Gold Mining: What gas detection do I need? 

How is gold mined?

Gold is a rare substance equating to 3 parts per billion of the earth’s outer layer, with most of the world’s available gold coming from Australia. Gold, like iron, copper and lead, is a metal. There are two primary forms of gold mining, including open-cut and underground mining. Open mining involves earth-moving equipment to remove waste rock from the ore body above, and then mining is conducted from the remaining substance. This process requires waste and ore to be struck at high volumes to break the waste and ore into sizes suitable for handling and transportation to both waste dumps and ore crushers. The other form of gold mining is the more traditional underground mining method. This is where vertical shafts and spiral tunnels transport workers and equipment into and out of the mine, providing ventilation and hauling the waste rock and ore to the surface.

Gas detection in mining

When relating to gas detection, the process of health and safety within mines has developed considerably over the past century, from morphing from the crude usage of methane wick wall testing, singing canaries and flame safety to modern-day gas detection technologies and processes as we know them. Ensuring the correct type of detection equipment is utilised, whether fixed or portable, before entering these spaces. Proper equipment utilisation will ensure gas levels are accurately monitored, and workers are alerted to dangerous concentrations within the atmosphere at the earliest opportunity.

What are the gas hazards and what are the dangers?

The dangers those working within the mining industry face several potential occupational hazards and diseases, and the possibility of fatal injury. Therefore, understanding the environments and hazards, they may be exposed to is important.

Oxygen (O2)

Oxygen (O2), usually present in the air at 20.9%, is essential to human life. There are three main reasons why oxygen poses a threat to workers within the mining industry. These include oxygen deficiencies or enrichment, as too little oxygen can prevent the human body from functioning leading to the worker losing consciousness. Unless the oxygen level can be restored to an average level, the worker is at risk of potential death. An atmosphere is deficient when the concentration of O2 is less than 19.5%. Consequently, an environment with too much oxygen is equally dangerous as this constitutes a greatly increased risk of fire and explosion. This is considered when the concentration level of O2 is over 23.5%

Carbon Monoxide (CO)

In some cases, high concentrations of Carbon Monoxide (CO) may be present. Environments that this may occur include a house fire, therefore the fire service are at risk of CO poisoning. In this environment there can be as much as 12.5% CO in the air which when the carbon monoxide rises to the ceiling with other combustion products and when the concentration hits 12.5% by volume this will only lead to one thing, called a flashover. This is when the whole lot ignites as a fuel. Apart from items falling on the fire service, this is one of the most extreme dangers they face when working inside a burning building. Due to the characteristics of CO being so hard to identify, I.e., colourless, odourless, tasteless, poisonous gas, it may take time for you to realise that you have CO poisoning. The effects of CO can be dangerous, this is because CO prevents the blood system from effectively carrying oxygen around the body, specifically to vital organs such as the heart and brain. High doses of CO, therefore, can cause death from asphyxiation or lack of oxygen to the brain. According to statistics from the Department of Health, the most common indication of CO poisoning is that of a headache with 90% of patients reporting this as a symptom, with 50% reporting nausea and vomiting, as well as vertigo. With confusion/changes in consciousness, and weakness accounting for 30% and 20% of reports.

Hydrogen sulphide (H2S)

Hydrogen sulphide (H2S) is a colourless, flammable gas with a characteristic odour of rotten eggs. Skin and eye contact may occur. However, the nervous system and cardiovascular system are most affected by hydrogen sulphide, which can lead to a range of symptoms. Single exposures to high concentrations may rapidly cause breathing difficulties and death.

Sulphur dioxide (SO2)

Sulphur dioxide (SO2) can cause several harmful effects on the respiratory systems, in particular the lung. It can also cause skin irritation. Skin contact with (SO2) causes stinging pain, redness of the skin and blisters. Skin contact with compressed gas or liquid can cause frostbite. Eye contact causes watering eyes and, in severe cases, blindness can occur.

Methane (CH4)

Methane (CH4) is a colourless, highly flammable gas with a primary component being that of natural gas. High levels of (CH4) can reduce the amount of oxygen breathed from the air, which can result in mood changes, slurred speech, vision problems, memory loss, nausea, vomiting, facial flushing and headache. In severe cases, there may be changes in breathing and heart rate, balance problems, numbness, and unconsciousness. Although, if exposure is for a longer period, it can result in fatality.

