The importance of Gas Detection in the Water and Wastewater Industry 

Water is vital to our daily lives, both for personal and domestic use and industrial/commercial applications. Whether a facility focuses on the production of clean, potable water or treating effluent, Crowcon is proud to serve a wide variety of water industry clients, providing gas detection equipment that keeps workers safe around the world. 

Gas Hazards 

Apart from common gas hazards known in the industry; methane, hydrogen sulphide, and oxygen, there are bi-product gas hazards and cleaning material gas hazards that occur from purifying chemicals such as ammonia, chlorine, chlorine dioxide or ozone that are used in the decontamination of the waste and effluent water, or to remove microbes from clean water. There is great potential for many toxic or explosive gases to exist as a result of the chemicals used in the water industry. And added to these are chemicals that may be spilled or dumped into the waste system from industry, farming or building work. 

Safety Considerations  

Confined Space Entry 

The pipelines used to transport water require regular cleaning and safety checks; during these operations, portable multi-gas monitors are used to protect the workforce. Pre-entry checks must be completed prior to entering any confined space and commonly O2, CO, H2S and CH4 are monitored. Confined spaces are small, so portable monitors must be compact and unobtrusive for the user, yet able to withstand the wet and dirty environments in which they must perform. Clear and prompt indication of any increase in gas monitored (or any decrease for oxygen) is of paramount importance – loud and bright alarms are effective in raising the alarm to the user. 

Risk assessment 

Risk assessment is critical, as you need to be aware of the environment that you are entering and thus working in. Therefore, understanding the applications and identifying the risks regarding all safety aspects. Focusing on gas monitoring, as part of the risk assessment, you need to be clear on what gases may be present.  

Fit for purpose 

There is a variety of applications within the water treatment process, giving the need to monitor multiple gases, including carbon dioxide, hydrogen sulphide, chlorine, methane, oxygen, ozone and chlorine dioxide. Gas detectors are available for single or multiple gas monitoring, making them practical for different applications as well as making sure that, if conditions change (such as sludge is stirred up, causing a sudden increase in hydrogen sulphide and flammable gas levels), the worker is still protected.  

Legislation   

European Commission Directive 2017/164 issued in January 2017, established a new list of indicative occupational exposure limit values (IOELVs). IOELV are health-based, non-binding values, derived from the most recent scientific data available and considering the availability of reliable measurement techniques. The list includes carbon monoxide, nitrogen monoxide, nitrogen dioxide, sulphur dioxide, hydrogen cyanide, manganese, diacetyl and many other chemicals. The list is based on Council Directive 98/24/EC that considers the protection of the health and safety of workers from the risks related to chemical agents in the workplace. For any chemical agent for which an IOELV has been set at Union level, Member States are required to establish a national occupational exposure limit value. They also are required to take into account the Union limit value, determining the nature of the national limit value in accordance with national legislation and practice. Member States will be able to benefit from a transitional period ending at the latest on 21 August 2023.  

The Health and Safety Executive (HSE) state that each year several workers will suffer from at least one episode of work-related illness. Although, most illnesses are relatively mild cases of gastroenteritis, there is also a risk for potentially fatal diseases, such as leptospirosis (Weil’s disease) and hepatitis. Even though these are reported to the HSE, there could be significant under-reporting as there is often failure to recognise the link between illness and work.  

Under domestic law of the Health and Safety at Work etc Act 1974, employers are responsible for ensuring the safety of their employees and others. This responsibility is reinforced by regulations. 

The Confined Spaces Regulations 1997 applies where the assessment identifies risks of serious injury from work in confined spaces. These regulations contain the following key duties: 

  • Avoid entry to confined spaces, e.g., by doing the work from the outside. 
  • If entry to a confined space is unavoidable, follow a safe system of work.
  • Put in place adequate emergency arrangements before the work start. 

The Management of Health and Safety at Work Regulations 1999 requires employers and self-employed people to carry out a suitable and sufficient assessment of the risks for all work activities for the purpose of deciding what measures are necessary for safety. For work in confined spaces this means identifying the hazards present, assessing the risks and determining what precautions to take. 

