado

As condutas utilizadas para transportar água requerem limpeza regular e verificações de segurança; durante estas operações, são utilizados monitores multi-gás portáteis para proteger a mão-de-obra. As verificações pré-entrada devem ser concluídas antes da entrada em qualquer espaço confinado e, normalmente, são monitorizados O2, CO, H2S e CH4. Os espaços confinados são pequenos, pelo que os monitores portáteis devem ser compactos e discretos para o utilizador, mas capazes de resistir aos ambientes húmidos e sujos em que devem actuar. A indicação clara e imediata de qualquer aumento de gás monitorizado (ou qualquer diminuição de oxigénio) é de importância primordial - os alarmes sonoros e brilhantes são eficazes para elevar o alarme para o utilizador.

Legislação

A Directiva 2017/164 da Comissão Europeia estabeleceu uma lista crescente de valores limite de exposição profissional indicativos (IOELV). Os IOELV são valores baseados na saúde, não vinculativos, derivados dos dados científicos mais recentes disponíveis e considerando a disponibilidade de técnicas de medição fiáveis. Não-vinculativos, mas melhores práticas. A lista inclui monóxido de carbono, monóxido de azoto, dióxido de azoto, dióxido de enxofre, cianeto de hidrogénio, manganês, diacetilo e muitas outras substâncias químicas. A lista baseia-se na Directiva 98/24/CE do Conselho que considera a protecção da saúde e segurança dos trabalhadores contra os riscos relacionados com os agentes químicos no local de trabalho. Para qualquer agente químico para o qual tenha sido estabelecido um IOELV a nível da União, os Estados-membros são obrigados a estabelecer um valor limite nacional de exposição profissional. São igualmente obrigados a ter em conta o valor limite da União, determinando a natureza do valor limite nacional, de acordo com a legislação e as práticas nacionais. Os Estados-membros poderão beneficiar de um período de transição que terminará, o mais tardar, a 21 de Agosto de 2023.

O Health and Safety Executive(HSE ) afirma que todos os anos vários trabalhadores irão sofrer de pelo menos um episódio de doença relacionada com o trabalho. Embora a maioria das doenças sejam casos relativamente leves de gastroenterite, existe também um risco de doenças potencialmente fatais, tais como a leptospirose (doença de Weil) e a hepatite. Ainda que estas sejam comunicadas ao HSE, pode haver uma subnotificação significativa, uma vez que muitas vezes não se reconhece a ligação entre doença e trabalho.

Nos termos da lei nacional da Lei de Saúde e Segurança no Trabalho de 1974, os empregadores são responsáveis por garantir a segurança dos seus empregados e outros. Esta responsabilidade é reforçada por regulamentos.

O Regulamento sobre Espaços Confinados de 1997 aplica-se quando a avaliação identifica riscos de lesões graves decorrentes do trabalho em espaços confinados. Estes regulamentos contêm os seguintes deveres fundamentais:

  • Evitar a entrada em espaços confinados, por exemplo, fazendo o trabalho a partir do exterior.
  • Se a entrada num espaço confinado for inevitável, seguir um sistema de trabalho seguro.
  • Criar medidas de emergência adequadas antes do início dos trabalhos.

A Gestão dos Regulamentos de Saúde e Segurança no Trabalho de 1999 exige que os empregadores e os trabalhadores independentes realizem uma avaliação adequada e suficiente dos riscos para todas as actividades laborais, com o objectivo de decidir quais as medidas necessárias para a segurança. Para o trabalho em espaços confinados, isto significa identificar os perigos presentes, avaliar os riscos e determinar as precauções a tomar.

A nossa solução

A eliminação destes perigos de gás é praticamente impossível, pelo que os trabalhadores permanentes e os empreiteiros têm de depender de equipamento fiável de deteção de gás para os proteger. A deteção de gás pode ser fornecida tanto em formas fixas como portáteis. Os nossos detectores de gás portáteis protegem as pessoas contra uma vasta gama de riscos de gás e incluem T4x, Clip SGD, Gasman,Tetra 3, Gas-Pro, T4 e Detective+. Os nossos detectores de gás fixos são utilizados quando a fiabilidade, a segurança e a ausência de falsos alarmes são fundamentais para uma proteção eficiente e eficaz de bens e áreas, e incluem o Xgard, Xgard Bright e IRmax gamas de produtos. Combinados com uma variedade dos nossos detectores fixos, os nossos painéis de controlo de deteção de gás oferecem uma gama flexível de soluções que medem gases inflamáveis, tóxicos e oxigénio, comunicam a sua presença e activam alarmes ou equipamento associado. Gasmaster painel.

Para saber mais sobre os perigos do gás nas águas residuais, visite a nossa página da indústria para mais informações.

Detecção de perigos nos lacticínios: De que gases deve estar ciente? 

