Visão geral da indústria: Resíduos para Energia

Os resíduos para a indústria energética utilizam vários métodos de tratamento de resíduos. Os resíduos sólidos municipais e industriais são convertidos em electricidade, e por vezes em calor para processamento industrial e sistemas de aquecimento urbano. O processo principal é obviamente a incineração, mas as etapas intermédias de pirólise, gaseificação e digestão anaeróbia são por vezes utilizadas para converter os resíduos em subprodutos úteis que são depois utilizados para gerar energia através de turbinas ou outros equipamentos. Esta tecnologia está a ganhar um amplo reconhecimento mundial como uma forma de energia mais ecológica e limpa do que a queima tradicional de combustíveis fósseis, e como um meio de reduzir a produção de resíduos.

Tipos de resíduos a energia

Incineração

A incineração é um processo de tratamento de resíduos que envolve a combustão de substâncias ricas em energia contidas nos materiais residuais, normalmente a altas temperaturas de cerca de 1000 graus C. As instalações industriais de incineração de resíduos são normalmente referidas como instalações de valorização energética de resíduos e são muitas vezes centrais eléctricas de dimensões consideráveis por direito próprio. A incineração e outros sistemas de tratamento de resíduos a alta temperatura são frequentemente descritos como "tratamento térmico". Durante o processo, os resíduos são convertidos em calor e vapor que podem ser utilizados para accionar uma turbina a fim de gerar electricidade. Este método tem actualmente uma eficiência de cerca de 15-29%, embora tenha potencial para melhorias.

Pyrolysis

A pirólise é um processo diferente de tratamento de resíduos onde a decomposição de resíduos sólidos de hidrocarbonetos, tipicamente plásticos, ocorre a altas temperaturas sem a presença de oxigénio, numa atmosfera de gases inertes. Este tratamento é geralmente conduzido a uma temperatura igual ou superior a 500 °C, fornecendo calor suficiente para desconstruir as moléculas de cadeia longa, incluindo os biopolímeros, em hidrocarbonetos de massa inferior mais simples.

Gasificação

Este processo é utilizado para produzir combustíveis gasosos a partir de combustíveis mais pesados e de resíduos que contêm material combustível. Neste processo, as substâncias carbonáceas são convertidas em dióxido de carbono (CO2), monóxido de carbono (CO) e uma pequena quantidade de hidrogénio a alta temperatura. Neste processo, o gás é gerado, o que constitui uma boa fonte de energia utilizável. Este gás pode então ser utilizado para produzir electricidade e calor.

Gasificação por Arco de Plasma

Neste processo, uma tocha de plasma é utilizada para ionizar material rico em energia. A Syngas é produzida, podendo depois ser utilizada para fazer fertilizantes ou gerar electricidade. Este método é mais uma técnica de eliminação de resíduos do que um meio sério de gerar gás, consumindo muitas vezes tanta energia quanto o gás que produz pode fornecer.

Razões do desperdício para a energia

Uma vez que esta tecnologia está a ganhar amplo reconhecimento a nível mundial no que diz respeito à produção de resíduos e à procura de energia limpa.

  • Evita as emissões de metano dos aterros sanitários
  • Compensação das emissões de gases com efeito de estufa (GEE) da produção de electricidade a partir de combustíveis fósseis
  • Recupera e recicla recursos valiosos, tais como metais
  • Produz energia de base e vapor limpos e fiáveis
  • Utiliza menos terra por megawatt do que outras fontes de energia renovável
  • Fonte de combustível renovável sustentável e estável (em comparação com o vento e a energia solar)
  • Destrói resíduos químicos
  • Resulta em baixos níveis de emissões, normalmente muito abaixo dos níveis permitidos
  • Destrói cataliticamente óxidos de azoto (NOx), dioxinas e furanos usando uma redução catalítica selectiva (SCR)

Quais são os perigos do gás?

Há muitos processos para transformar resíduos em energia, entre os quais, instalações de biogás, utilização de resíduos, piscina de lixiviados, combustão e recuperação de calor. Todos estes processos representam riscos de gás para aqueles que trabalham nestes ambientes.