Our solutions

Elimination of these gas hazards is virtually impossible, so permanent workers and contractors must depend on reliable gas detection equipment to protect them. Gas detection can be provided in both fixed and portable forms. Our portable gas detectors protect against a wide range of gas hazards, these include T4x, Clip SGD, Gasman, Tetra 3,Gas-Pro, T4 and Detective+. Our fixed gas detectors are used in many applications where reliability, dependability and lack of false alarms are instrumental to efficient and effective gas detection, these include Xgard, Xgard Bright and IRmax. Combined with a variety of our fixed detectors, our gas detection control panels offer a flexible range of solutions that measure flammable, toxic and oxygen gases, report their presence and activate alarms or associated equipment, for the wastewater industry our panels include Gasmaster.    

To find out more on the gas hazards in wastewater and water treatment visit our industry page for more information.  

Gas Hazards in Water Treatment

Water is vital to our daily lives, both for personal and domestic use and industrial/commercial applications. It is everywhere, promoting some chemical reactions and inhibiting others. Being used to clean surfaces, carry chemicals to where they are used and to carry unwanted chemicals away. Do anything and you create a gas somewhere in some quantity. Do anything with water there are so many permutations of things that can come together and react, dissolved gases that can come out of solution, dissolved liquids and solids that can react to generate gases. Additionally, you must determine what gases you generate when you collect, clean, store, transport or use water. Gas detectors must be chosen to suit the specific environment in which they operate, in this case highly humid, often dirty, but rarely outside the temperature range 4 to 30 degrees C. All the risks are present in these complex environments, with multiple toxic and flammable gas hazards and often the additional risk of oxygen depletion.

Gas Hazards

Apart from common gas hazards known in the industry; methane, hydrogen sulphide, and oxygen, there are bi-product gas hazards and cleaning material gas hazards that occur from purifying chemicals such as ammonia, chlorine, chlorine dioxide or ozone that are used in the decontamination of the waste and effluent water, or to remove microbes from clean water. There is great potential for many toxic or explosive gases to exist as a result of the chemicals used in the water industry. And added to these are chemicals that may be spilled or dumped into the waste system from industry, farming or building work.

Chlorine (Cl2) gas appears yellow green in colour, used to sterilise drinking water. However, most chlorine is used in the chemical industry with typical applications including water treatment as well as within the plastics and cleaning agents. Chlorine gas can be recognised by its pungent, irritating odour, which is like the odour of bleach. The strong smell may provide adequate warning to people that they are exposed. Cl2 itself is not flammable, but it can react explosively or form flammable compounds with other chemicals such as turpentine and ammonia.

Ammonia (NH3) is a compound of nitrogen and hydrogen and is a colourless and pungent gas, also known to be highly soluble when in contact with water. This means that NH3 dissolves quickly into the water supply. Found at very low levels in humans and in nature. It is also often used in some household cleaning solutions. Although NH3 has many benefits, it can be corrosive and dangerous in certain circumstances. Ammonia can enter wastewater from several different sources, including urine, manure, cleaning chemicals, process chemicals and amino acid products. If NH3 enters a copper piping system, it can cause extensive corrosion. If NH3 enters water, its toxicity varies depending on the exact pH of the water. It is possible for ammonia to break down into ammonium ions, which can react with other compounds present.

Chlorine dioxide (ClO2) is an oxidising gas commonly used to disinfect drinking water. When used in very small quantities, it is safe and does not lead to significant health risks. But ClO2 is a strong disinfectant that kills bacteria, viruses, and fungi, and when used in high doses, it can be dangerous to people since it can damage red blood cells and the lining of the gastrointestinal (GI) tract.

Ozone (O3) is a gas with an antiseptic smell and no colour that, mostly, forms naturally in the environment. When inhaled, ozone can have a range of harmful effects on the body. As it is colourless gas it is difficult to trace without an effective detection system in place. Even when relatively small amounts are inhaled, the gas can have a damaging impact on the respiratory tract, causing inflammation and chest pain, alongside coughing, shortness of breath and throat irritation. It can also act as a trigger causing diseases such as asthma to worsen.

Confined Space Entry

The pipelines used to transport water require regular cleaning and safety checks; during these operations, portable multi-gas monitors are used to protect the workforce. Pre-entry checks must be completed prior to entering any confined space and commonly O2, CO, H2S and CH4 are monitored. Confined spaces are small, so portable monitors must be compact and unobtrusive for the user, yet able to withstand the wet and dirty environments in which they must perform. Clear and prompt indication of any increase in gas monitored (or any decrease for oxygen) is of paramount importance – loud and bright alarms are effective in raising the alarm to the user.