A procura global de lacticínios continua a aumentar em grande parte devido ao crescimento populacional, ao aumento dos rendimentos e à urbanização. Milhões de agricultores em todo o mundo tendem aproximadamente 270 milhões de vacas leiteiras a produzir leite. Em toda a indústria de lacticínios existe uma variedade de riscos de gás que representam um risco para aqueles que trabalham na indústria de lacticínios.

Quais são os perigos que os trabalhadores enfrentam na indústria leiteira?

Produtos químicos

Em toda a indústria de lacticínios, os produtos químicos são utilizados para várias tarefas, incluindo a limpeza, aplicando vários tratamentos tais como vacinas ou medicamentos, antibióticos, esterilização e pulverização. Se estes produtos químicos e substâncias perigosas não forem utilizados ou armazenados correctamente, isto pode resultar em sérios danos para o trabalhador ou para o ambiente circundante. Não só estes químicos podem causar doenças, como também existe um risco de morte se uma pessoa for exposta. Alguns produtos químicos podem ser inflamáveis e explosivos, enquanto outros são corrosivos e venenosos.

Existem várias formas de gerir estes perigos químicos, embora a principal preocupação deva ser na implementação de um processo e procedimento. Este procedimento deve assegurar que todo o pessoal seja treinado na utilização segura de produtos químicos, sendo mantidos registos. Como parte do procedimento químico, este deve incluir um manifesto químico para fins de rastreio. Este tipo de gestão de inventário permite que todo o pessoal tenha acesso às Fichas de Dados de Segurança (FDS), assim como aos registos de utilização e localização. A par deste manifesto, deve ser considerada a revisão da operação em curso.

  • Qual é o procedimento actual?
  • Que EPI é necessário?
  • Qual é o processo de eliminação de produtos químicos desactualizados e existe um produto químico substituto que possa representar menos riscos para os seus trabalhadores?

Espaços Confinados

Há inúmeras circunstâncias que poderiam exigir que um trabalhador entrasse num espaço confinado, incluindo silos de alimentação, cubas de leite, tanques de água e fossas na indústria leiteira. A forma mais segura de eliminar um perigo num espaço confinado, tal como mencionado por muitos organismos da indústria, é empregar um desenho seguro. Isto incluirá a remoção de qualquer necessidade de entrar num espaço confinado. Embora, isto possa não ser realista e de tempos a tempos, as rotinas de limpeza têm de ocorrer, ou pode ocorrer um bloqueio, no entanto, existe um requisito para assegurar que existem os procedimentos correctos para lidar com o perigo.

Os agentes químicos quando utilizados num espaço confinado podem aumentar o risco de asfixia com gases que empurram para fora o oxigénio. Uma forma de eliminar este risco é limpar a cuba do exterior utilizando uma mangueira de alta pressão. Se um trabalhador precisar de entrar no espaço confinado, verifique se a sinalização correcta está no lugar, uma vez que os pontos de entrada e saída serão restringidos. Deve considerar os interruptores de isolamento e verificar se o seu pessoal compreende o procedimento correcto de salvamento de emergência, se algo acontecer.

Perigos de gás

Amoníaco (NH3) é encontrado nos resíduos animais e no chorume espalhados na agricultura e nas terras agrícolas. É caracteristicamente um gás incolor com um odor pungente que surge através da decomposição de compostos de azoto nos resíduos animais. Não só é prejudicial para a saúde humana, mas também para o bem-estar do gado, devido à sua capacidade de causar doenças respiratórias no gado, e irritação ocular, cegueira, danos pulmonares, juntamente com danos no nariz e garganta e até morte nos seres humanos. A ventilação é um requisito fundamental na prevenção de problemas de saúde, uma vez que uma ventilação deficiente aumenta os danos causados por este gás.

Dióxido de carbono (CO2) é produzido naturalmente na atmosfera; embora os níveis sejam aumentados através da agricultura e dos processos agrícolas. OCO2, é incolor, inodoro, e é emitido a partir de equipamento agrícola, produção vegetal e pecuária e outros processos agrícolas.O CO2 pode congregar áreas, tais como tanques de resíduos e silos. Isto resulta em oxigénio no ar a ser deslocado e aumenta o risco de asfixia para animais e humanos. Silos selados, resíduos e espaços de armazenamento de cereais são especificamente perigosos, uma vez queo CO2 pode acumular-se aqui e levar a que sejam inadequados para os seres humanos sem um abastecimento de ar externo.

Dióxido de azoto (NO2) é um de um grupo de gases altamente reactivos conhecidos como óxidos de azoto ou óxidos de azoto (NOx). Apior, pode causar a morte súbita quando consumida mesmo por exposição a curto prazo. Este gás pode causar asfixia e é emitido a partir de silos na sequência de reacções químicas específicas de material vegetal. É reconhecível pelo seu cheiro a lixívia e as suas propriedades tendem a criar uma névoa castanha-avermelhada. Ao reunir-se acima de certas superfícies, pode escorrer para áreas com gado através de condutas de silo, e por isso representa um perigo real para os seres humanos e animais na área circundante. Pode também afectar a função pulmonar, causar hemorragias internas, e problemas respiratórios contínuos.