Dentro de uma fábrica de biogás, é produzido biogás. Este é formado quando materiais orgânicos como os resíduos agrícolas e alimentares são decompostos por bactérias num ambiente pobre em oxigénio. Este é um processo chamado digestão anaeróbica. Quando o biogás é capturado, pode ser utilizado para produzir calor e electricidade para motores, microturbinas e células de combustível. Claramente, o biogás tem um elevado teor de metano, bem como um substancial teor de sulfureto de hidrogénio (H2S), o que gera múltiplos perigos graves em termos de gás. (Leia o nosso blogue para mais informações sobre biogás). Contudo, existe um risco elevado de incêndio e explosão, perigos de espaço confinado, asfixia, esgotamento do oxigénio e envenenamento por gás, geralmente por H2Sou amoníaco (NH3). Os trabalhadores de uma unidade de biogás devem ter detectores pessoais de gás que detectem e monitorizem gás inflamável, oxigénio e gases tóxicos, como o H2Se o CO.

Dentro de uma recolha de lixo é comum encontrar metano de gás inflamável (CH4) e gases tóxicos H2S, CO e NH3. Isto deve-se ao facto de que os depósitos de lixo são construídos a vários metros de profundidade e os detectores de gás são normalmente montados no alto em áreas que tornam esses detectores difíceis de manter e calibrar. Em muitos casos, um sistema de amostragem é uma solução prática, uma vez que as amostras de ar podem ser levadas para um local conveniente e medidas.

O lixiviado é um líquido que drena (lixiviados) de uma área onde os resíduos são recolhidos, com piscinas de lixiviado apresentando uma série de perigos de gás. Estes incluem o risco de gás inflamável (risco de explosão), H2S(veneno, corrosão), amoníaco (veneno, corrosão), CO (veneno) e níveis adversos de oxigénio (asfixia). Piscina de lixiviados e passagens que conduzem à piscina de lixiviados que requerem monitorização de CH4, H2S, CO, NH3, oxigénio (O2) eCO2. Vários detectores de gás devem ser colocados ao longo de rotas para a piscina de lixiviados, com saída ligada a painéis de controlo externos.

A combustão e a recuperação de calor requerem a detecção de O2 e de gases tóxicos dióxido de enxofre (SO2) e CO. Todos estes gases representam uma ameaça para aqueles que trabalham em áreas de caldeiras.

Outro processo que é classificado como um risco de gás é um purificador de ar de exaustão. O processo é perigoso uma vez que o gás de combustão da incineração é altamente tóxico. Isto porque contém poluentes tais como dióxido de azoto (NO2), SO2, cloreto de hidrogénio (HCL) e dioxina. NO2 e SO2 são gases com efeito de estufa importantes, enquanto que o HCL todos estes tipos de gases aqui mencionados são prejudiciais para a saúde humana.

Para ler mais sobre os resíduos para a indústria energética, visite a nossa página da indústria.

Uma Introdução à Indústria do Petróleo e do Gás 

A indústria do petróleo e do gás é uma das maiores indústrias do mundo, dando uma contribuição significativa para a economia global. Este vasto sector está frequentemente separado em três sectores principais: a montante, a meio e a jusante. Cada sector vem com os seus próprios riscos de gás únicos.

A montante

O sector a montante da indústria do petróleo e gás, por vezes referido como exploração e produção (ou E&P), preocupa-se com a localização de locais de extracção de petróleo e gás a posterior perfuração, recuperação e produção de petróleo bruto e gás natural. A produção de petróleo e gás é uma indústria incrivelmente intensiva em capital, exigindo a utilização de equipamento de maquinaria dispendioso, bem como de trabalhadores altamente qualificados. O sector a montante é vasto, abrangendo tanto as operações de perfuração em terra como offshore.

O maior perigo de gás encontrado no petróleo e gás a montante é o sulfureto de hidrogénio (H2S), um gás incolor conhecido pelo seu distinto odor a ovo podre. O H2S é um gás altamente tóxico e inflamável que pode ter efeitos nocivos na nossa saúde, levando à perda de consciência e mesmo à morte a níveis elevados.

A solução da Crowcon para a deteção de sulfureto de hidrogénio apresenta-se sob a forma do XgardIQum detetor de gás inteligente que aumenta a segurança ao minimizar o tempo que os operadores têm de passar em áreas perigosas. XgardIQ está disponível com sensor H2Sde alta temperaturaespecificamente concebido para os ambientes agressivos do Médio Oriente.