Legislation

European Commission Directive 2017/164 established an increased list of indicative occupational exposure limit values (IOELVs). IOELV are health-based, non-binding values, derived from the most recent scientific data available and considering the availability of reliable measurement techniques. Non-binding but best practice. The list includes carbon monoxide, nitrogen monoxide, nitrogen dioxide, sulphur dioxide, hydrogen cyanide, manganese, diacetyl and many other chemicals. The list is based on Council Directive 98/24/EC that considers the protection of the health and safety of workers from the risks related to chemical agents in the workplace. For any chemical agent for which an IOELV has been set at Union level, Member States are required to establish a national occupational exposure limit value. They also are required to take into account the Union limit value, determining the nature of the national limit value in accordance with national legislation and practice. Member States will be able to benefit from a transitional period ending at the latest on 21 August 2023.

The Health and Safety Executive (HSE) state that each year several workers will suffer from at least one episode of work-related illness. Although, most illnesses are relatively mild cases of gastroenteritis, there is also a risk for potentially fatal diseases, such as leptospirosis (Weil’s disease) and hepatitis. Even though these are reported to the HSE, there could be significant under-reporting as there is often failure to recognise the link between illness and work.

Under domestic law of the Health and Safety at Work etc Act 1974, employers are responsible for ensuring the safety of their employees and others. This responsibility is reinforced by regulations.

The Confined Spaces Regulations 1997 applies where the assessment identifies risks of serious injury from work in confined spaces. These regulations contain the following key duties:

  • Avoid entry to confined spaces, e.g., by doing the work from the outside.
  • If entry to a confined space is unavoidable, follow a safe system of work.
  • Put in place adequate emergency arrangements before the work start.

The Management of Health and Safety at Work Regulations 1999 requires employers and self-employed people to carry out a suitable and sufficient assessment of the risks for all work activities for the purpose of deciding what measures are necessary for safety. For work in confined spaces this means identifying the hazards present, assessing the risks and determining what precautions to take.

Our solution

Elimination of these gas hazards is virtually impossible, so permanent workers and contractors must depend on reliable gas detection equipment to protect them. Gas detection can be provided in both fixed and portable forms. Our portable gas detectors protect people against a wide range of gas hazards, and include T4x, Clip SGD, Gasman, Tetra 3, Gas-Pro, T4 and Detective+. Our fixed gas detectors are used where reliability, dependability and lack of false alarms are instrumental to efficient and effective protection of assets and areas, and include the Xgard, Xgard Bright and IRmax product ranges. Combined with a variety of our fixed detectors, our gas detection control panels offer a flexible range of solutions that measure flammable, toxic and oxygen gases, report their presence and activate alarms or associated equipment, for the wastewater industry we often recommend our Gasmaster panel.

To find out more on the gas hazards in wastewater visit our industry page for more information.

Gas Hazards in Wastewater

Water is vital to our daily lives, both for personal and domestic use and industrial/commercial applications making water sites both numerous and widespread. Despite the quantity and location of water sites, only two environments predominate, and these are quite specific. They are clean water and wastewater. This blog details gas risks encountered at wastewater sites and how they may be mitigated. 

The wastewater industry is always wet, with temperatures between 4 and 20oc near the water and rarely far from that limited temperature range even away from the immediate location of the wastewater. 90%+ relative humidity, 12 +/- 8oc, atmospheric pressure, with multiple toxic and flammable gas hazards and the risk of oxygen depletion. Gas detectors must be chosen to suit the specific environment in which they operate, and whilst high humidity is generally challenging to all instrumentation, the constant pressure, moderate temperatures and narrow temperature range is a far greater benefit to safety instrumentation. 

Gas Hazards  

The main gases of concern in wastewater treatment plants are: 

  • Methane 
  • Hydrogen sulphide 
  • Carbon dioxide  
  • Reduced levels of oxygen 

Hydrogen sulphide, methane and carbon dioxide are the by-products of the decomposition of organic materials that exist in the waste flows feeding the plant. The build-up of these gases may lead to the lack of oxygen, or in some cases, explosion when coupled with a source of ignition. 