Quando é que os detectores de gás devem ser utilizados?

Os detectores de gás fornecem valor acrescentado em qualquer lugar nas explorações leiteiras e à volta de silos de chorume, mas acima de tudo:

  • Quando e onde o chorume está a ser misturado
  • Durante o bombeamento e a saída de chorume
  • Sobre e à volta do tractor durante a mistura ou espalhamento do chorume
  • No estábulo durante os trabalhos de manutenção das bombas de chorume, raspadores de chorume e afins
  • Perto e em torno de pequenas aberturas e fendas no chão, por exemplo, em torno de robôs de ordenha
  • Baixo ao chão em cantos e espaços mal ventilados (o H2S é mais pesado que o ar e afunda-se no chão)
  • Em silos de chorume
  • Em tanques de chorume

Produtos que podem ajudar a proteger-se

A detecção de gás pode ser fornecida em ambos fixo e portátil formulários. A instalação de um detector de gás fixo pode beneficiar de um espaço maior para proporcionar uma área contínua e protecção do pessoal 24 horas por dia. No entanto, um detector portátil pode ser mais adequado para a segurança do trabalhador.

Para saber mais sobre os perigos na agricultura e na agricultura, visite o nosso página da indústria para mais informações.

Mineração de ouro: De que detecção de gás preciso? 

Como é extraído o ouro?

O ouro é uma substância rara que equivale a 3 partes por bilião da camada exterior da Terra, sendo a maior parte do ouro disponível no mundo proveniente da Austrália. O ouro, como o ferro, o cobre e o chumbo, é um metal. Existem duas formas primárias de mineração de ouro, incluindo a mineração a céu aberto e subterrânea. A mineração a céu aberto envolve equipamento de terraplanagem para remover os resíduos de rocha do corpo do minério acima, e depois a mineração é conduzida a partir da substância restante. Este processo requer que os resíduos e o minério sejam atingidos em grandes volumes para quebrar os resíduos e o minério em tamanhos adequados ao manuseamento e transporte tanto para os depósitos de resíduos como para os trituradores de minério. A outra forma de mineração de ouro é o método mais tradicional de mineração subterrânea. É aqui que os poços verticais e os túneis em espiral transportam trabalhadores e equipamento para dentro e fora da mina, fornecendo ventilação e transportando os resíduos de rocha e minério para a superfície.

Detecção de gás em minas

Quando relacionado com a detecção de gás, o processo de saúde e segurança dentro das minas desenvolveu-se consideravelmente ao longo do século passado, desde o morphing do uso bruto de testes de paredes de pavio de metano, canários de canto e segurança de chamas até às tecnologias e processos modernos de detecção de gás tal como os conhecemos. A garantia do tipo correcto de equipamento de detecção é utilizada, quer fixo ou portátilantes de entrar nestes espaços. A utilização adequada do equipamento garantirá o controlo preciso dos níveis de gás, e os trabalhadores serão alertados para os perigos concentrações dentro da atmosfera, na primeira oportunidade.

Quais são os perigos do gás e quais são os perigos?

Os perigos que aqueles que trabalham na indústria mineira enfrentam vários perigos e doenças profissionais potenciais, e a possibilidade de lesões fatais. Por conseguinte, é importante compreender os ambientes e os perigos a que podem estar expostos.

Oxigénio (O2)

O oxigénio (O2), normalmente presente no ar a 20,9%, é essencial para a vida humana. Há três razões principais pelas quais o oxigénio representa uma ameaça para os trabalhadores da indústria mineira. Estas incluem deficiências ou enriquecimento de oxigénio, pois muito pouco oxigénio pode impedir o funcionamento do corpo humano, levando o trabalhador a perder a consciência. A menos que o nível de oxigénio possa ser restaurado a um nível médio, o trabalhador está em risco de morte potencial. Uma atmosfera é deficiente quando a concentração de O2 é inferior a 19,5%. Consequentemente, um ambiente com demasiado oxigénio é igualmente perigoso, uma vez que constitui um risco muito maior de incêndio e explosão. Isto é considerado quando o nível de concentração de O2 é superior a 23,5%.