Midstream

O sector intermédio da indústria do petróleo e gás engloba o armazenamento, transporte e processamento de petróleo bruto e gás natural. O transporte de petróleo bruto e gás natural é feito tanto por terra como por mar, com grandes volumes transportados em petroleiros e embarcações marítimas. Em terra, os métodos de transporte utilizados são os petroleiros e os oleodutos. Os desafios no sector do midstream incluem mas não estão limitados à manutenção da integridade dos navios de armazenamento e transporte e à protecção dos trabalhadores envolvidos em actividades de limpeza, purga e enchimento.

O controlo dos tanques de armazenamento é essencial para garantir a segurança dos trabalhadores e das máquinas.

A jusante

O sector a jusante refere-se à refinação e processamento de gás natural e petróleo bruto e à distribuição de produtos acabados. Esta é a fase do processo em que estas matérias-primas são transformadas em produtos que são utilizados para uma variedade de fins, tais como a alimentação de veículos e o aquecimento de casas.

O processo de refinação do petróleo bruto é geralmente dividido em três etapas básicas: separação, conversão e tratamento. O processamento do gás natural envolve a separação dos vários hidrocarbonetos e fluidos para produzir gás de "qualidade de gasoduto".

Os riscos de gás que são típicos no sector a jusante são o sulfureto de hidrogénio, o dióxido de enxofre, o hidrogénio e uma vasta gama de gases tóxicos. O Xgard e Xgard Bright da Crowcon oferecem uma vasta gama de opções de sensores para cobrir todos os perigos de gás presentes nesta indústria. Xgard Bright também está disponível com a próxima geração de sensores MPS™ da próxima geraçãopara a deteção de mais de 15 gases inflamáveis num só detetor. Também estão disponíveis monitores pessoais de gás único e multigás para garantir a segurança dos trabalhadores nestes ambientes potencialmente perigosos. Estes incluem o Gas-Pro e T4xcom o Gas-Pro a fornecer suporte para 5 gases numa solução compacta e robusta.

Porque é que o gás é emitido na produção de cimento?

Como é produzido o cimento?

O betão é um dos materiais mais importantes e mais utilizados na construção global. O betão é amplamente utilizado na construção tanto de edifícios residenciais como comerciais, pontes, estradas e muito mais.

O componente chave do betão é o cimento, uma substância de ligação que liga todos os outros componentes do betão (geralmente cascalho e areia). Mais de 4 mil milhões de toneladas de cimento são utilizadas em todo o mundo todos os anos., ilustrando a escala maciça da indústria global da construção.

O fabrico de cimento é um processo complexo, começando com matérias-primas, incluindo calcário e argila, que são colocadas em grandes fornos de até 120m de comprimento, que são aquecidos a até 1.500°C. Quando aquecidas a temperaturas tão elevadas, as reacções químicas provocam a união destas matérias-primas, formando o cimento.

Como acontece com muitos processos industriais, a produção de cimento não está isenta de perigos. A produção de cimento tem o potencial de libertar gases nocivos para os trabalhadores, as comunidades locais e o ambiente.

Que riscos de gás estão presentes na produção de cimento?

Os gases geralmente emitidos nas fábricas de cimento são dióxido de carbono (CO2), óxidos nitrosos (NOx) e dióxido de enxofre (SO2), comCO2 que é responsável pela maioria das emissões.

O dióxido de enxofre presente nas fábricas de cimento provém geralmente das matérias-primas que são utilizadas no processo de produção do cimento. O principal perigo de gás a ter em conta é o dióxido de carbono, sendo a indústria cimenteira responsável por um enorme 8% doCO2 global emissões.

A maioria das emissões de dióxido de carbono são criadas a partir de um processo químico chamado calcinação. Isto ocorre quando o calcário é aquecido nos fornos, provocando a sua decomposição emCO2 e óxido de cálcio. A outra fonte principal deCO2 é a combustão de combustíveis fósseis. Os fornos utilizados na produção de cimento são geralmente aquecidos utilizando gás natural ou carvão, adicionando outra fonte de dióxido de carbono à que é gerada através da calcinação.

Detecção de gás na produção de cimento

Numa indústria que é um grande produtor de gases perigosos, a detecção é fundamental. A Crowcon oferece uma vasta gama de soluções de detecção tanto fixas como portáteis.