Hydrogen (H2)

Hydrogen Gas is a colourless, odourless, and tasteless gas which is lighter than air. As it is lighter than air this means it float higher than our atmosphere, meaning it is not naturally found, but instead must be created. Hydrogen poses a fire or explosion risk as well as an inhalation risk. High concentrations of this gas can cause an oxygen-deficient environment. Individuals breathing such an atmosphere may experience symptoms which include headaches, ringing in ears, dizziness, drowsiness, unconsciousness, nausea, vomiting and depression of all the senses

Ammonia (NH3)

Ammonia (NH3) is one of the most widely used chemicals globally that is produced both in the human body and in nature. Although it is naturally created (NH3) is corrosive which poses a serve concern for health. High exposure within the air can result in immediate burning to the eyes, nose, throat and respiratory tract. Serve cases can result in blindness.

Other gas risks

Whilst Hydrogen Cyanide (HCN) doesn’t persist within the environment, improper storage, handling and waste management can pose severe risk to human health as well as effects on the environment. Cyanide interferes with human respiration at cellular levels that can cause serve and acute effects, including rapid breathing, tremors, asphyxiation.

Diesel particulate exposure can occur in underground mines as a result of diesel-powered mobile equipment used for drilling and haulage. Although control measures include the use of low sulphur diesel fuel, engine maintenance and ventilation, health implication includes excess risk of lung cancer.

Products that can help to protect yourself

Crowcon provide a range of gas detection including both portable and fixed products all of which are suitable for gas detection within the mining industry.

To find out more visit our industry page here.

What do you need to know about Hydrogen?

Hydrogen is one of the most abundant sources of gas contributing approximately 75% of the gas on our Earth. Hydrogen is found in various things including light, water, air, plants, and animals, however, is often combined with other chemicals, the most familiar combination is with oxygen to make water.

What is Hydrogen and what are its benefits?

Historically, Hydrogen Gas has been used as a component for rocket fuel as well as in gas turbines to produce electricity or to burn to run combustion engines for the power generation. In the Oil and Gas Industry, excess hydrogen from the catalytic reforming of naphtha has been used as fuel for other unit operations.

Hydrogen Gas is a colourless, odourless, and tasteless gas which is lighter than air. As it is lighter than air this means it float higher than our atmosphere, meaning it is not naturally found, but instead must be created. This is done by separating it from other elements and collecting the vapour. Electrolysis is completed by taking liquid usually water and separating this from the chemicals found within it. In water the hydrogen and oxygen molecules separate leaving two bonds of hydrogen and one bond of oxygen. The hydrogen atoms form a gas which is captured and stored until required, the oxygen atoms are released into the air as there is no further use. The hydrogen gas that is produced leaves no damaging impact on the environment, leading to many experts believing this is the future.

Why Hydrogen is seen as a cleaner future.

In order to make energy a fuel that is a chemical is burnt. This process usually means chemical bonds are broken and combined with oxygen. Traditionally, Methane gas has been the natural gas of choice with 85% of homes and 40% of the UK’s electricity depending on gas. Methane was seen as a cleaner gas compared to coal, however, when its burnt carbon dioxide is produced as a waste product thereby contributing to climate change. Hydrogen Gas when burnt only produces water vapour as a waste product, this being already a natural resource.

The difference between blue hydrogen and green hydrogen.

Blue hydrogen is produced from non-renewable energy sources, through two methods either Steam or Autothermal. Steam Methane reformation is the most common when producing hydrogen in bulk. This method uses a reformer which produces steam at a high temperature and pressure and is combined with methane and a nickel catalyst to produce hydrogen and carbon monoxide. Autothermal reforming uses the same process however, with oxygen and carbon dioxide. Both methods produce carbon as a by-product.

Green hydrogen is produced using electricity to power an electrolyser that separates hydrogen from the water molecule producing oxygen as a by-product. It also allows for excess electricity to electrolysis to create hydrogen gas that can be stored for the future.

The characteristics that hydrogen presents, has set a precedence for the future of energy. The UK Government have seen this a way forward for a greener way of living and have set a target for a thriving hydrogen economy by 2030. Whilst Japan, South Korea and China are on course to make significant progress in hydrogen development with targets set to match the UK for 2030. Similarly, the European Commission have presented a hydrogen strategy in which hydrogen could provide for 24% of the world’s energy by 2050.

Cross sensitivity of toxic sensors: Chris investigates the gases that the sensor is exposed to

Working in Technical Support, one of the most common questions from customers is for bespoke configurations of toxic gas sensors. This frequently leads to an investigation into the cross sensitivity of the different gases that the sensor will be exposed to.

Cross sensitivity responses will vary from sensor type to sensor type, and suppliers often express the cross sensitivity in percentages while others will specify in actual parts-per-million (ppm) levels.

Continue reading “Cross sensitivity of toxic sensors: Chris investigates the gases that the sensor is exposed to”