Monóxido de carbono (CO)

Em alguns casos, podem estar presentes concentrações elevadas de monóxido de carbono (CO). Os ambientes em que isto pode ocorrer incluem um incêndio doméstico, pelo que o serviço de bombeiros corre o risco de envenenamento por CO. Neste ambiente pode haver até 12,5% de CO no ar que, quando o monóxido de carbono sobe ao tecto com outros produtos de combustão e quando a concentração atinge 12,5% em volume, isto só levará a uma coisa, chamada flashover. Isto é quando o lote inteiro se inflama como combustível. Para além dos artigos que caem no serviço de incêndio, este é um dos perigos mais extremos que enfrentam quando se trabalha dentro de um edifício em chamas. Devido às características do CO ser tão difícil de identificar, isto é, incolor, inodoro, insípido, insípido, gás venenoso, pode levar tempo a aperceber-se de que tem envenenamento por CO. Os efeitos do CO podem ser perigosos, isto porque o CO impede o sistema sanguíneo de transportar eficazmente oxigénio à volta do corpo, especificamente para órgãos vitais tais como o coração e o cérebro. Doses elevadas de CO, portanto, podem causar a morte por asfixia ou falta de oxigénio no cérebro. De acordo com estatísticas do Departamento de Saúde, a indicação mais comum de envenenamento por CO é a de uma dor de cabeça com 90% dos doentes a relatar este sintoma, com 50% a relatar náuseas e vómitos, bem como vertigens. Com confusão/mudanças na consciência, e fraqueza que representam 30% e 20% das denúncias.

Sulfureto de hidrogénio (H2S)

O sulfureto de hidrogénio (H2S) é um gás incolor e inflamável com um odor característico de ovos podres. Pode ocorrer contacto com a pele e os olhos. No entanto, o sistema nervoso e cardiovascular são mais afectados pelo sulfureto de hidrogénio, o que pode levar a uma série de sintomas. As exposições individuais a concentrações elevadas podem causar rapidamente dificuldades respiratórias e morte.

Dióxido de enxofre (SO2)

O dióxido de enxofre (SO2) pode causar vários efeitos nocivos nos sistemas respiratórios, em particular no pulmão. Pode também causar irritação da pele. O contacto da pele com (SO2) causa dores de picadas, vermelhidão da pele e bolhas. O contacto da pele com gás comprimido ou líquido pode causar queimaduras por congelação. O contacto com os olhos causa olhos lacrimejantes e, em casos graves, a cegueira pode ocorrer.

Metano (CH4)

O metano (CH4) é um gás incolor e altamente inflamável, sendo o gás natural um dos seus componentes primários. Níveis elevados de (CH4) podem reduzir a quantidade de oxigénio respirado do ar, o que pode resultar em alterações de humor, fala desarticulada, problemas de visão, perda de memória, náuseas, vómitos, rubor facial e dores de cabeça. Em casos graves, pode haver alterações na respiração e ritmo cardíaco, problemas de equilíbrio, dormência, e inconsciência. Embora, se a exposição for por um período mais longo, pode resultar em fatalidade.

Hidrogénio (H2)

O Gás Hidrogénio é um gás incolor, inodoro e sem sabor que é mais leve que o ar. Como é mais leve que o ar, isto significa que flutua mais alto que a nossa atmosfera, o que significa que não é naturalmente encontrado, mas que deve ser criado. O hidrogénio representa um risco de incêndio ou explosão, assim como um risco de inalação. Concentrações elevadas deste gás podem causar um ambiente deficiente em oxigénio. Os indivíduos que respiram uma tal atmosfera podem experimentar sintomas que incluem dores de cabeça, zumbidos nos ouvidos, tonturas, sonolência, inconsciência, náuseas, vómitos e depressão de todos os sentidos.

Amoníaco (NH3)

A amónia (NH3) é uma das substâncias químicas mais utilizadas a nível mundial que é produzida tanto no corpo humano como na natureza. Embora seja naturalmente criada (NH3) é corrosiva, o que constitui uma preocupação para a saúde. A elevada exposição dentro do ar pode resultar em queimaduras imediatas nos olhos, nariz, garganta e vias respiratórias. Os casos de serviço podem resultar em cegueira.

Outros riscos de gás

Embora o Cianeto de Hidrogénio (HCN) não persista no ambiente, o armazenamento, manuseamento e gestão inadequada dos resíduos pode constituir um risco grave para a saúde humana, bem como efeitos sobre o ambiente. O cianeto interfere com a respiração humana a níveis celulares que podem causar efeitos de serviço e agudos, incluindo respiração rápida, tremores, asfixia.

A exposição a partículas diesel pode ocorrer em minas subterrâneas como resultado de equipamento móvel movido a diesel utilizado para perfuração e transporte. Embora as medidas de controlo incluam a utilização de combustível diesel com baixo teor de enxofre, manutenção e ventilação do motor, as implicações para a saúde incluem o risco excessivo de cancro do pulmão.

Produtos que podem ajudar a proteger-se

Crowcon fornece uma gama de detecção de gás incluindo tanto produtos portáteis como fixos, todos eles adequados para a detecção de gás na indústria mineira.

Para saber mais, visite a nossa página da indústria aqui.