Xgard Bright é o nosso detetor de gás de ponto fixo endereçável com visor, que proporciona facilidade de operação e custos de instalação reduzidos. Xgard Bright tem opções para a deteção de dióxido de carbono e dióxido de enxofreos gases mais preocupantes na mistura de cimento.

Para a deteção portátil de gases, o design robusto, mas portátil e leve do GasmanO design robusto, mas portátil e leve do equipamento faz dele a solução de gás único perfeita para a produção de cimento, disponível numa versãode CO2 para áreas seguras que oferece uma medição de 0-5% de dióxido de carbono.

Para uma maior proteção, o Gas-Pro pode ser equipado com um máximo de 5 sensores, incluindo todos os mais comuns na produção de cimento, CO2SO2 e NO2.

A importância da detecção de gás na indústria da água e das águas residuais 

A água é vital para a nossa vida diária, tanto para uso pessoal e doméstico como para aplicações industriais/comerciais. Quer uma instalação se concentre na produção de água limpa e potável ou no tratamento de efluentes, a Crowcon orgulha-se de servir uma grande variedade de clientes da indústria da água, fornecendo equipamento de detecção de gás que mantém os trabalhadores seguros em todo o mundo.

Perigos de gás

Para além dos riscos de gás comuns conhecidos na indústria; metano, sulfureto de hidrogénio e oxigénio, existem riscos de gás bi-produto e riscos de gás material de limpeza que ocorrem com produtos químicos de purificação como amoníaco, cloro, dióxido de cloro ou ozono que são utilizados na descontaminação dos resíduos e da água efluente, ou para remover micróbios da água limpa. Existe um grande potencial para a existência de muitos gases tóxicos ou explosivos como resultado dos produtos químicos utilizados na indústria da água. E a estes juntam-se os químicos que podem ser derramados ou despejados no sistema de resíduos da indústria, agricultura ou obras de construção.

Considerações de segurança

Entrada em Espaço Confinado

As condutas utilizadas para transportar água requerem limpeza regular e verificações de segurança; durante estas operações, são utilizados monitores multi-gás portáteis para proteger a mão-de-obra. As verificações pré-entrada devem ser concluídas antes de entrar em qualquer espaço confinado e normalmente O2, CO, H2S e CH4 são monitorizados.Espaços confinadossão pequenas, por issomonitores portáteisdevem ser compactos e discretos para o utilizador, mas capazes de resistir aos ambientes húmidos e sujos em que devem actuar. A indicação clara e imediata de qualquer aumento de gás monitorizado (ou qualquer diminuição de oxigénio) é da maior importância - os alarmes sonoros e brilhantes são eficazes para fazer chegar o alarme ao utilizador.

Avaliação de risco

A avaliação de riscos é fundamental, pois é preciso estar consciente do ambiente em que se está a entrar e, portanto, a trabalhar. Por conseguinte, compreender as aplicações e identificar os riscos relativos a todos os aspectos de segurança. Centrando-se na monitorização de gases, como parte da avaliação de risco, é necessário ter clareza sobre quais os gases que podem estar presentes.

Adequado ao fim a que se destina

Existe uma variedade de aplicações dentro do processo de tratamento de água, dando a necessidade de monitorizar múltiplos gases, incluindo dióxido de carbono, sulfureto de hidrogénio, cloro, metano, oxigénio, ozono e dióxido de cloro.Detectores de gásestão disponíveis para a monitorização de um ou vários gases, tornando-os práticos para diferentes aplicações, bem como assegurando que, se as condições mudarem (como o lodo é agitado, causando um aumento súbito dos níveis de sulfureto de hidrogénio e gás inflamável), o trabalhador ainda está protegido.