Hydrogen sulphide (H2S)

Hydrogen sulphide is a common product of the biodegradation of organic matter; pockets of H2S can collect in rotting vegetation, or sewage itself, and be released when disturbed. Workers in sewerage and wastewater plants and pipework can be overcome by H2S, with fatal consequences. Its high toxicity is the main danger of H2S. Prolonged exposure to 2-5 parts per million (ppm) H2S can cause nausea and headaches and bring tears to the eyes. H2S is an anaesthetic, hence at 20ppm, symptoms include fatigue, headaches, irritability, dizziness, temporary loss of the sense of smell and impaired memory. Severity of symptoms increase with concentration as nerves shut down, through coughing, conjunctivitis, collapse and rapid unconsciousness. Exposure at higher levels can result in rapid knock down and death. Prolonged exposure to low levels of H2S may cause chronic illness or can also kill. Because of this, many gas monitors will have both instantaneous and TWA (Time-Weighted Average) alerts. 

Methane (CH4)

Methane is a colourless, highly flammable gas that is the primary component of natural gas, also referred to as biogas. It can be stored and/or transported under pressure as a liquid-gas. CH4 is a greenhouse gas that is also encountered in normal atmospheric conditions at a rate of approximately 2 parts per million (ppm). High exposure can lead to slurred speech, vision problems and memory loss. 

Oxygen (O2)

The normal concentration of oxygen in the atmosphere is approximately 20.9% volume. In the absence of adequate ventilation, the level of oxygen can be reduced surprisingly quickly by breathing and combustion processes. Olevels may also be depleted due to dilution by other gases such as carbon dioxide (also a toxic gas), nitrogen or helium, and chemical absorption by corrosion processes and similar reactions. Oxygen sensors should be used in environments where any of these potential risks exist. When locating oxygen sensors, consideration needs to be given to the density of the diluting gas and the “breathing” zone (nose level). 

Safety Considerations 

Risk assessment

Risk assessment is critical, as you need to be aware of the environment that you are entering and thus working in. Therefore, understanding the applications and identifying the risks regarding all safety aspects. Focusing on gas monitoring, as part of the risk assessment, you need to be clear on what gases may be present. 

Fit for purpose

There is a variety of applications within the water treatment process, giving the need to monitor multiple gases, including carbon dioxide, hydrogen sulphide, chlorine, methane, oxygen, ozone and chlorine dioxide. Gas detectors are available for single or multiple gas monitoring, making them practical for different applications as well as making sure that, if conditions change (such as sludge is stirred up, causing a sudden increase in hydrogen sulphide and flammable gas levels), the worker is still protected. 

Legislation  

European Commission Directive 2017/164 issued in January 2017, established a new list of indicative occupational exposure limit values (IOELVs). IOELV are health-based, non-binding values, derived from the most recent scientific data available and considering the availability of reliable measurement techniques. The list includes carbon monoxide, nitrogen monoxide, nitrogen dioxide, sulphur dioxide, hydrogen cyanide, manganese, diacetyl and many other chemicals. The list is based on Council Directive 98/24/EC that considers the protection of the health and safety of workers from the risks related to chemical agents in the workplace. For any chemical agent for which an IOELV has been set at Union level, Member States are required to establish a national occupational exposure limit value. They also are required to take into account the Union limit value, determining the nature of the national limit value in accordance with national legislation and practice. Member States will be able to benefit from a transitional period ending at the latest on 21 August 2023. 

The Health and Safety Executive (HSE) state that each year several workers will suffer from at least one episode of work-related illness. Although, most illnesses are relatively mild cases of gastroenteritis, there is also a risk for potentially fatal diseases, such as leptospirosis (Weil’s disease) and hepatitis. Even though these are reported to the HSE, there could be significant under-reporting as there is often failure to recognise the link between illness and work. 

Our solutions  

Elimination of these gas hazards is virtually impossible, so permanent workers and contractors must depend on reliable gas detection equipment to protect them. Gas detection can be provided in both fixed and portable forms. Our portable gas detectors protect against a wide range of gas hazards, these include T4x, Clip SGD, Gasman, Tetra 3, Gas-Pro, T4 and Detective+. Our fixed gas detectors are used where reliability, dependability and lack of false alarms are instrumental to efficient and effective gas detection, these include Xgard, Xgard Bright and IRmax. Combined with a variety of our fixed detectors, our gas detection control panels offer a flexible range of solutions that measure flammable, toxic and oxygen gases, report their presence and activate alarms or associated equipment, for the wastewater industry our panels include Gasmaster.   

To find out more on the gas hazards in wastewater visit our industry page for more information.