Legislação

Directiva 2017/164 da Comissão Europeiaemitida em Janeiro de 2017, estabeleceu uma nova lista de valores limite de exposição profissional indicativos (IOELV). Os IOELV são valores baseados na saúde, não vinculativos, derivados dos dados científicos mais recentes disponíveis e considerando a disponibilidade de técnicas de medição fiáveis. A lista inclui monóxido de carbono, monóxido de azoto, dióxido de azoto, dióxido de enxofre, cianeto de hidrogénio, manganês, diacetilo e muitas outras substâncias químicas. A lista é baseada emDirectiva 98/24/CE do Conselhoque considera a protecção da saúde e segurança dos trabalhadores contra os riscos relacionados com os agentes químicos no local de trabalho. Para qualquer agente químico para o qual tenha sido estabelecido um IOELV a nível da União, os Estados-membros são obrigados a estabelecer um valor limite nacional de exposição profissional. São igualmente obrigados a ter em conta o valor limite da União, determinando a natureza do valor limite nacional, de acordo com a legislação e as práticas nacionais. Os Estados-membros poderão beneficiar de um período de transição que terminará, o mais tardar, a 21 de Agosto de 2023.

O Executivo de Saúde e Segurança (HSE)declaram que todos os anos vários trabalhadores irão sofrer de pelo menos um episódio de doença relacionada com o trabalho. Embora a maioria das doenças sejam casos relativamente leves de gastroenterite, existe também um risco de doenças potencialmente fatais, tais como a leptospirose (doença de Weil) e a hepatite. Ainda que estas sejam comunicadas ao HSE, pode haver uma subnotificação significativa, uma vez que muitas vezes não se reconhece a ligação entre doença e trabalho.

Ao abrigo da legislação nacional doHealth and Safety at Work etc Act 1974, os empregadores são responsáveis por garantir a segurança dos seus empregados e outros. Esta responsabilidade é reforçada por regulamentos.

O Regulamento dos Espaços Confinados de 1997aplica-se quando a avaliação identifica riscos de lesões graves decorrentes do trabalho em espaços confinados. Estes regulamentos contêm os seguintes deveres fundamentais:

  • Evitar a entrada em espaços confinados, por exemplo, fazendo o trabalho a partir do exterior.
  • Se a entrada num espaço confinado for inevitável, seguir um sistema de trabalho seguro.
  • Criar medidas de emergência adequadas antes do início dos trabalhos.

A Gestão dos Regulamentos de Saúde e Segurança no Trabalho de 1999exige que os empregadores e os trabalhadores independentes realizem uma avaliação adequada e suficiente dos riscos para todas as actividades laborais, com o objectivo de decidir quais as medidas necessárias para a segurança. Para o trabalho em espaços confinados, isto significa identificar os perigos presentes, avaliar os riscos e determinar as precauções a tomar.

As nossas soluções

A eliminação destes perigos de gás é praticamente impossível, pelo que os trabalhadores permanentes e os empreiteiros têm de depender de equipamento fiável de deteção de gás para os proteger. A deteção de gás pode ser fornecida tanto emfixoseportátile portáteis. Os nossos detectores de gás portáteis protegem contra uma vasta gama de riscos de gás, incluindoT4x,Clip SGD,Gasman,Tetra 3,Gas-Pro,T4eDetective+. Os nossos detectores de gás fixos são utilizados em muitas aplicações em que a fiabilidade, a segurança e a ausência de falsos alarmes são fundamentais para uma deteção de gás eficiente e eficaz, incluindoXgard,Xgard BrighteIRmax. Combinados com uma variedade dos nossos detectores fixos, os nossos painéis de controlo de deteção de gases oferecem uma gama flexível de soluções que medem gases inflamáveis, tóxicos e de oxigénio, comunicam a sua presença e activam alarmes ou equipamento associado.Gasmaster.

Para saber mais sobre os perigos do gás nas águas residuais e no tratamento de águas, visite o nossopágina da indústriapara mais informações.

Os perigos da exposição ao gás em adegas

As adegas enfrentam um conjunto único de desafios quando se trata de salvaguardar os trabalhadores dos potenciais danos causados por gases perigosos. A exposição a gases tem o potencial de ocorrer em todas as fases do processo de produção do vinho, desde o momento em que as uvas chegam às instalações da adega, até às actividades de fermentação e engarrafamento. Deve ter-se cuidado em cada fase para garantir que os trabalhadores não sejam expostos a riscos desnecessários. Existem vários ambientes específicos dentro das instalações da adega que representam um risco de fuga de gás e exposição, incluindo salas de fermentação, fossos, caves de barricas, poços, tanques de armazenamento e salas de engarrafamento. Os principais perigos de gás encontrados durante o processo de vinificação são o dióxido de carbono, e o deslocamento de oxigénio, mas também o sulfureto de hidrogénio, dióxido de enxofre, álcool etílico e monóxido de carbono.

Quais são os perigos do gás?

Sulfureto de hidrogénio (H2S)

O sulfureto de hidrogénio é um gás que pode estar presente durante o processo de fermentação. Está mais frequentemente presente em condições húmidas, onde a acção bacteriana actuou sobre óleos naturais. Esconde-se dissolvido em água parada até ficar perturbado. A ocorrência mais perigosa é quando se limpa um espaço confinado, por exemplo, um tanque onde os gases libertados não podem escapar facilmente. Um controlo pré-entrada é efectuado limpo, e a água parada é então perturbada à entrada. Os riscos associados ao H2S são que este é potencialmente perigoso para a saúde, perturbando os padrões respiratórios. O sulfureto de hidrogénio representa riscos respiratórios graves, mesmo com uma concentração relativamente baixa no ar. O gás é muito fácil e rapidamente absorvido na corrente sanguínea através do tecido pulmonar, o que significa que é distribuído por todo o corpo muito rapidamente.

Dióxido de enxofre (SO2)

O Dióxido de Enxofre é um subproduto natural da fermentação, mas também é normalmente utilizado como aditivo no processo de produção de vinho biológico. Adiciona-se SO2 extra durante o processo de vinificação a fim de evitar o crescimento de qualquer levedura e micróbios indesejáveis no interior do vinho. O dióxido de enxofre pode ser altamente perigoso para a saúde e é um gás altamente tóxico, causando numerosas irritações no corpo após o contacto. O dióxido de enxofre é um gás que pode causar irritação nas vias respiratórias, nariz e garganta. Os trabalhadores que estão expostos a níveis elevados de dióxido de enxofre podem sofrer vómitos, náuseas, cólicas estomacais, e irritação ou danos corrosivos nos pulmões e vias respiratórias.

Etanol (álcool etílico)

O etanol é o principal produto alcoólico da fermentação orgânica do vinho. Ajuda a manter o sabor do vinho e a estabilizar o processo de envelhecimento. O etanol é criado durante a fermentação, uma vez que a levedura converte o açúcar das uvas. O vinho contém normalmente algures entre 7% e 15% de etanol, o que dá à bebida a sua percentagem de álcool por volume (ABV). A quantidade de etanol efectivamente produzida depende do teor de açúcar das uvas, da temperatura de fermentação, e do tipo de levedura utilizada. O etanol é um líquido incolor e inodoro que liberta fumos inflamáveis e potencialmente perigosos. Os fumos emitidos pelo etanol ou álcool etílico podem irritar as vias respiratórias e os pulmões se inalados, com a possibilidade de tosse intensa e asfixia.

Onde estão os perigos?

Tanques de Fermentação Abertos

Qualquer trabalhador cujo trabalho envolva a realização de operações sobre um recipiente ou tanque de fermentação aberto pode estar em alto risco de exposição ao gás, especialmente aoCO2, ou ao esgotamento do oxigénio. Foi demonstrado que um trabalhador que se inclina sobre a parte superior de um fermentador aberto durante a produção total, mesmo que possa estar a 3 metros do solo, pode potencialmente estar exposto a 100% deCO2. Por conseguinte, deve ser tomado especial cuidado e atenção à detecção de gás nestas áreas.

Exposição devido a Ventilação Inadequada

O processo de fermentação deve ter lugar em ambientes bem ventilados para evitar a acumulação de gases tóxicos e asfixiantes. Salas de fermentação, salas de tanques e caves são todos locais que podem representar um risco. Durante o tempo frio ou durante a noite, os níveis de gás podem aumentar à medida que as aberturas das portas e janelas podem ser fechadas.

Espaços Confinados

Os espaços confinados, tais como fossos e poços, são frequentemente problemáticos e bem conhecidos pela potencial acumulação de gases perigosos. A definição de um espaço confinado numa adega é aquele que contém, ou pode conter, uma atmosfera perigosa, tem o potencial de engolfamento por material, ou um novo operador do ambiente pode ficar preso ou asfixiado.

Unidades múltiplas

À medida que uma adega cresce e expande as suas operações, podem querer acrescentar novas unidades de produção para satisfazer a procura. Contudo, é importante lembrar que os riscos potenciais de exposição ao gás diferem entre ambientes, por exemplo, o risco de gás numa adega de fermentação não é o mesmo que uma sala de barris. Por conseguinte, podem ser necessários diferentes tipos de detectores de gás em diferentes áreas.

Para mais informações sobre soluções de detecção de gás para adegas, ou para fazer mais perguntas, entre em contacto hoje mesmo.

Mineração de ouro: De que detecção de gás preciso? 

Como é extraído o ouro?

O ouro é uma substância rara que equivale a 3 partes por bilião da camada exterior da Terra, sendo a maior parte do ouro disponível no mundo proveniente da Austrália. O ouro, como o ferro, o cobre e o chumbo, é um metal. Existem duas formas primárias de mineração de ouro, incluindo a mineração a céu aberto e subterrânea. A mineração a céu aberto envolve equipamento de terraplanagem para remover os resíduos de rocha do corpo do minério acima, e depois a mineração é conduzida a partir da substância restante. Este processo requer que os resíduos e o minério sejam atingidos em grandes volumes para quebrar os resíduos e o minério em tamanhos adequados ao manuseamento e transporte tanto para os depósitos de resíduos como para os trituradores de minério. A outra forma de mineração de ouro é o método mais tradicional de mineração subterrânea. É aqui que os poços verticais e os túneis em espiral transportam trabalhadores e equipamento para dentro e fora da mina, fornecendo ventilação e transportando os resíduos de rocha e minério para a superfície.

Detecção de gás em minas

Quando relacionado com a detecção de gás, o processo de saúde e segurança dentro das minas desenvolveu-se consideravelmente ao longo do século passado, desde o morphing do uso bruto de testes de paredes de pavio de metano, canários de canto e segurança de chamas até às tecnologias e processos modernos de detecção de gás tal como os conhecemos. A garantia do tipo correcto de equipamento de detecção é utilizada, quer fixo ou portátilantes de entrar nestes espaços. A utilização adequada do equipamento garantirá o controlo preciso dos níveis de gás, e os trabalhadores serão alertados para os perigos concentrações dentro da atmosfera, na primeira oportunidade.

Quais são os perigos do gás e quais são os perigos?

Os perigos que aqueles que trabalham na indústria mineira enfrentam vários perigos e doenças profissionais potenciais, e a possibilidade de lesões fatais. Por conseguinte, é importante compreender os ambientes e os perigos a que podem estar expostos.

Oxigénio (O2)

O oxigénio (O2), normalmente presente no ar a 20,9%, é essencial para a vida humana. Há três razões principais pelas quais o oxigénio representa uma ameaça para os trabalhadores da indústria mineira. Estas incluem deficiências ou enriquecimento de oxigénio, pois muito pouco oxigénio pode impedir o funcionamento do corpo humano, levando o trabalhador a perder a consciência. A menos que o nível de oxigénio possa ser restaurado a um nível médio, o trabalhador está em risco de morte potencial. Uma atmosfera é deficiente quando a concentração de O2 é inferior a 19,5%. Consequentemente, um ambiente com demasiado oxigénio é igualmente perigoso, uma vez que constitui um risco muito maior de incêndio e explosão. Isto é considerado quando o nível de concentração de O2 é superior a 23,5%.

Monóxido de carbono (CO)

Em alguns casos, podem estar presentes concentrações elevadas de monóxido de carbono (CO). Os ambientes em que isto pode ocorrer incluem um incêndio doméstico, pelo que o serviço de bombeiros corre o risco de envenenamento por CO. Neste ambiente pode haver até 12,5% de CO no ar que, quando o monóxido de carbono sobe ao tecto com outros produtos de combustão e quando a concentração atinge 12,5% em volume, isto só levará a uma coisa, chamada flashover. Isto é quando o lote inteiro se inflama como combustível. Para além dos artigos que caem no serviço de incêndio, este é um dos perigos mais extremos que enfrentam quando se trabalha dentro de um edifício em chamas. Devido às características do CO ser tão difícil de identificar, isto é, incolor, inodoro, insípido, insípido, gás venenoso, pode levar tempo a aperceber-se de que tem envenenamento por CO. Os efeitos do CO podem ser perigosos, isto porque o CO impede o sistema sanguíneo de transportar eficazmente oxigénio à volta do corpo, especificamente para órgãos vitais tais como o coração e o cérebro. Doses elevadas de CO, portanto, podem causar a morte por asfixia ou falta de oxigénio no cérebro. De acordo com estatísticas do Departamento de Saúde, a indicação mais comum de envenenamento por CO é a de uma dor de cabeça com 90% dos doentes a relatar este sintoma, com 50% a relatar náuseas e vómitos, bem como vertigens. Com confusão/mudanças na consciência, e fraqueza que representam 30% e 20% das denúncias.

Sulfureto de hidrogénio (H2S)

O sulfureto de hidrogénio (H2S) é um gás incolor e inflamável com um odor característico de ovos podres. Pode ocorrer contacto com a pele e os olhos. No entanto, o sistema nervoso e cardiovascular são mais afectados pelo sulfureto de hidrogénio, o que pode levar a uma série de sintomas. As exposições individuais a concentrações elevadas podem causar rapidamente dificuldades respiratórias e morte.

Dióxido de enxofre (SO2)

O dióxido de enxofre (SO2) pode causar vários efeitos nocivos nos sistemas respiratórios, em particular no pulmão. Pode também causar irritação da pele. O contacto da pele com (SO2) causa dores de picadas, vermelhidão da pele e bolhas. O contacto da pele com gás comprimido ou líquido pode causar queimaduras por congelação. O contacto com os olhos causa olhos lacrimejantes e, em casos graves, a cegueira pode ocorrer.

Metano (CH4)

O metano (CH4) é um gás incolor e altamente inflamável, sendo o gás natural um dos seus componentes primários. Níveis elevados de (CH4) podem reduzir a quantidade de oxigénio respirado do ar, o que pode resultar em alterações de humor, fala desarticulada, problemas de visão, perda de memória, náuseas, vómitos, rubor facial e dores de cabeça. Em casos graves, pode haver alterações na respiração e ritmo cardíaco, problemas de equilíbrio, dormência, e inconsciência. Embora, se a exposição for por um período mais longo, pode resultar em fatalidade.

Hidrogénio (H2)

O Gás Hidrogénio é um gás incolor, inodoro e sem sabor que é mais leve que o ar. Como é mais leve que o ar, isto significa que flutua mais alto que a nossa atmosfera, o que significa que não é naturalmente encontrado, mas que deve ser criado. O hidrogénio representa um risco de incêndio ou explosão, assim como um risco de inalação. Concentrações elevadas deste gás podem causar um ambiente deficiente em oxigénio. Os indivíduos que respiram uma tal atmosfera podem experimentar sintomas que incluem dores de cabeça, zumbidos nos ouvidos, tonturas, sonolência, inconsciência, náuseas, vómitos e depressão de todos os sentidos.

Amoníaco (NH3)

A amónia (NH3) é uma das substâncias químicas mais utilizadas a nível mundial que é produzida tanto no corpo humano como na natureza. Embora seja naturalmente criada (NH3) é corrosiva, o que constitui uma preocupação para a saúde. A elevada exposição dentro do ar pode resultar em queimaduras imediatas nos olhos, nariz, garganta e vias respiratórias. Os casos de serviço podem resultar em cegueira.

Outros riscos de gás

Embora o Cianeto de Hidrogénio (HCN) não persista no ambiente, o armazenamento, manuseamento e gestão inadequada dos resíduos pode constituir um risco grave para a saúde humana, bem como efeitos sobre o ambiente. O cianeto interfere com a respiração humana a níveis celulares que podem causar efeitos de serviço e agudos, incluindo respiração rápida, tremores, asfixia.

A exposição a partículas diesel pode ocorrer em minas subterrâneas como resultado de equipamento móvel movido a diesel utilizado para perfuração e transporte. Embora as medidas de controlo incluam a utilização de combustível diesel com baixo teor de enxofre, manutenção e ventilação do motor, as implicações para a saúde incluem o risco excessivo de cancro do pulmão.

Produtos que podem ajudar a proteger-se

Crowcon fornece uma gama de detecção de gás incluindo tanto produtos portáteis como fixos, todos eles adequados para a detecção de gás na indústria mineira.

Para saber mais, visite a nossa página da indústria aqui.